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Announcements

» submit recitation by 4:30pm ET Friday
» linear regression homework due 2:30pm ET Wednesday

» project peer reviews due Sunday 4/26/2020 at noon
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What's next?

» Collinearity and VIF (variance inflation factors)
> Prediction intervals

» Log transformations
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Outline

Collinearity and VIFs
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Collinearity, VIF, Orthogonal Polynomials
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What is collinearity?

» Collinearity means high correlations between the predictors
» If two predictors are highly correlated, then it is difficult to
separate their effects on the response variable
» hard to decide which variable is important

» can lead to uninterpretable models
» increases std. errors, decreases p-values

» Collinearity can be detected with variance inflation factors
(VIF)

» VIF,; = increase in variance of Bj due to collinearity
> VIF; > 1
» smaller is better
> VIF; = 1 = no collinearity problem for X;
> VIF; > 10 = collinearity may be a problem
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How to compute VIF

to compute VIF; (VIF for covariate 1):

1. try to predict Xj given all other covariates: model Xj as
Xlzﬁo-l-ﬁzXz—l-...—{—ﬂpo—f—e

and find Sy, ..., Bp to minimize residual sum of squares

2. compute R? = p(Xl,)A(1)2: the correlation between X; and
X1 predicted by model

3. VIF; = 1/(1+ R?)
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To illustrate collinearity, consider regressing

log(usage) on log(temperature)
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Demo

Demo:
https://github.com/madeleineudell/orie3120-sp2020/
blob/master/demos/collinearity.ipynb
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Regression Output: log(usage) and log(temperature)

OLS Regression Results

Dep. Variable: np.log(usage) R-squared: 0.811
Model: OLS  Adj. R-squared: 0.80¢
Method: Least Squares F-statistic: 227.¢
Date: Sat, 18 Apr 2020 Prob (F-statistic): 7.82e-21
Time: 13:36:09 Log-Likelihood: 1.0037
No. Observations: 55  AIC: 1.99¢
Df Residuals: 53 BIC: 6.007
Df Model: 1

Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]

Intercept 9.9203 0.419 23.691 0.000 9.080
np.log(temperature) -1.5989 0.106 -15.092 0.000 -1.811
Omnibus: 4.773  Durbin-Watson: 1.40:
Prob(Omnibus) : 0.092  Jarque-Bera (JB): 3.70¢
Skew: -0.551  Prob(JB): 0.157
Kurtosis: 3.636 Cond. No. 53.¢




residual
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Here are the residuals from our fit

log(temperature)

Question Is there any pattern
to the residuals?

Let's check

» we can see if a quadratic
term improves the fit
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Quadratic model in log(temperature)

OLS Regression Results

Dep. Variable: np.log(usage) R-squared: 0.814
coef std err t P>t [0.025 0.975]
Intercept 5.6258 5.200 1.082 0.284
np.log(temperature) 0.6349 2.698 0.235 0.815
np.power (np.log(temperature), 2) -0.2885 0.348 -0.829 0.411

pd.Series([variance_inflation_factor(X.values, i)
for i in range(X.shapel[1])],
index=X.columns)

Intercept 25237.650598
np.log(temperature) 644.758755
np.power (np.log(temperature), 2) 644.758755

dtype: float64

Note: VIF = 645 !l
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{log(temp)}*2

Why are the VIFs so big?

log(temp)

Question: What problem do we

see here?

Question: |s there a way to fix

this?
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Let’s fix the problem — center log_temp

{log(temp)-mean}'2
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Using orthogonal polynomials

Orthogonal polynomials are uncorrelated.

» an alternative to centering

» particularly useful for higher degrees
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What do orthogonal polynomials look like?
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red=1st degree polynomial, blue = 2nd degree polynomial
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Outline

How should the covariates be chosen?
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Choosing covariates: Basic principles

» The predictors should be uncorrelated

» In terms of precision (small standard errors), the predictors
should vary as much as feasible
» But problems can arise if predictors vary too much:

> The linear (or generalized linear) model might only hold
locally
» Conducting the experiment might be impossible, or

dangerous
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Variation in the X-values is good

* *
o o
& 4 & 4
c S
¥ 9 |
§ o | § o |
B ]
2 2
c c
S o S o
=S £ =4
s o § o
g * g *
=, =,
8 | * * g | * *
S * S *
=) * =) *
S 1% * * * * S 1% * * *
T T T T T T T T T T T T
1.0 15 20 25 3.0 35 4.0 10 20 30 40 50
soaking time heating time

SE = 0.331 SE = 0.0237

19/40



SE of j;: linear regression

V|F o2
E(5) \/ ST (X, X

> SE(BJ-) is the uncertainty about f3;.

» o2 is the variance of ¢, the noise in the output.
> the variance of covariate X; is >.7_,(Xi; — Xj)?.

It is large when Xij,..., X, are spread out.

To make the uncertainty small, select values of covariates so

VIF; is small and the variance of covariate is large.

VIF; is small when Xj is uncorrelated with all other Xs
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Breakout questions

ice breaker:

» where's home for the month of April?
» what's the worst thing about stay-at-home?

» what's the silver lining of stay-at-home?
regression question:

» Consider a concrete prediction problem.
(Perhaps your project.)
» Which covariates can be controlled?

» Who controls the covariates?
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Outline

Prediction
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Need for predictions

Predictions are needed for inventory planning and many other

purposes
Types of prediction methods:
» regression

> exponential weighted moving averages (Holt-Winters)

» later in this course

> expert opinion (non-statistical)
Advantages of statistical approaches:

» have assessment of uncertainty

» objective
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Prediction of new outcomes

» Predictions can be made with any regression model
» Let's illustrate with the electricity usage data

» t = a value of temperature
> usage(t) = o + Bt + Bot? = expected electricity usage in
some future month with average temperature t

> the predicted value of usage(t) is

usage(t) = fo + Pt + Pot?
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Prediction of new outcomes

From previous page:

usage(t) = fo + fut + Bat?

> Usage(t) estimates:
> usage(t) = Bo + Bit + fat? + e = new Y
> E{usage(t)} = fo + fit + fat® = E(new Y')
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Confidence and Prediction intervals

» prediction intervals for By + 1t + fat? + € = new Y

» confidence intervals for By + (1t + B2t?> = E(new Y)
» prediction intervals are wider than confidence intervals

» often much wider

P extra width from extra uncertainty due to e
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Generate confidence intervals

usage = usage.sort_values(’temperature’)

Y, X = dmatrices(’usage ~ 1 + temperature + np.power (temp
data=usage, return_type=’dataframe’)

model = sm.0LS(Y, X).fit()

predictions = model.get_prediction(X)

predictions.summary_frame(alpha=0.05) # 95/, CI

# plot confidence intervals

CI = predictions.conf_int(alpha=.05)

p = usage.plot.scatter(’temperature’, ’usage’, color=’red

p-plot(usagel’temperature’], CI[:,0], color=’blue’)

p.plot(usage[’temperature’], CI[:,1], color=’green’)

p-legend )

The code above produces a confidence interval. To get a

prediction interval, need to add estimated variance & of ¢
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Generate prediction intervals

from scipy.stats import norm

def prediction_interval(predictions, alpha=.05):
emean = predictions.predicted_mean
sigma = np.sqrt(predictions.var_resid)
n = len(emean)
PI = np.zeros((n,2))
PI[:,0] = emean + norm.ppf(alpha/2)*sigma
PI[:,1] = emean + norm.ppf(l-alpha/2)*sigma
return PI
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ynew

Using a linear polynomial when the true model is

quadratic

95% prediction intervals >

100 data points were used to

fit the model

100 new data points are
plotted
the blue lines are the 95%

prediction intervals

intervals are (roughly)

(Bo + /1X) £1.966
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ynew

Right skewed noise, but Gaussian noise assumed

95% prediction intervals

» Too many points are above

the prediction intervals

» No points are below the

intervals
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ynew

Variance depends on x, but assumed constant

95% prediction intervals

Notice that the predictions

intervals are:
» too wide on the left

» too narrow on the right
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ynew

20

10

-10

-20

Heavy tails

95% prediction intervals

» notice that the prediction

intervals are very wide

» why is this happening?
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Theoretical Quantiles

-2

Heavy tails — normal plot of residuals

Normal Q-Q Plot
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Here's why:
> Notice the extreme outliers

» The outliers have inflated the

estimate of o

> A large value of & causes wide

prediction intervals
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Outline

Data transformation
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Data transformations
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Data transformation: overview

Transformation of Y can be very useful

» commonly used transformations are log and square-root
» transformation can cure several problems such as

» skewness

» non-constant variance
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ynew

An example where y should be log transformed

No Transformation

Notice
» curvature
» skewness
» non-constant variance

In this example, all three problems
can be remedied by using a log

transformation of y.
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log(ynew)

An example where y should be log transformed

y is log transformed

Now we work with log(y).

Notice
» no curvature
» no skewness
P constant variance
But what if we are most interested

in y, not log(y)?
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ynew

An example where y should be log transformed

transform back to original y

Now we transform everything
(points as well as lines) with the
exponential function.

Notice
» curvature
» skewness
» non-constant variance

But the predictions are adjusted for

all of these problems.
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Warning: life is not always so simple

» Simple transformations cannot fix all problems.

» There are many other remedies that can be used, often in

combination.

» These are introduced in more advanced courses.
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