ORIE 3120: Practical Tools for OR, DS, and ML

Collinearity

Professor Udell

Operations Research and Information Engineering Cornell

April 21, 2020

Announcements

- submit recitation by 4:30pm ET Friday
- Inear regression homework due 2:30pm ET Wednesday
- project peer reviews due Sunday 4/26/2020 at noon

What's next?

- Collinearity and VIF (variance inflation factors)
- Prediction intervals
- Log transformations

Outline

Collinearity and VIFs

How should the covariates be chosen?

Prediction

Data transformation

Collinearity, VIF, Orthogonal Polynomials

What is collinearity?

- Collinearity means high correlations between the predictors
- If two predictors are highly correlated, then it is difficult to separate their effects on the response variable
 - hard to decide which variable is important
 - can lead to uninterpretable models
 - increases std. errors, decreases p-values
- Collinearity can be detected with variance inflation factors (VIF)
- ▶ VIF_J = increase in variance of $\hat{\beta}_j$ due to collinearity
 - ► $VIF_j \ge 1$
 - smaller is better
 - $VIF_j = 1 \Rightarrow$ no collinearity problem for X_j
 - $VIF_j > 10 \Rightarrow$ collinearity may be a problem

How to compute VIF

to compute VIF_1 (VIF for covariate 1):

1. try to predict X_1 given all other covariates: model X_1 as

$$X_1 = \beta_0 + \beta_2 X_2 + \ldots + \beta_p X_p + \epsilon$$

and find β_0, \ldots, β_p to minimize residual sum of squares

2. compute $R_1^2 = \rho(X_1, \hat{X}_1)^2$: the correlation between X_1 and \hat{X}_1 predicted by model

3.
$$VIF_1 = 1/(1+R_1^2)$$

To illustrate collinearity, consider regressing log(usage) on log(temperature)

log(temperature)

Demo

Demo: https://github.com/madeleineudell/orie3120-sp2020/ blob/master/demos/collinearity.ipynb

Regression Output: log(usage) and log(temperature)

OLS Regression Res	ults				
Dep. Variable: Model: Mothod: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	np.log(Least S Sat, 18 Ap 13	(usage) OLS (quares or 2020 3:36:09 55 53 1 urobust	R-squared: Adj. R-squa F-statistic Prob (F-sta Log-Likelih AIC: BIC:	red: : tistic): ood:	0.811 0.802 227.8 7.82e-21 1.0037 1.995 6.007
coef std err	======== t	P> t	[0.025	0.975]	
Intercept np.log(temperature)	9.9203 -1.5989	0.4	19 23.69 106 -15.09	1 0.000 2 0.000	9.080 -1.811
Omnibus: Prob(Omnibus): Skew: Kurtosis:		4.773 0.092 -0.551 3.636	Durbin-Watson: Jarque-Bera (JB): Prob(JB): Cond. No.		1.402 3.709 0.157 53.9

Here are the residuals from our fit

Question Is there any pattern to the residuals?

Let's check

we can see if a quadratic term improves the fit

Quadratic model in log(temperature)

OLS Regression Results									
Dep. Variable: np.log(usag	np.log(usage) R-squared:			0.814					
coef std err	t	P> t	[0.025	0.975]					
Intercept	5.6258	5.200	1.082	0.284					
np.log(temperature)	0.6349	2.698	0.235	0.815					
<pre>np.power(np.log(temperature), 2)</pre>	-0.2885	0.348	-0.829	0.411					
<pre>pd.Series([variance_inflation_facto</pre>	or(X.value ape[1])],	s, i)							
Intercept	2523	7.650598							
np.log(temperature)	644.758755								
np.power(np.log(temperature), 2 dtype: float64	2) 64	4.758755							

Note: VIF = 645 !!!!

Why are the VIFs so big?

Question: What problem do we see here?

Question: Is there a way to fix this?

Let's fix the problem - center log_temp

Using orthogonal polynomials

Orthogonal polynomials are uncorrelated.

- an alternative to centering
- particularly useful for higher degrees

What do orthogonal polynomials look like?

red=1st degree polynomial, blue = 2nd degree polynomial

Outline

Collinearity and VIFs

How should the covariates be chosen?

Prediction

Data transformation

Choosing covariates: Basic principles

- The predictors should be uncorrelated
- In terms of precision (small standard errors), the predictors should vary as much as feasible
- But problems can arise if predictors vary too much:
 - The linear (or generalized linear) model might only hold locally
 - Conducting the experiment might be impossible, or dangerous

Variation in the X-values is good

SE = 0.331

 $\mathsf{SE}=0.0237$

SE of $\hat{\beta}_j$: linear regression

$$\mathsf{SE}(\hat{eta}_j) = \sqrt{rac{\mathsf{VIF}_j \ \sigma^2}{\sum_{i=1}^n (X_{i,j} - \overline{X_j})^2}}$$

SE(β̂_j) is the uncertainty about β_j.
σ² is the variance of ε, the noise in the output.
the variance of covariate X_j is ∑ⁿ_{i=1}(X_{i,j} - X̄_j)². It is large when X_{1,i},..., X_{n,i} are spread out.

To make the uncertainty small, select values of covariates so VIF_j is small and the variance of covariate is large.

 VIF_j is small when X_j is uncorrelated with all other Xs

Breakout questions

ice breaker:

- where's home for the month of April?
- what's the worst thing about stay-at-home?
- what's the silver lining of stay-at-home?

regression question:

- Consider a concrete prediction problem. (Perhaps your project.)
- Which covariates can be controlled?
- Who controls the covariates?

Outline

Collinearity and VIFs

How should the covariates be chosen?

Prediction

Data transformation

Need for predictions

Predictions are needed for inventory planning and many other purposes

Types of prediction methods:

regression

exponential weighted moving averages (Holt-Winters)

- later in this course
- expert opinion (non-statistical)

Advantages of statistical approaches:

have assessment of uncertainty

objective

Prediction of new outcomes

- Predictions can be made with any regression model
- Let's illustrate with the electricity usage data
 - t = a value of temperature
 - ▶ usage(t) = β₀ + β₁t + β₂t² = expected electricity usage in some future month with average temperature t
 - the predicted value of usage(t) is

$$\widehat{\text{usage}}(t) = \hat{\beta}_0 + \hat{\beta}_1 t + \hat{\beta}_2 t^2$$

Prediction of new outcomes

From previous page:

$$\widehat{ ext{usage}}(t) = \hat{eta}_0 + \hat{eta}_1 t + \hat{eta}_2 t^2$$

usage(t) estimates:

- usage(t) = $\beta_0 + \beta_1 t + \beta_2 t^2 + \epsilon = \text{new } Y$
- $E\{\text{usage}(t)\} = \beta_0 + \beta_1 t + \beta_2 t^2 = E(\text{new } Y)$

Confidence and Prediction intervals

- prediction intervals for $\beta_0 + \beta_1 t + \beta_2 t^2 + \epsilon = \text{new } Y$
- confidence intervals for $\beta_0 + \beta_1 t + \beta_2 t^2 = E(\text{new } Y)$
- prediction intervals are wider than confidence intervals
 - often much wider
 - \blacktriangleright extra width from extra uncertainty due to ϵ

Generate confidence intervals

```
usage = usage.sort_values('temperature')
Y, X = dmatrices('usage ~ 1 + temperature + np.power(temperature)
                  data=usage, return_type='dataframe')
model = sm.OLS(Y, X).fit()
predictions = model.get_prediction(X)
predictions.summary_frame(alpha=0.05) # 95% CI
# plot confidence intervals
CI = predictions.conf_int(alpha=.05)
p = usage.plot.scatter('temperature', 'usage', color='red
p.plot(usage['temperature'], CI[:,0], color='blue')
p.plot(usage['temperature'], CI[:,1], color='green')
p.legend()
```

The code above produces a confidence interval. To get a prediction interval, need to add estimated variance $\hat{\sigma}$ of ϵ

Generate prediction intervals

```
from scipy.stats import norm
def prediction_interval(predictions, alpha=.05):
    emean = predictions.predicted_mean
    sigma = np.sqrt(predictions.var_resid)
    n = len(emean)
    PI = np.zeros((n,2))
    PI[:,0] = emean + norm.ppf(alpha/2)*sigma
    PI[:,1] = emean + norm.ppf(1-alpha/2)*sigma
    return PI
```

Using a linear polynomial when the true model is quadratic

- 100 data points were used to fit the model
- 100 new data points are plotted
- the blue lines are the 95%
 prediction intervals
- intervals are (roughly) $(\hat{\beta}_0 + \hat{\beta}_1 X) \pm 1.96 \hat{\sigma}$

Right skewed noise, but Gaussian noise assumed

- Too many points are above the prediction intervals
- No points are below the intervals

Variance depends on x, but assumed constant

intervals are:

Notice that the predictions

- too wide on the left
- too narrow on the right

Heavy tails

- notice that the prediction intervals are very wide
- why is this happening?

Heavy tails – normal plot of residuals

Here's why:

- Notice the extreme outliers
- The outliers have inflated the estimate of σ

Outline

Collinearity and VIFs

How should the covariates be chosen?

Prediction

Data transformation

Data transformations

Data transformation: overview

Transformation of Y can be very useful

- commonly used transformations are log and square-root
- transformation can cure several problems such as
 - skewness
 - non-constant variance

An example where y should be log transformed

Notice

- curvature
- skewness
- non-constant variance

In this example, all three problems can be remedied by using a log transformation of y.

An example where y should be log transformed

Now we work with $\log(y)$.

Notice

- no curvature
- no skewness
- constant variance

But what if we are most interested in y, not log(y)?

An example where y should be log transformed

transform back to original y

Now we transform everything (points as well as lines) with the exponential function.

Notice

curvature

skewness

non-constant variance

But the predictions are adjusted for all of these problems.

Warning: life is not always so simple

- Simple transformations cannot fix all problems.
- There are many other remedies that can be used, often in combination.
- These are introduced in more advanced courses.