
ORIE 3120
Detailed SQLite documentation

This reading is taken from the SQLite documentation. It has been modified to

simplify and remove some more advanced discussion that will not be used in the

course.

Core functions [from https://www.sqlite.org/lang_corefunc.html]

abs(X)

The abs(X) function returns the absolute value of the numeric argument X. Abs(X)

returns NULL if X is NULL. Abs(X) returns 0.0 if X cannot be converted to a numeric

value. If X is the integer -9223372036854775808 then abs(X) throws an integer

overflow error since there is no equivalent positive 64-bit two complement value.

coalesce(X,Y,...)

The coalesce() function returns a copy of its first non-NULL argument, or NULL if all

arguments are NULL. Coalesce() must have at least 2 arguments.

ifnull(X,Y)

The ifnull() function returns a copy of its first non-NULL argument, or NULL if both

arguments are NULL. Ifnull() must have exactly 2 arguments. The ifnull() function

is equivalent to coalesce() with two arguments.

instr(X,Y)

The instr(X,Y) function finds the first occurrence of string Y within string X and

returns the number of prior characters plus 1, or 0 if Y is nowhere found within X. If

either X or Y are NULL in instr(X,Y) then the result is NULL.

length(X)

For a string value X, the length(X) function returns the number of characters (not

bytes) in X prior to the first NUL character. Since SQLite strings do not normally

contain NUL characters, the length(X) function will usually return the total number

of characters in the string X. If X is NULL then length(X) is NULL. If X is numeric

then length(X) returns the length of a string representation of X.

like(X,Y)

like(X,Y,Z)

https://www.sqlite.org/lang_corefunc.html
https://www.sqlite.org/lang_corefunc.html#coalesce

The like() function is used to implement the "Y LIKE X [ESCAPE Z]" expression. If

the optional ESCAPE clause is present, then the like() function is invoked with three

arguments. Otherwise, it is invoked with two arguments only. Note that the X and Y

parameters are reversed in the like() function relative to the infix LIKE operator.

lower(X)

The lower(X) function returns a copy of string X with all ASCII characters converted

to lower case. The default built-in lower() function works for ASCII characters only.

To do case conversions on non-ASCII characters, load the ICU extension.

ltrim(X)

ltrim(X,Y)

The ltrim(X,Y) function returns a string formed by removing any and all characters

that appear in Y from the left side of X. If the Y argument is omitted, ltrim(X)

removes spaces from the left side of X.

max(X,Y,...)

The multi-argument max() function returns the argument with the maximum value,

or return NULL if any argument is NULL. The multi-argument max() function

searches its arguments from left to right for an argument that defines a collating

function and uses that collating function for all string comparisons. If none of the

arguments to max() define a collating function, then the BINARY collating function

is used. Note that max() is a simple function when it has 2 or more arguments but

operates as an aggregate function if given only a single argument.

min(X,Y,...)

The multi-argument min() function returns the argument with the minimum value.

The multi-argument min() function searches its arguments from left to right for an

argument that defines a collating function and uses that collating function for all

string comparisons. If none of the arguments to min() define a collating function,

then the BINARY collating function is used. Note that min() is a simple function

when it has 2 or more arguments but operates as an aggregate function if given

only a single argument.

nullif(X,Y)

The nullif(X,Y) function returns its first argument if the arguments are different and

NULL if the arguments are the same. The nullif(X,Y) function searches its

arguments from left to right for an argument that defines a collating function and

uses that collating function for all string comparisons. If neither argument to nullif()

defines a collating function then the BINARY is used.

random()

https://www.sqlite.org/lang_expr.html#like
https://www.sqlite.org/lang_aggfunc.html#maxggunc
https://www.sqlite.org/lang_aggfunc.html#minggunc

The random() function returns a pseudo-random integer between

-9223372036854775808 and +9223372036854775807.

replace(X,Y,Z)

The replace(X,Y,Z) function returns a string formed by substituting string Z for

every occurrence of string Y in string X. The BINARY collating sequence is used for

comparisons. If Y is an empty string then return X unchanged. If Z is not initially a

string, it is cast to a UTF-8 string prior to processing.

round(X)

round(X,Y)

The round(X,Y) function returns a floating-point value X rounded to Y digits to the

right of the decimal point. If the Y argument is omitted, it is assumed to be 0.

rtrim(X)

rtrim(X,Y)

The rtrim(X,Y) function returns a string formed by removing any and all characters

that appear in Y from the right side of X. If the Y argument is omitted, rtrim(X)

removes spaces from the right side of X.

substr(X,Y,Z)

substr(X,Y)

The substr(X,Y,Z) function returns a substring of input string X that begins with the

Y-th character and which is Z characters long. If Z is omitted then substr(X,Y)

returns all characters through the end of the string X beginning with the Y-th. The

left-most character of X is number 1. If Y is negative then the first character of the

substring is found by counting from the right rather than the left. If Z is negative

then the abs(Z) characters preceding the Y-th character are returned.

trim(X)

trim(X,Y)

The trim(X,Y) function returns a string formed by removing any and all characters

that appear in Y from both ends of X. If the Y argument is omitted, trim(X) removes

spaces from both ends of X.

typeof(X)

The typeof(X) function returns a string that indicates the datatype of the expression

X: "null", "integer", "real", "text", or "blob". In 3120 we will not deal with BLOBs.

upper(X)

The upper(X) function returns a copy of input string X in which all lower-case ASCII

characters are converted to their upper-case equivalent.

https://www.sqlite.org/datatype3.html#collation
https://www.sqlite.org/datatype3.html

Aggregate Functions [from https://www.sqlite.org/lang_aggfunc.html]

avg(X)

The avg() function returns the average value of all non-NULL X within a group.

String values that do not look like numbers are interpreted as 0. The result of avg()

is always a floating point value as long as at there is at least one non-NULL input

even if all inputs are integers. The result of avg() is NULL if and only if there are no

non-NULL inputs.

count(X)

count(*)

The count(X) function returns a count of the number of times that X is not NULL in

a group. The count(*) function (with no arguments) returns the total number of

rows in the group.

group_concat(X)

group_concat(X,Y)

The group_concat() function returns a string which is the concatenation of all

non-NULL values of X. If parameter Y is present then it is used as the separator

between instances of X. A comma (",") is used as the separator if Y is omitted. The

order of the concatenated elements is arbitrary.

max(X)

The max() aggregate function returns the maximum value of all values in the

group. The maximum value is the value that would be returned last in an ORDER BY

on the same column. Aggregate max() returns NULL if and only if there are no

non-NULL values in the group.

min(X)

The min() aggregate function returns the minimum non-NULL value of all values in

the group. The minimum value is the first non-NULL value that would appear in an

ORDER BY of the column. Aggregate min() returns NULL if and only if there are no

non-NULL values in the group.

sum(X)

total(X)

The sum() and total() aggregate functions return sum of all non-NULL values in the

group. If there are no non-NULL input rows then sum() returns NULL but total()

returns 0.0. NULL is not normally a helpful result for the sum of no rows but the

SQL standard requires it and most other SQL database engines implement sum()

https://www.sqlite.org/lang_aggfunc.html

that way so SQLite does it in the same way in order to be compatible. The

non-standard total() function is provided as a convenient way to work around this

design problem in the SQL language.

The result of total() is always a floating point value. The result of sum() is an

integer value if all non-NULL inputs are integers. If any input to sum() is neither an

integer or a NULL then sum() returns a floating point value which might be an

approximation to the true sum.

Sum() will throw an "integer overflow" exception if all inputs are integers or NULL

and an integer overflow occurs at any point during the computation. Total() never

throws an integer overflow.

Operators [from https://sqlite.org/lang_expr.html]

Binary operators

In ORIE 3120, we will assume knowledge of these binary operators. They are listed

in order from highest to lowest precedence:

||

* / %

+ -

<< >> & |

< <= > >=

= == != <> IS IS NOT IN LIKE

AND

OR

We will assume knowledge of these unary prefix operators:

- ~ NOT

Notes:

Note that there are two variations of the equals and not equals operators. Equals

can be either = or ==. The non-equals operator can be either != or <>.

The || operator is "concatenate" - it joins together the two strings of its operands.

The operator % outputs the integer value of its left operand modulo its right

operand.

The result of any binary operator is either a numeric value or NULL, except for the

|| concatenation operator which always evaluates to either NULL or a text value.

https://sqlite.org/lang_expr.html

The IS and IS NOT operators work like = and != except when one or both of the

operands are NULL. In this case, if both operands are NULL, then the IS operator

evaluates to 1 (true) and the IS NOT operator evaluates to 0 (false). If one operand

is NULL and the other is not, then the IS operator evaluates to 0 (false) and the IS

NOT operator is 1 (true). It is not possible for an IS or IS NOT expression to

evaluate to NULL. Operators IS and IS NOT have the same precedence as =.

The LIKE operator

The LIKE operator does a pattern matching comparison. The operand to the right of

the LIKE operator contains the pattern and the left hand operand contains the

string to match against the pattern. A percent symbol ("%") in the LIKE pattern

matches any sequence of zero or more characters in the string. An underscore ("_")

in the LIKE pattern matches any single character in the string. Any other character

matches itself or its lower/upper case equivalent (i.e. case-insensitive matching).

If the optional ESCAPE clause is present, then the expression following the ESCAPE

keyword must evaluate to a string consisting of a single character. This character

may be used in the LIKE pattern to include literal percent or underscore characters.

The escape character followed by a percent symbol (%), underscore (_), or a

second instance of the escape character itself matches a literal percent symbol,

underscore, or a single escape character, respectively.

The infix LIKE operator is implemented by calling the application-defined SQL

functions like(Y,X) or like(Y,X,Z).

The BETWEEN operator

The BETWEEN operator is logically equivalent to a pair of comparisons. "x

BETWEEN y AND z" is equivalent to "x>=y AND x<=z" except that with

BETWEEN, the xexpression is only evaluated once. The precedence of the BETWEEN

operator is the same as the precedence as operators == and != and LIKE and

groups left to right.

The CASE expression

A CASE expression serves a role similar to IF-THEN-ELSE in other programming

languages.

The optional expression that occurs in between the CASE keyword and the first

WHEN keyword is called the "base" expression. There are two basic forms of the

CASE expression: those with a base expression and those without.

https://sqlite.org/lang_corefunc.html#like
https://sqlite.org/lang_corefunc.html#like
https://sqlite.org/lang_corefunc.html#like
https://sqlite.org/lang_corefunc.html#like
https://sqlite.org/lang_corefunc.html#like
https://sqlite.org/lang_corefunc.html#like
https://sqlite.org/lang_corefunc.html#like
https://sqlite.org/lang_corefunc.html#like
https://sqlite.org/lang_corefunc.html#like
https://sqlite.org/lang_corefunc.html#like
https://sqlite.org/lang_corefunc.html#like
https://sqlite.org/lang_corefunc.html#like

In a CASE without a base expression, each WHEN expression is evaluated and the

result treated as a boolean, starting with the leftmost and continuing to the right.

The result of the CASE expression is the evaluation of the THEN expression that

corresponds to the first WHEN expression that evaluates to true. Or, if none of the

WHEN expressions evaluate to true, the result of evaluating the ELSE expression, if

any. If there is no ELSE expression and none of the WHEN expressions are true,

then the overall result is NULL.

A NULL result is considered untrue when evaluating WHEN terms.

In a CASE with a base expression, the base expression is evaluated just once and

the result is compared against the evaluation of each WHEN expression from left to

right. The result of the CASE expression is the evaluation of the THEN expression

that corresponds to the first WHEN expression for which the comparison is true. Or,

if none of the WHEN expressions evaluate to a value equal to the base expression,

the result of evaluating the ELSE expression, if any. If there is no ELSE expression

and none of the WHEN expressions produce a result equal to the base expression,

the overall result is NULL.

When comparing a base expression against a WHEN expression, the same collating

sequence, affinity, and NULL-handling rules apply as if the base expression and

WHEN expression are respectively the left- and right-hand operands of an =

operator.

If the base expression is NULL then the result of the CASE is always the result of

evaluating the ELSE expression if it exists, or NULL if it does not.

The IN and NOT IN operators

The IN and NOT IN operators take an expression on the left and a list of values or a

subquery on the right. When the right operand of an IN or NOT IN operator is a

subquery, the subquery must have the same number of columns as there are

columns in the row value of the left operand. The subquery on the right of an IN or

NOT IN operator must be a scalar subquery if the left expression is not a row value

expression. If the right operand of an IN or NOT IN operator is a list of values, each

of those values must be scalars and the left expression must also be a scalar. The

right-hand side of an IN or NOT IN operator can be a table name or table-valued

function name in which case the right-hand side is understood to be subquery of

the form "(SELECT * FROM name)". When the right operand is an empty set, the

result of IN is false and the result of NOT IN is true, regardless of the left operand

and even if the left operand is NULL.

https://sqlite.org/rowvalue.html
https://sqlite.org/rowvalue.html
https://sqlite.org/vtab.html#tabfunc2
https://sqlite.org/vtab.html#tabfunc2

The result of an IN or NOT IN operator is determined by the following matrix:

Left

operand

is NULL

Right

operand

contains

NULL

Right

operand

is an

empty set

Left operand

found

within right

operand

Result of

IN

operator

Result of

NOT IN

operator

no no no no false true

does not

matter

no yes no false true

no does not

matter

no yes true false

no yes no no NULL NULL

yes does not

matter

no does not

matter

NULL NULL

The EXISTS operator

The EXISTS operator always evaluates to one of the integer values 0 and 1. If

executing the SELECT statement specified as the right-hand operand of the EXISTS

operator would return one or more rows, then the EXISTS operator evaluates to 1.

If executing the SELECT would return no rows at all, then the EXISTS operator

evaluates to 0.

The number of columns in each row returned by the SELECT statement (if any) and

the specific values returned have no effect on the results of the EXISTS operator. In

particular, rows containing NULL values are not handled any differently from rows

without NULL values.

Date & Time Functions [from www.sqlite.org/lang_datefunc.html]

In ORIE 3120 we will use four of the five date and time functions that are provided

by SQLite. The four that we will use are:

1. date(timestring, modifier, modifier, ...)

2. time(timestring, modifier, modifier, ...)

3. datetime(timestring, modifier, modifier, ...)

https://www.sqlite.org/lang_datefunc.html

4. strftime(format, timestring, modifier, modifier, ...)

We will not use julianday().

All five date and time functions take a time string as an argument. The time string

is followed by zero or more modifiers. The strftime() function also takes a format

string as its first argument.

The date() function returns the date in this format: YYYY-MM-DD. The time()

function returns the time as HH:MM:SS. The datetime() function returns

"YYYY-MM-DD HH:MM:SS". The strftime() routine returns the date formatted

according to the format string specified as the first argument. The format string

supports the most common substitutions found in the strftime() function from the

standard C library plus two new substitutions, %f and %J. The following is a

complete list of valid strftime() substitutions:

%d day of month: 00

%f fractional seconds: SS.SSS

%H hour: 00-24

%j day of year: 001-366

%J Julian day number

%m month: 01-12

%M minute: 00-59

%s seconds since 1970-01-01

%S seconds: 00-59

%w day of week 0-6 with Sunday==0

%W week of year: 00-53

%Y year: 0000-9999

%% %

Notice that all other date and time functions can be expressed in terms of

strftime():

Function Equivalent strftime()

http://opengroup.org/onlinepubs/007908799/xsh/strftime.html

date(...) strftime('%Y-%m-%d', ...)

time(...) strftime('%H:%M:%S', ...)

datetime(...) strftime('%Y-%m-%d %H:%M:%S', ...)

The only reasons for providing functions other than strftime() is for convenience

and for efficiency.

Time Strings

In ORIE 3120, we will assume that time strings are in the following format,

although SQLite supports other formats

YYYY-MM-DD HH:MM:SS

