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Announcements

I submit recitation by 4:30pm ET Friday (last recitation!)

I logistic regression homework due 2:30pm ET Wednesday
(tomorrow)

I have a question about your grade? (eg, “should I go S/U or
GRV?”)
→ ask in TA office hours!
(we use breakout rooms so this discussion will be private)

I ask questions about project after class, or in office hours
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Project milestone II rubric

I Is the project driven by asking and answering interesting questions?

I How well does the report answer the questions posed?

I Are the visualizations easy to understand? Do they add value?

I Is the report well-written and interesting?

I Does the project use at least 3 tools from class?

I Linear regression
I Logistic regression
I Checking assumptions of linear regression to ensure validity

of pvalues
I Cross-validation or out-of-sample validation
I Model selection
I Assessing collinearity
I Forecasting (with trend / with seasonality)

I How creative are the analyses? Did this project surprise you? Did you
learn something?

I Are the techniques they use well-explained and easy to understand?

I Does the project comply with the technical requirements (eg, page
limit)? Is it well-formatted and pretty?
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Forecasting time series

A time series, x1, x2, x3, . . . is a data sequence observed over
time, for example,

I demand for parts

I sales of a product

I unemployment rate

In this segment of the course we study special methods for
forecasting time series.

I the idea is to develop an algorithm to track the time series
and to extrapolate into the future
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Constant mean model: introduction

Suppose demand for a product follows the (very) simple model

xn = a + εn

Here

I xn = demand for time period n

I a is the expected demand – which is constant in this simple
model

I ε1, ε2, . . . are independent with mean 0

I the best forecast of a future value of xn is a

I we want to estimate a and update the estimate as each
new xn is observed
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Constant mean model: forecasts

I Let x̂n(`) be the `-step ahead forecast at time period n

I Stated differently, x̂n(`) is the forecast at time n of demand
at time n + `

I Let

ân =
x1 + · · ·+ xn

n

I Then, in this simple model, the best forecasts at time n are

x̂n(`) = ân, for all ` > 0
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Constant mean model: updating ân

I In this simple model, a does not change, but our estimate
of a does

I Here is a simple way to update ân to ân+1

ân+1 =
(x1 + · · ·+ xn) + xn+1

n + 1

=
n

n + 1
ân +

1

n + 1
xn+1

= ân +
1

n + 1
(xn+1 − ân)
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Advantages of the updating formula

The simple updating formula

ân+1 = ân +
1

n + 1
(xn+1 − ân)

has several advantages:

I reduced storage
I we only store ân

I computational speed
I the mean need not be recomputed each time

I suggests ways to handle a slowly changing mean
I coming soon

10 / 45



Outline

Forecasting: overview

Constant mean model

Simple exponential smoothing

Holt-Winters

Holt’s nonseasonal model

Winters’ seasonal methods

11 / 45



Lake Huron level – example with a slowly changing

mean
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Slowly changing mean model: introduction

I Now suppose that

xn = an + εn

where an is slowly changing

I The forecast is the same as for the constant mean model:

x̂n(`) = ân, for all ` > 0

I What changes is the way ân is updated

I We need ân to track an
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Slowly changing mean: updating

I For a constant mean, the update is

ân+1 = ân +
1

n + 1
(xn+1 − ân)

I For a slowly changing mean, the update is

ân+1 = ân + α(xn+1 − ân) = (1− α)ân + αxn+1

for a constant α

I α is adjusted depending on how fast an is changing

I 0 < α < 1

I faster changes in a necessitate larger α
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Demo: Exponential smoothing

https://github.com/madeleineudell/orie3120-sp2020/

blob/master/demos/forecasting.ipynb
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Exponential weighting

Start with the updating equation and iterate backwards:

ân+1 = (1− α)ân + αxn+1

= (1− α){ân−1(1− α) + αxn}+ αxn+1

= (1− α)2ân−1 + (1− α)αxn + αxn+1

= (1− α)3ân−2 + (1− α)2αxn−1 + (1− α)αxn + αxn+1

≈ α

{
xn+1 + (1− α)xn + (1− α)2xn−1

+(1− α)3xn−2 + · · ·+ (1− α)nx1

}
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Exponential weighted moving average

Use previous page + summation formula for geometric series
(see next page):

ân+1 ≈

α

{
(1−α)0xn+1 + (1−α)1xn + (1−α)2xn−1 + · · ·+ (1−α)nx1

}

≈

{
(1− α)0xn+1 + (1− α)1xn + (1− α)2xn−1 + · · ·+ (1− α)nx1

}
1 + (1− α) + · · ·+ (1− α)n

Hence ân+1 is an exponentially weighted moving average

Large values of α mean faster discounting of the past values.
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Summing a geometric series

Assume |γ| < 1 so γn → 0 as n→∞

1 + γ + γ2 + · · ·+ γn =
1− γn+1

1− γ
≈ 1

1− γ
(if n is large enough)

Now let γ = 1− α. Then

1 + (1− α) + · · ·+ (1− α)n ≈ 1

α

since 1− (1− α) = α.
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Exponential weights: examples
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Forecasting with trends: example
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Forecasting with trends and seasonality: example
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Note the seasonal pattern and trend
in this example

I these are typical of much
business data
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Holt method: forecasting with trend

For now, assume data has trend but no seasonality

Holt’s forecasting method uses a linear trend

estimate at time n of xn+` := x̂n(`) = ân + b̂n`

I n is “origin” – the point in time when forecasts are being

made

I ` is the “lead” – how far ahead one is forecasting

I ân is called the level

I b̂n is called the slope

Both ân and b̂n are updated as we make more observations n
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Holt method: Updating the level

In the Holt model, the level ân is updated by the equation:

ân+1 = (1− α)(ân + b̂n) + αxn+1

or, equivalently,

ân+1 = ân + (1− α)b̂n + α(xn+1 − ân)

I ân + b̂n is predicted value at time n + 1 = lead time 1

I α is for updating the level and β for the slope (next)

Compare with previous update equation (for no-trend model):

ân+1 = ân + α(xn+1 − ân) = (1− α)ân + αxn+1
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Holt model: updating the slope

In the Holt model, the slope b̂n is updated by the equation:

b̂n+1 = (1− β)b̂n + β(ân+1 − ân)

or, equivalently,

b̂n+1 = b̂n + β
{

(ân+1 − ân)− b̂n
}

25 / 45



Demo: Holt’s method

https://github.com/madeleineudell/orie3120-sp2020/

blob/master/demos/forecasting.ipynb
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Winters’ additive seasonal method

Winters extended Holt’s method to include seasonality. The
method is usually called Holt-Winters forecasting

Let s be the period length:

I s = 4 for quarterly data

I s = 12 for monthly data

I s = 52 for weekly data

I s = 13 for data collected over 4-week periods

I s = 24 for hourly data
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Holt-Winters updating

Holt-Winters forecasting can use either of two types of updating

I additive

I multiplicative

These refer to how the trend and seasonal components are put
together

I the trend and seasonal components can be added or
multiplied
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Holt-Winters additive seasonal method

The forecasts are periodic

With the additive methods they are:

x̂n(`) = ân + b̂n`+ Ŝn+`−s , for ` = 1, 2, . . . , s

= ân + b̂n`+ Ŝn+`−2s , for ` = s + 1, . . . , 2s

and so forth
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Winters’ additive seasonal model: updating

ân+1 = α(xn+1 − Ŝn+1−s) + (1− α)(ân + b̂n)

b̂n+1 = β(ân+1 − ân) + (1− β)b̂n

Ŝn+1 = γ(xn+1 − ân+1) + (1− γ)Ŝn+1−s

α, β, and γ are “tuning parameters” that we need to adjust
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Why we need multiplicative seasonal models
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Notice the multiplicative behavior

I the seasonal fluctuations are larger where the trend is larger
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Holt-Winters multiplicative seasonal method

x̂n(`) = (an + b̂n`)Ŝn+`−s , for ` = 1, 2, . . . , s

= (an + b̂n`)Ŝn+`−2s , for ` = s + 1, . . . , 2s

and so forth
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Winters’ multiplicative seasonal model: updating

ân+1 = α
xn+1

Ŝn+1−s

+ (1− α)(ân + b̂n)

b̂n+1 = β(ân+1 − ân) + (1− β)b̂n

Ŝn+1 = γ
xn+1

ân+1
+ (1− γ)Ŝn+1−s
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Demo: Exponential smoothing in Python

https://github.com/madeleineudell/orie3120-sp2020/

blob/master/demos/forecasting.ipynb

Applications:

I Lake Huron

I US population

I CO2

I Airline passengers

I Sales
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Residuals

For given values of α, β, and γ:

I ân, b̂n, Ŝn, . . . , Ŝn−s are the level, slope, and seasonalities at
time n

I x̂n+1 = xn(1) = ân + b̂n + Ŝn+1−s is the one-step ahead
forecast at time n

I ε̂n+1 = xn+1 − x̂n+1 is the residual or one-step ahead
forecast error
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Choosing α, β, and γ

α, β, and γ are called “tuning parameters”

Suppose we have data x1, . . . , xN :

I the usual way to select α, β, and γ is to minimize

SS(α, β, γ) =
N∑

n=N1+1

ε̂2n

where the first N1 residuals are discarded to let the

forecasting method “burn-in”

I this technique is used by statsmodels, unless the user

specifies the parameters explicitly in the fit call
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Comparing forecasting methods and diagnosing

problem

I Two or more forecasting methods can be compared using

min
α,β,γ

SS(α, β, γ)

I If a forecasting method is working well, then the residuals
should not exhibit autocorrelation
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Air passengers: additive seasonal method

Air Passengers, additive Holt−Winters
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Notice some autocorrelation at small lags.
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Air passengers: multiplicative seasonal method

Air Passengers, multiplicative Holt−Winters
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Air Passengers, multiplicative Holt−Winters

Less autocorrelation than with additive model (good).
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Forecasting using regression

In some situations, regression can be used for forecasting

I in the following example, regression will be used to forecast
Stove Top product 285280
I this is the product that we forecast earlier with Holt-Winters

I the regression model will have seasonal effects but not
trend
I the seasonal effects will be introduced by using month as a

factor

I regression uses all the data to estimate the level and the
seasonal effects
I so there is no discounting of the past
I this helps us deal with the small amount of data
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Stove Top product 285280 forecasts using regression
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Holt-Winters product 285280 forecasts:

log transformed, zoom in

Holt−Winters forecasts, 
   id = 285280, log transformed
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The yellow limits are the 95% prediction limits.

44 / 45



Why is forecasting so difficult with this product?

●

● ●
●

●

●
●

●

●

0 2 4 6 8 10 12

0
10

00
0

20
00

0
30

00
0

40
00

0

Part Number 285280

Month

S
al

es

●
●

●

●

●

● ●
●

●
●

●

●

●
●

●

● ●
●

●

●

●

●

●

●
●

● ●

2000
2001
2002
2003

Sales patterns vary across years.

• For example, in 2002 the holiday sales came earlier.
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