ORIE 3120: Practical Tools for OR, DS, and ML

Collinearity

Professor Udell
Operations Research and Information Engineering Cornell

April 21, 2020

Announcements

- submit recitation by $4: 30$ pm ET Friday
- linear regression homework due 2:30pm ET Wednesday
- project peer reviews due Sunday 4/26/2020 at noon

What's next?

- Collinearity and VIF (variance inflation factors)
- Prediction intervals
- Log transformations

Outline

Collinearity and VIFs

How should the covariates be chosen?

Prediction

Data transformation

Collinearity, VIF, Orthogonal Polynomials

What is collinearity?

- Collinearity means high correlations between the predictors
- If two predictors are highly correlated, then it is difficult to separate their effects on the response variable
- hard to decide which variable is important
- can lead to uninterpretable models
- increases std. errors, decreases p-values
- Collinearity can be detected with variance inflation factors (VIF)
- VIF $_{J}=$ increase in variance of $\hat{\beta}_{j}$ due to collinearity
- $\mathrm{VIF}_{j} \geq 1$
- smaller is better
- $\mathrm{VIF}_{j}=1 \Rightarrow$ no collinearity problem for X_{j}
- $\mathrm{VIF}_{j}>10 \Rightarrow$ collinearity may be a problem

How to compute VIF

to compute VIF_{1} (VIF for covariate 1):

1. try to predict X_{1} given all other covariates: model X_{1} as

$$
X_{1}=\beta_{0}+\beta_{2} X_{2}+\ldots+\beta_{p} X_{p}+\epsilon
$$

and find $\beta_{0}, \ldots, \beta_{p}$ to minimize residual sum of squares
2. compute $R_{1}^{2}=\rho\left(X_{1}, \hat{X}_{1}\right)^{2}$: the correlation between X_{1} and \hat{X}_{1} predicted by model
3. $\mathrm{VIF}_{1}=1 /\left(1+R_{1}^{2}\right)$

To illustrate collinearity, consider regressing $\log ($ usage) on $\log ($ temperature)

Demo

Demo:
https://github.com/madeleineudell/orie3120-sp2020/
blob/master/demos/collinearity.ipynb

Regression Output: $\log ($ usage $)$ and $\log ($ temperature)

OLS Regression Results

Dep. Variable:	np.log(usage)	R-squared:	0.811
Model:	OLS	Adj. R-squared:	0.808
Method:	Least Squares	F-statistic:	227.8
Date:	Sat, 18 Apr 2020	Prob (F-statistic) :	$7.82 e-21$
Time:	$13: 36: 09$	Log-Likelihood:	1.0037
No. Observations:	55	AIC:	1.993
Df Residuals:	53	BIC:	6.007
Df Model:	1		
Covariance Type:			

Omnibus:	4.773	Durbin-Watson:	1.402
Prob(Omnibus):	0.092	Jarque-Bera (JB):	3.709
Skew:	-0.551	Prob(JB):	0.157
Kurtosis:	3.636	Cond. No.	53.9

Kurtosis:
3.636 Cond. No.

Here are the residuals from our fit

Question Is there any pattern to the residuals?

Let's check

- we can see if a quadratic term improves the fit

Quadratic model in log(temperature)

OLS Regression Results
 Dep. Variable: np.log(usage) R-squared: 0.814

coef std err	t	$\mathrm{P}>\|\mathrm{t}\|$	[0.025	$0.975]$
Intercept	5.6258	5.200	1.082	0.284
$\mathrm{np} . \log$ (temperature)	0.6349	2.698	0.235	0.815
np.power (np.log(temperature), 2)	-0.2885	0.348	-0.829	0.411

pd.Series([variance_inflation_factor(X.values, i)
for i in range(X.shape[1])], index=X.columns)

Intercept
np.log(temperature)
np.power(np.log(temperature), 2)
dtype: float64
25237.650598
644.758755
644.758755

Note: VIF $=645$!!!!

Why are the VIFs so big?

Question: What problem do we see here?

Question: Is there a way to fix this?

Let's fix the problem - center log_temp

Using orthogonal polynomials

Orthogonal polynomials are uncorrelated.

- an alternative to centering
- particularly useful for higher degrees

What do orthogonal polynomials look like?

red $=1$ st degree polynomial, blue $=2$ nd degree polynomial

Outline

Collinearity and VIFs

How should the covariates be chosen?

Prediction

Data transformation

Choosing covariates: Basic principles

- The predictors should be uncorrelated
- In terms of precision (small standard errors), the predictors should vary as much as feasible
- But problems can arise if predictors vary too much:
- The linear (or generalized linear) model might only hold locally
- Conducting the experiment might be impossible, or dangerous

Variation in the X -values is good

$\mathrm{SE}=0.331$

$S E=0.0237$

SE of $\hat{\beta}_{j}$: linear regression

$$
\mathrm{SE}\left(\hat{\beta}_{j}\right)=\sqrt{\frac{\mathrm{VIF}_{j} \sigma^{2}}{\sum_{i=1}^{n}\left(X_{i, j}-\overline{X_{j}}\right)^{2}}}
$$

- $\operatorname{SE}\left(\widehat{\beta}_{j}\right)$ is the uncertainty about β_{j}.
- σ^{2} is the variance of ϵ, the noise in the output.
- the variance of covariate X_{j} is $\sum_{i=1}^{n}\left(X_{i, j}-\overline{X_{j}}\right)^{2}$.

It is large when $X_{1, j}, \ldots, X_{n, j}$ are spread out.

To make the uncertainty small, select values of covariates so
VIF_{j} is small and the variance of covariate is large.
VIF_{j} is small when X_{j} is uncorrelated with all other $X \mathrm{~s}$

Breakout questions

ice breaker:

- where's home for the month of April?
- what's the worst thing about stay-at-home?
- what's the silver lining of stay-at-home?
regression question:
- Consider a concrete prediction problem. (Perhaps your project.)
- Which covariates can be controlled?
- Who controls the covariates?

Outline

```
Collinearity and VIFs
How should the covariates be chosen?
```

Prediction

Data transformation

Need for predictions

Predictions are needed for inventory planning and many other purposes

Types of prediction methods:

- regression
- exponential weighted moving averages (Holt-Winters)
- later in this course
- expert opinion (non-statistical)

Advantages of statistical approaches:

- have assessment of uncertainty
- objective

Prediction of new outcomes

- Predictions can be made with any regression model
- Let's illustrate with the electricity usage data
- $t=$ a value of temperature
- usage $(t)=\beta_{0}+\beta_{1} t+\beta_{2} t^{2}=$ expected electricity usage in some future month with average temperature t
- the predicted value of usage (t) is

$$
\widehat{\text { usage }}(t)=\hat{\beta}_{0}+\hat{\beta}_{1} t+\hat{\beta}_{2} t^{2}
$$

Prediction of new outcomes

From previous page:

$$
\widehat{\operatorname{usage}}(t)=\hat{\beta}_{0}+\hat{\beta}_{1} t+\hat{\beta}_{2} t^{2}
$$

$\widehat{\text { usage }}(t)$ estimates:

- usage $(t)=\beta_{0}+\beta_{1} t+\beta_{2} t^{2}+\epsilon=$ new Y
- $E\{$ usage $(t)\}=\beta_{0}+\beta_{1} t+\beta_{2} t^{2}=E($ new $Y)$

Confidence and Prediction intervals

- prediction intervals for $\beta_{0}+\beta_{1} t+\beta_{2} t^{2}+\epsilon=$ new Y
- confidence intervals for $\beta_{0}+\beta_{1} t+\beta_{2} t^{2}=\mathrm{E}($ new $Y)$
- prediction intervals are wider than confidence intervals
- often much wider
- extra width from extra uncertainty due to ϵ

Generate confidence intervals

```
usage = usage.sort_values('temperature')
Y, X = dmatrices('usage ~ 1 + temperature + np.power(tempe
    data=usage, return_type='dataframe')
model = sm.OLS(Y, X).fit()
predictions = model.get_prediction(X)
predictions.summary_frame(alpha=0.05) # 95% CI
# plot confidence intervals
CI = predictions.conf_int(alpha=.05)
p = usage.plot.scatter('temperature', 'usage', color='red
p.plot(usage['temperature'], CI[:,0], color='blue')
p.plot(usage['temperature'], CI[:,1], color='green')
p.legend()
```

The code above produces a confidence interval. To get a prediction interval, need to add estimated variance $\hat{\sigma}$ of ϵ

Generate prediction intervals

```
from scipy.stats import norm
def prediction_interval(predictions, alpha=.05):
    emean = predictions.predicted_mean
    sigma = np.sqrt(predictions.var_resid)
    n = len(emean)
    PI = np.zeros((n,2))
    PI[:,0] = emean + norm.ppf(alpha/2)*sigma
    PI[:,1] = emean + norm.ppf(1-alpha/2)*sigma
    return PI
```


Using a linear polynomial when the true model is

quadratic

- 100 data points were used to fit the model
- 100 new data points are plotted
- the blue lines are the 95% prediction intervals
- intervals are (roughly)
$\left(\hat{\beta}_{0}+\hat{\beta}_{1} X\right) \pm 1.96 \hat{\sigma}$

Right skewed noise, but Gaussian noise assumed

- Too many points are above the prediction intervals
- No points are below the intervals

Variance depends on x, but assumed constant

Notice that the predictions intervals are:

- too wide on the left
- too narrow on the right

Heavy tails

95\% prediction intervals

- notice that the prediction intervals are very wide
- why is this happening?

Heavy tails - normal plot of residuals

Here's why:

- Notice the extreme outliers
- The outliers have inflated the estimate of σ
- A large value of $\hat{\sigma}$ causes wide prediction intervals

Outline

Collinearity and VIFs

How should the covariates be chosen?

Prediction

Data transformation

Data transformations

Data transformation: overview

Transformation of Y can be very useful

- commonly used transformations are log and square-root
- transformation can cure several problems such as
- skewness
- non-constant variance

An example where y should be log transformed

Notice

No Transformation

- curvature
- skewness
- non-constant variance

In this example, all three problems
can be remedied by using a log transformation of y.

An example where y should be log transformed

Now we work with $\log (y)$.
y is log transformed

Notice

- no curvature
- no skewness
- constant variance

But what if we are most interested in y, not $\log (y)$?

An example where y should be log transformed

Now we transform everything (points as well as lines) with the exponential function.

Notice

- curvature
- skewness
- non-constant variance

But the predictions are adjusted for all of these problems.

Warning: life is not always so simple

- Simple transformations cannot fix all problems.
- There are many other remedies that can be used, often in combination.
- These are introduced in more advanced courses.

