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Model selection

which features should appear in your model? two regimes

small data: (this class)

I use domain knowledge to decide features

I drop features with very small p values

big data: (ORIE 4741)

I use cross-validation to select best model

I use held-out test set to assess model performance
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Model selection and p values

I if you fit very few models, and assumptions hold, then p
values are reliable

I p values are not reliable if you fit many models or select
from many features

solution: use a held-out test set

I split dataset into training data and testing data before you
begin

I use training dataset to select model

I use test dataset to assess quality of fit
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Model selection demo

Demo:
https://github.com/madeleineudell/orie3120-sp2020/

blob/master/demos/model-selection.ipynb

demo shows three methods for model selection:

I dropping big p-values up to threshold

I dropping big p-values to minimize AIC

I using the Lasso to select features

there are many more!
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Aikake Information Criterion (AIC)

Continuous data:

AIC = RSS + 2p

=
n∑

i=1

ε̂2
i + 2p

I decreases as model fit improves

I increases with more covariates p

I models with small AIC predict better

I AIC can also be defined for other models
(e.g., for binary data)
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AIC example: electricity usage

Example: Electricity usage

Model AIC

Linear 427.3

Quadratic 409.5

Cubic 411.4

Quartic 413.4

I a difference of 1 or 2 in AIC values is not important

I if several models have nearly the same AIC values, then

generally one uses the simplest
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Stepwise variable selection

start with some model

I the model is modified in steps

I in each step a variable is either added or dropped

I select the move that decreases AIC the most

I the algorithm stops when no move decreases AIC
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Part 2: Logistic Regression For Binary outcomes

I Often the response is binary, e.g.,

I “no” or “yes”

I “defective” or “good”

I “dead” or ”alive”

I often coded “0” or “1”

I Alternatively, the response is the number of “yes” responses

in a number of “trials”

I Binary regression:

I model the conditional probability of “yes” given the

predictors
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Logistic Regression is Useful
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Binary regression: data

For the ith case:

I Xi ,1, . . . ,Xi ,p are the predictors

I ni is the number of “trials”

I p(Xi ,1, . . . ,Xi ,p) is the conditional probability of a “yes” or,

equivalently, that Yi = 1

I Yi |Xi ,1, . . . ,Xi ,p is Binomial{p(Xi ,1, . . . ,Xi ,p), ni}
I So

Pr(Yi = y |Xi ,1, . . . ,Xi ,p)

=

(
ni

y

)
p(Xi ,1, . . . ,Xi ,p)y{1− p(Xi ,1, . . . ,Xi ,p)}ni−y

for y = 0, . . . , ni
13 / 36



Modeling p(X1, . . . ,Xp): first attempt

From previous slide:

p(X1, . . . ,Xp) is the conditional probability of a “yes”

Linear model:

p(X1, . . . ,Xp) = β0 + β1X1 + · · ·+ βpXp

What is wrong with this model?
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Logistic function
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Logistic regression model

p(X1, . . . ,Xn) = L(β0 + β1X1 + · · ·+ βpXp)

Let’s look at the simplest case, p = 1:

p(X ) = L(β0 + β1X )
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Some logistic models with one X
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Logit function

p(X1, . . . ,Xn) = L(β0 + β1X1 + · · ·+ βpXp)

implies that

L−1{p(X1, . . . ,Xn)} = β0 + β1X1 + · · ·+ βpXp

L−1 is called the “logit” function and is

L−1(p) = log

(
p

1− p

)

Also called “log-odds”
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Link function

The “odds” for “yes” against “no” is

p

1− p

So the logistic model says that the log-odds equals

β0 + β1X1 + · · ·+ βpXp

The logit function is called the “link” function because it links

I p(X1, . . . ,Xn), and

I β0 + β1X1 + · · ·+ βpXp
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Maximum Likelihood Estimation

Let yi be the value of Yi actually observed. Then the likelihood

function evaluated at β0, β1, . . . , βp is

Likelihood(β0, β1, . . . , βp) := Pr(Y1 = y1, . . . ,Yn = yn) =

=
n∏

i=1

ni

yi

 p(Xi ,1, . . . ,Xi ,p)yi{1− p(Xi ,1, . . . ,Xi ,p)}ni−yi
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Maximum likelihood estimation

I The maximum likelihood estimates are the values of

β0, β1, . . . , βp that make Likelihood(β0, β1, . . . , βp) as

large as possible.

I The MLE’s are computed by an iterative algorithm.

I Fisher scoring (aka Newton’s method) is one of the popular

algorithms

I If you want details on computing the MLE, take Learning

with Big Messy Data!
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Maximum likelihood is a general estimation method

I As we have seen, MLE is used for logistic regression

I but MLE is not a special-purpose tool used just for logistic

regression

I MLE = least squares for linear regression with normally

distributed noise

I MLE is used for a wide variety of other statistical models

I MLE is, by far, the most popular estimation method
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Logistic regression demo

Demo:
https://github.com/madeleineudell/orie3120-sp2020/

blob/master/demos/logistic-regression.ipynb
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GLMs

Logistic regression is an example of a generalized linear model

(GLM)

A GLM is similar to a LM, except

I the linear prediction equation

E (Y |X1, . . . ,Xp) = β0 + β1X1 + · · ·+ βpXp

is replaced by

E (Y |X1, . . . ,Xp) = H(β0 + β1X1 + · · ·+ βpXp)

for a suitable function H

I H = logistic function for logistic regression
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GLMs, cont.

I The conditional normal distribution of Y given X1, . . . ,Xp

is replaced by another family of distributions

I binomial distributions for logistic regression

I Poisson regression is another example of a GLM

I Yi is Poisson

I H(x) = exp(x) because the mean of a Poisson is positive
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GLMs

E (Y |X1, . . . ,Xp) = H(β0 + β1X1 + · · ·+ βpXp)

implies that

∂

∂Xj
E (Y |X1, . . . ,Xp) = H ′(β0 + β1X1 + · · ·+ βpXp)βj

so the coefficients in a GLM can be interpreted in roughly the

same way in a LM
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Example: Heating steel ingots to be rolled is hard!
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Example: ingots data

Soak Time Heat Time Not Ready ni
1 7 0 10
1 14 0 31
1 27 1 56
1 51 3 13

1.7 7 0 17
1.7 14 0 43
1.7 27 4 44
1.7 51 0 1
2.2 7 0 7
2.2 14 2 33
2.2 27 0 21
2.2 51 0 1
2.8 7 0 12
2.8 14 0 31
2.8 27 1 22
2.8 51 0 0

4 7 0 9
4 14 0 19
4 27 1 16
4 51 0 1

ni = number of
ingots prepared

proportion not ready
= (Not Ready) /ni
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Let’s look at the data
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Need analog of sum of squares

I In linear regression, we found β̂0, . . . , β̂p by minimizing the

sum of squared residuals,

Sum of Squared Residuals =
n∑

i=1

{
Yi−(β0+β1Xi ,1+. . .+βpXi ,p)

}2

= positive constant× (−2× log-likelihood) + another constant

I The same β̂0, . . . , β̂p minimize

−2× log-likelihood

I We define the Deviance to be

Deviance = −2× log-likelihood
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Deviance is the analog of sum of squares

Logistic regression:

Notation: p̂i = L(β0 + β1Xi ,1 + . . .+ βpXi ,p)

For simplicity: Assume the binary, not binomial, case

The MLE maximizes

=
n∏

i=1

p̂yii (1− p̂i )
1−yi

and minimizes

Deviance := −2
n∑

i=1

[
yi log(p̂i ) + (1− yi ) log(1− p̂i )

]
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Deviance residuals

Deviance := −2
n∑

i=1

[
yi log(p̂i ) + (1− yi ) log(1− p̂i )

]
︸ ︷︷ ︸

≤ 0

=
n∑

i=1

{
(Deviance residual)i

}2

where

(Deviance residual)i = ±
√
−2
{
yi log(p̂i ) + (1− yi ) log(1− p̂i )

}
I ± is determined so that the deviance residual has the same

sign as
{
yi − p̂i

}
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Deviance residuals: when are they small?

Deviance =
n∑

i=1

{
(Deviance residual)i

}2

(Deviance residual)i = ±
√
−2
{
yi log(p̂i ) + (1− yi ) log(1− p̂i )

}
(Deviance residual)i = 0 if and only if

I yi = 1 and p̂i = 1

or

I yi = 0 and p̂i = 0
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Deviance and AIC

Binary data:

AIC = Deviance + 2 × (# parameters)

Binomial data:

AIC = Deviance + 2 × (# parameters) + constant

The constant comes from the logs of the binomial coefficients
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AIC for model comparison

AIC = −2 log
(

maximized likelihood
)

+ 2
(

number of parameters
)

= Deviance︸ ︷︷ ︸
poor fit penalty

+ 2
(

number of parameters
)

︸ ︷︷ ︸
complexity penalty

I AIC can be used with any GLM

I including any LM

I Smaller is better: Models with small AIC predict better
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