
ORIE 3120
Industrial Data and Systems Analysis

Recitation 3
Joins

P. Jackson, L. Seligman, P. Frazier

Educational Objectives

1. Understand how to join the contents of two tables with both “Where”
clauses and “Joins”

2. Understand when you need to refer to a table name when selecting a field
3. Understand table name aliases

Basic Concepts
You must have completed Recitations 1 and 2 before attempting this recitation

Getting Started

1. To receive credit for attendance, copy this answer sheet onto your
computer and fill in the answers to the questions asked as you go through
the recitation. Then, show it to your TA when you are done and ask her or
him to mark down your netid. You can also submit the sheet (saved as a
pdf) electronically before the start of your recitation. You may work by
yourself, or with one other person, but please do not work in groups larger
than two.

2. Open SQLite Studio, version 3.1.1 or higher.
3. Open an existing database by selecting the option “Add database” under

the “Databases” tab. Download and select the file “ThruputHistory.sqlite”.

Multiple Table Queries and Joins

Exercise 1:

1. Create a new view named “Rec3Query1” and include the following code to
be executed.

Note: the asterisk (“*”) adds all the fields from the selected table to the
query.

2. We have created a multiple table query simply by listing different tables
separated by a comma after the FROM keyword. We can refer to any field
from each of these tables after the SELECT keyword by specifying from
which table you are requesting a field.

3. View your results by double clicking this query. It should be listed under
“Views” within the ThruputHistory database. Make sure you are viewing
the “Results” in “Grid View” as shown in the screen shot below.

4. How many rows are there in the resulting dataset? __________________
5. Explain why there are this many rows:

6. Create another query titled “Rec3Query2” which executes the following
SQL code:

7. The table “ProductionHistory” has 840 rows and the table “ShiftNames”

has 4 rows. How many rows are in the resulting dataset? _____________
8. Explain why there are this many:

We are given more rows than are relevant. We are only interested in rows
where the fields are related to each other in terms of “ShiftID”. We could
be more selective by adding a WHERE criterion.

9. Edit Rec3Query2 by clicking on the query and clicking the icon “Edit view”.
This icon is next to the “New view” icon, and it has a box around it in the
screen shot below:

Add the following WHERE criterion to your query and click “Commit” (the
green check mark):

10. Create another query based on table “ProductionHistory” that only shows

the following fields: ProductID, WeekNo, WCType, WorkcenterID. Also
gather the data from the field “Shift” from table “ShiftNames” where “Shift”
is the name associated with the proper “ShiftID” as specified in the
“ProductionHistory” table. (Hint: You will need a WHERE criterion.)

11. Write your query here, and name it “Rec3Query3”. Make sure that the
resulting dataset has exactly 840 rows.

12. The field “ShiftID” occurs in both tables of your multiple table query, so this
field name would be ambiguous without the prefix specifying where to
access this data. Note that you do not always need to specify which table
you are accessing fields from when the field names are not ambiguous.

Exercise 2:

1. There can be more than one way to execute a query in SQL. Joining
tables together based on a common field (or fields) is very common, and
as a result SQL has a special clause to handle this operation, the JOIN
operator.

A JOIN clause is of the following format: “tablename1 INNER JOIN
tablename1 ON tablename1.field1 = tablename2.field2”

Steps 2-4 will outline the steps to perform this operation.

2. Create a new query titled “Rec3Query4” referring to tables
“ProductionHistory” and “ShiftNames”. This query will use the JOIN
operator to join these two tables on the unique key “ShiftID”. We will want
to access the following fields from “ProductionHistory”: ProductID,
WeekNo, WCType, WorkCenterID; we will want to access the field “Shift”
from table “ShiftNames”.

3. The resulting dataset should be identical to the results from the updated
“Rec3Query2” using the WHERE clause. Verify that this dataset is indeed
identical and has 840 rows.

4. Here is the correct query for “Rec3Query4”:

Note that the table names were omitted wherever the field name was
unambiguous.

5. View the contents of the table “ShiftNames” by double clicking on the table
name and viewing the “Data” tab in “Grid View”.

6. Delete the row with “ShiftID=1” and “Shift=Day” by selecting the
appropriate row, clicking the red minus sign to delete, and then the green
checkmark to commit the change.

7. Now reopen “Rec3Query4” (it should be listed under “Views” within the

ThruputHistory database). Hit the refresh button (see this screenshot:)

8. How many rows does the resulting dataset have after the deletion?

Explain why this dataset has fewer rows:

Exercise 3:

1. We now want to display all rows of the “ProductionHistory” table with
appropriate shift names, even when it contains a “ShiftID” that isn’t in the
table “ShiftNames”. The following steps outline this action.

2. Open view “Rec3Query4” for editing. Copy the SQL code and create a
new view “Rec3Query5”. Paste the SQL code from Rec3Query4, since we
will be editing the JOIN clause.

3. We will use a LEFT JOIN which will include all records from
“ProductionHistory” and only the records from “ShiftNames” where the join
condition is met. Change the join in this query to a LEFT JOIN. Open the
resulting dataset. Verify that the resulting dataset again has 840 rows.
What is displayed under “Shift” when “ProductionHistory.ShiftID=1”?

4. Write down the query you ran in step 3:

Note that you do not need to specify the table name “ProductionHistory” in
front of a field name anywhere where it is not ambiguous.

5. You can now close this query. Re-open the table “ShiftNames” and add
the row we deleted earlier (“ShiftID=1” and “Shift=Day”) by clicking the red
plus icon and filling the data in the appropriate fields.

Exercise 4:

1. Create a new view titled “Rec3Query6LostThruputHistoryWithNames”
containing the following fields: “LostThruputHistory.WeekNo,
WorkCenterTypes.WCDescription, LostThruputHistory.WorkCenterID,
ProductNames.LongName, ShiftNames.Shift,
ProblemType.ProblemTypeDescription, LostThruputHistory.Description,
LostThruputHistory.NumOccurrences,
LostThruputHistory.LostThroughputMinutes,
LostThruputHistory.Level1Codes, LostThruputHistory.Level2CodesA,
LostThruputHistory.Level2CodesB, LostThruputHistory.Level2CodesC,
LostThruputHistory.Level3CodesA” in such a way that every row of
“LostThruputHistory” is visible (LEFT JOIN) exactly once (exactly 3188
rows).

2. Here is the appropriate from clause:

3. Run this query to see a more readable version of the “LostThruputHistory”

table.

Table Name Aliases

Using long table names when creating tables, queries, and fields make it easier
to make sense of your database when you look at it weeks. These long names
can add time to the query-writing process though, and one way around this is
using short names as aliases.

Exercise 1:

1. We now want to take the query “Rec3Query6” and replace the problem
codes “Level1Codes”, “Level2CodesA, …” with their respective
descriptions from the table “ClockCodes”. Create a new view titled
“Rec3Query7LostThruputHistoryWithNamesAndLevel1Descriptions” and
start off this view as:

Note the use of the SQL keyword AS used to create table aliases.
2. Now edit the query to select only the following fields: Q6.WeekNo,

Q6.WCDescription, Q6.WorkCenterID, Q6.LongName, Q6.Shift,
Q6.ProblemTypeDescription, Q6.Description, Q6.NumOccurrences,
Q6.LostThroughputMinutes, CC1.Description

3. Open the resulting dataset. How many rows are there? _______________
4. There are only 3,188 rows in the resulting dataset from Q6. This new

query has more rows in the dataset because there are be multiple records
in “ClockCodes” with the same value in the field “Code”, since “Code” is
not a unique identifier. Code is only unique for records with the same
value for Level.

5. Note that the field “Level1Codes” refers to codes with “Level=1”. Add an
additional condition to the left join to ensure that CC1.Level is 1. Here is
the complete query:

6. Open the resulting dataset and verify that it has exactly 3,188 rows.
7. In the homework we will repeat the process of replacing the other codes in

this view result with the corresponding descriptions from ClockCodes.
8. Create a new view called

“Rec3Query8LostThruputHistoryWithNamesAndAllLevelDescriptions”. In
this view, write a new query that is similar to the one in Q7 but that
substitutes the entry from the Description field from ClockCodes for all of
the fields Level1Codes, Level2CodesA, Level2CodesB, Level2CodesC,
and Level3CodesA. In your view output, rename these fields Description1,
Description2A, Description2B, Description2C, and Description3A
respectively. Keep in mind that Level2CodesA, Level2CodesB, and
Level2CodesC all correspond to a record in ClockCodes where Level=2.
Similarly, Level3CodesA corresponds to a record in ClockCodes where
Level=3. Also keep in mind that some records have NULL values for
Level2CodesA, Level2CodesB, Level2CodesC, or Level3CodesA. These
records should still appear in your result, with a NULL value in the
corresponding description.

9. Run your query, and check that it has the same number of records as
Rec2Query7LostThruputHistoryWithNamesAndLevel1Descriptions. Here
is a screenshot of some of the fields and records that your query will
report:

10. Write the query that you created for

Rec3Query8LostThruputHistoryWithNamesAndAllLevelDescriptions here.
__
__
__
__
__
__

Review

We have discussed database design and discovered the need to join the
content of two tables together based on key fields. By nesting queries and
using a combination of JOIN and WHERE clauses, we are able to create
queries that replace all the connecting fields with description fields. We used
this to make the resulting dataset more readable. In the following sections we
will begin to analyze this data and we will be less concerned with readability.
You can utilize the tools from the beginning of this recitation to make the
following datasets more readable if you desire.

