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Announcements

I submit recitation by 4:30pm ET Friday

I linear regression homework due 2:30pm ET Wednesday

I project peer reviews due Sunday 4/26/2020 at noon
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What’s next?

I Collinearity and VIF (variance inflation factors)

I Prediction intervals

I Log transformations
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Outline

Collinearity and VIFs

How should the covariates be chosen?

Prediction

Data transformation
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Collinearity, VIF, Orthogonal Polynomials
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What is collinearity?

I Collinearity means high correlations between the predictors
I If two predictors are highly correlated, then it is difficult to

separate their effects on the response variable
I hard to decide which variable is important
I can lead to uninterpretable models
I increases std. errors, decreases p-values

I Collinearity can be detected with variance inflation factors
(VIF)

I VIFJ = increase in variance of β̂j due to collinearity
I VIFj ≥ 1
I smaller is better
I VIFj = 1 ⇒ no collinearity problem for Xj

I VIFj > 10 ⇒ collinearity may be a problem
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How to compute VIF

to compute VIF1 (VIF for covariate 1):

1. try to predict X1 given all other covariates: model X1 as

X1 = β0 + β2X2 + . . .+ βpXp + ε

and find β0, . . . , βp to minimize residual sum of squares

2. compute R2
1 = ρ(X1, X̂1)2: the correlation between X1 and

X̂1 predicted by model

3. VIF1 = 1/(1 + R2
1 )
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To illustrate collinearity, consider regressing

log(usage) on log(temperature)
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Demo

Demo:
https://github.com/madeleineudell/orie3120-sp2020/

blob/master/demos/collinearity.ipynb
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Regression Output: log(usage) and log(temperature)

OLS Regression Results

==============================================================================

Dep. Variable: np.log(usage) R-squared: 0.811

Model: OLS Adj. R-squared: 0.808

Method: Least Squares F-statistic: 227.8

Date: Sat, 18 Apr 2020 Prob (F-statistic): 7.82e-21

Time: 13:36:09 Log-Likelihood: 1.0037

No. Observations: 55 AIC: 1.993

Df Residuals: 53 BIC: 6.007

Df Model: 1

Covariance Type: nonrobust

=======================================================================================

coef std err t P>|t| [0.025 0.975]

---------------------------------------------------------------------------------------

Intercept 9.9203 0.419 23.691 0.000 9.080 10.760

np.log(temperature) -1.5989 0.106 -15.092 0.000 -1.811 -1.386

==============================================================================

Omnibus: 4.773 Durbin-Watson: 1.402

Prob(Omnibus): 0.092 Jarque-Bera (JB): 3.709

Skew: -0.551 Prob(JB): 0.157

Kurtosis: 3.636 Cond. No. 53.9

==============================================================================
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Here are the residuals from our fit
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to the residuals?

Let’s check

I we can see if a quadratic
term improves the fit
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Quadratic model in log(temperature)

OLS Regression Results

==============================================================================

Dep. Variable: np.log(usage) R-squared: 0.814

====================================================================================================

coef std err t P>|t| [0.025 0.975]

----------------------------------------------------------------------------------------------------

Intercept 5.6258 5.200 1.082 0.284 -4.809 16.061

np.log(temperature) 0.6349 2.698 0.235 0.815 -4.779 6.049

np.power(np.log(temperature), 2) -0.2885 0.348 -0.829 0.411 -0.987 0.410

==============================================================================

pd.Series([variance_inflation_factor(X.values, i)

for i in range(X.shape[1])],

index=X.columns)

Intercept 25237.650598

np.log(temperature) 644.758755

np.power(np.log(temperature), 2) 644.758755

dtype: float64

Note: VIF = 645 !!!!
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Why are the VIFs so big?
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Let’s fix the problem – center log temp
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Using orthogonal polynomials

Orthogonal polynomials are uncorrelated.

I an alternative to centering

I particularly useful for higher degrees
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What do orthogonal polynomials look like?
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Outline

Collinearity and VIFs

How should the covariates be chosen?

Prediction

Data transformation
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Choosing covariates: Basic principles

I The predictors should be uncorrelated

I In terms of precision (small standard errors), the predictors

should vary as much as feasible

I But problems can arise if predictors vary too much:

I The linear (or generalized linear) model might only hold

locally

I Conducting the experiment might be impossible, or

dangerous
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Variation in the X-values is good
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SE of β̂j : linear regression

SE(β̂j) =

√
VIFj σ2∑n

i=1(Xi ,j − Xj)2

I SE(β̂j) is the uncertainty about βj .

I σ2 is the variance of ε, the noise in the output.

I the variance of covariate Xj is
∑n

i=1(Xi ,j − Xj)
2.

It is large when X1,j , . . . ,Xn,j are spread out.

To make the uncertainty small, select values of covariates so

VIFj is small and the variance of covariate is large.

VIFj is small when Xj is uncorrelated with all other X s
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Breakout questions

ice breaker:

I where’s home for the month of April?

I what’s the worst thing about stay-at-home?

I what’s the silver lining of stay-at-home?

regression question:

I Consider a concrete prediction problem.
(Perhaps your project.)

I Which covariates can be controlled?

I Who controls the covariates?
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Outline

Collinearity and VIFs

How should the covariates be chosen?

Prediction

Data transformation
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Need for predictions

Predictions are needed for inventory planning and many other

purposes

Types of prediction methods:

I regression

I exponential weighted moving averages (Holt-Winters)

I later in this course

I expert opinion (non-statistical)

Advantages of statistical approaches:

I have assessment of uncertainty

I objective
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Prediction of new outcomes

I Predictions can be made with any regression model

I Let’s illustrate with the electricity usage data

I t = a value of temperature

I usage(t) = β0 + β1t + β2t
2 = expected electricity usage in

some future month with average temperature t

I the predicted value of usage(t) is

ûsage(t) = β̂0 + β̂1t + β̂2t
2
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Prediction of new outcomes

From previous page:

ûsage(t) = β̂0 + β̂1t + β̂2t
2

I ûsage(t) estimates:

I usage(t) = β0 + β1t + β2t
2 + ε = new Y

I E{usage(t)} = β0 + β1t + β2t
2 = E(new Y )
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Confidence and Prediction intervals

I prediction intervals for β0 + β1t + β2t
2 + ε = new Y

I confidence intervals for β0 + β1t + β2t
2 = E(new Y )

I prediction intervals are wider than confidence intervals

I often much wider

I extra width from extra uncertainty due to ε
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Generate confidence intervals

usage = usage.sort_values(’temperature’)

Y, X = dmatrices(’usage ~ 1 + temperature + np.power(temperature, 2)’,

data=usage, return_type=’dataframe’)

model = sm.OLS(Y, X).fit()

predictions = model.get_prediction(X)

predictions.summary_frame(alpha=0.05) # 95% CI

# plot confidence intervals

CI = predictions.conf_int(alpha=.05)

p = usage.plot.scatter(’temperature’, ’usage’, color=’red’)

p.plot(usage[’temperature’], CI[:,0], color=’blue’)

p.plot(usage[’temperature’], CI[:,1], color=’green’)

p.legend()

The code above produces a confidence interval. To get a
prediction interval, need to add estimated variance σ̂ of ε
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Generate prediction intervals

from scipy.stats import norm

def prediction_interval(predictions, alpha=.05):

emean = predictions.predicted_mean

sigma = np.sqrt(predictions.var_resid)

n = len(emean)

PI = np.zeros((n,2))

PI[:,0] = emean + norm.ppf(alpha/2)*sigma

PI[:,1] = emean + norm.ppf(1-alpha/2)*sigma

return PI
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Using a linear polynomial when the true model is

quadratic
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I 100 data points were used to

fit the model

I 100 new data points are

plotted

I the blue lines are the 95%

prediction intervals

I intervals are (roughly)

(β̂0 + β̂1X )± 1.96 σ̂
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Right skewed noise, but Gaussian noise assumed
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I Too many points are above

the prediction intervals

I No points are below the

intervals

30 / 40



Variance depends on x , but assumed constant
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Notice that the predictions

intervals are:

I too wide on the left

I too narrow on the right
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Heavy tails
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I notice that the prediction

intervals are very wide

I why is this happening?
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Heavy tails – normal plot of residuals
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Here’s why:

I Notice the extreme outliers

I The outliers have inflated the

estimate of σ

I A large value of σ̂ causes wide

prediction intervals
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Outline

Collinearity and VIFs

How should the covariates be chosen?

Prediction

Data transformation
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Data transformations
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Data transformation: overview

Transformation of Y can be very useful

I commonly used transformations are log and square-root

I transformation can cure several problems such as

I skewness

I non-constant variance
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An example where y should be log transformed
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Notice

I curvature

I skewness

I non-constant variance

In this example, all three problems

can be remedied by using a log

transformation of y .
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An example where y should be log transformed
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Now we work with log(y).

Notice

I no curvature

I no skewness

I constant variance

But what if we are most interested

in y , not log(y)?
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An example where y should be log transformed
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Now we transform everything

(points as well as lines) with the

exponential function.

Notice

I curvature

I skewness

I non-constant variance

But the predictions are adjusted for

all of these problems.
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Warning: life is not always so simple

I Simple transformations cannot fix all problems.

I There are many other remedies that can be used, often in

combination.

I These are introduced in more advanced courses.
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