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Outline

Model selection
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Model selection

which features should appear in your model? two regimes

small data: (this class)

» use domain knowledge to decide features

» drop features with very small p values
big data: (ORIE 4741)

» use cross-validation to select best model

» use held-out test set to assess model performance
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Model selection and p values

» if you fit very few models, and assumptions hold, then p
values are reliable

» p values are not reliable if you fit many models or select
from many features

4/36



Model selection and p values

» if you fit very few models, and assumptions hold, then p
values are reliable

» p values are not reliable if you fit many models or select
from many features

solution: use a held-out test set

» split dataset into training data and testing data before you
begin
» use training dataset to select model

» use test dataset to assess quality of fit
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Model selection demo

Demo:
https://github.com/madeleineudell/orie3120-sp2020/

blob/master/demos/model-selection.ipynb

demo shows three methods for model selection:

» dropping big p-values up to threshold
» dropping big p-values to minimize AIC

» using the Lasso to select features

there are many more!
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Aikake Information Criterion (AIC)

Continuous data:

AIC = RSS+2p

n
= 26,2 +2p
i=1

» decreases as model fit improves
» increases with more covariates p
» models with small AIC predict better

» AIC can also be defined for other models
(e.g., for binary data)
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AIC example: electricity usage

Example: Electricity usage

Model  AIC
Linear 427.3
Quadratic  409.5
Cubic 411.4

Quartic 413.4

» a difference of 1 or 2 in AIC values is not important

» if several models have nearly the same AIC values, then

generally one uses the simplest
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Outline

Stepwise variable selection
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Stepwise variable selection

start with some model

» the model is modified in steps
» in each step a variable is either added or dropped
» select the move that decreases AIC the most

» the algorithm stops when no move decreases AlC
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Logistic Regression
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Part 2: Logistic Regression For Binary outcomes

» Often the response is binary, e.g.,
> “no” or "yes"
> “defective” or “good”
> ‘“dead” or "alive”
> often coded “0" or “1"
» Alternatively, the response is the number of “yes” responses
in a number of “trials”
» Binary regression:

» model the conditional probability of “yes" given the
predictors
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Logistic Regression is Useful

ik pdrdrdr il

Improve Healthcare,
Win $3, 000 000.

Heritage Health Prize (D Ends 12 months
Identify patients who will be admitted to a hospital within the

I ) (7 916 teams
next year, using historical claims data. =

P $3 million
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Binary regression: data

For the ith case:

» Xi1,...,Xp are the predictors
» n; is the number of “trials”
» p(Xi1,...,Xip) is the conditional probability of a “yes” or,
equivalently, that Y; =1
» Yi|Xi1,...,Xipis Binomial{p(Xi1,...,Xip), ni}
> So
Pr(Y;=y|Xi1,..., Xip)

n; ni—
= (y) p(X,'71, A ,X,'7p)y{1 — p(X,'71, .. ,X,'7p)} iy

fory=0,...,n;
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Modeling p(Xi,..., X,): first attempt

From previous slide:
p(Xi,...,Xp) is the conditional probability of a "yes"

Linear model:

p(Xla'-pr):/30+/31X1+"‘+5pxp

What is wrong with this model?
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L(x)
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Logistic function
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Logistic regression model

p(X1, .., Xn) = L(Bo + B1X1 + -+ + BpXp)

Let's look at the simplest case, p = 1:

p(X) = L(Bo + P1X)
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Pr(yes|X)
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Logit function

p(X1,...,Xn) = L(Bo + f1 X1 + -+ + BpXp)

implies that
L_l{p(Xlﬂ e 7Xn)} = BO + BlX]. + -+ /Bpo
L=1 is called the “logit” function and is

LY (p) = log (1fp>

Also called “log-odds”
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Link function

The "odds” for “yes” against “no” is

1-p

So the logistic model says that the log-odds equals
BO+51X1+"'+BPXP

The logit function is called the “link" function because it links

> p()(l7 - 7)(n), and

> BO+51X1+"'+BPXP
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Maximum Likelihood Estimation

Let y; be the value of Y; actually observed. Then the likelihood

function evaluated at /3o, 31,...,8p is

Likelihood(Bo, B1, ..., 8p) :=Pr(Yi =y1,..., Yn =yn) =

n
n; Y
=TI "] P(Xias o Xip) {1 = p(Xi, ., Xip) )Y
i=1 \JYi
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Maximum likelihood estimation

The maximum likelihood estimates are the values of

Bo, B1, - - ., Bp that make Likelihood(Bo, A1, ..., Bp) as

large as possible.
The MLE's are computed by an iterative algorithm.

Fisher scoring (aka Newton's method) is one of the popular

algorithms

If you want details on computing the MLE, take Learning

with Big Messy Datal
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Maximum likelihood is a general estimation method

» As we have seen, MLE is used for logistic regression

» but MLE is not a special-purpose tool used just for logistic

regression

» MLE = least squares for linear regression with normally

distributed noise
» MLE is used for a wide variety of other statistical models

» MLE is, by far, the most popular estimation method
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Logistic regression demo

Demo:
https://github.com/madeleineudell/orie3120-sp2020/
blob/master/demos/logistic-regression.ipynb

23/36


https://github.com/madeleineudell/orie3120-sp2020/blob/master/demos/logistic-regression.ipynb
https://github.com/madeleineudell/orie3120-sp2020/blob/master/demos/logistic-regression.ipynb

GLMs

Logistic regression is an example of a generalized linear model
(GLM)

A GLM is similar to a LM, except

» the linear prediction equation
E(Y|X1,. .., Xp) = Bo+ B1Xe + -+ BpXp
is replaced by
E(Y|X1,...,Xp) = H(Bo + B1 X1 + - - + BpXp)

for a suitable function H

» H = logistic function for logistic regression
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GLMs, cont.

» The conditional normal distribution of Y given Xi,..., X,

is replaced by another family of distributions
» binomial distributions for logistic regression
» Poisson regression is another example of a GLM

» Y is Poisson

> H(x) = exp(x) because the mean of a Poisson is positive
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GLMs

E(Y|X1,...,Xp) = H(Bo + B1X1 + - + BpXp)

implies that

0
WE(Y]XL s Xp) = H(Bo + BrX + - + BpXp) B
j

so the coefficients in a GLM can be interpreted in roughly the

same way in a LM
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Example: Heating steel ingots to be rolled is hard!
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Soak Time

Example: ingots data

Heat Time
7
14
27
51
7
14
27
51
7
14
27
51
7
14
27
51
7
14
27
51

Not Ready

OHOOOHOOOONMNMNOOPRMOOWHOO

nj
10
31
56
13
17
43
44

33
21

12
31
22

19
16

n; = number of
ingots prepared

proportion not ready
= (Not Ready) /n;
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proportion not ready

0.05 0.10 0.15 0.20

0.00

Let’s look at the data
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Outline

Deviance and deviance residuals
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Need analog of sum of squares

» In linear regression, we found Bo, .. .,[g’p by minimizing the

sum of squared residuals,

n 2
Sum of Squared Residuals = Z {\’;—(,6’0+51X,-71+. . .+BPX,-,,,)}
i=1

= positive constant x (—2 x log-likelihood) + another constant

» The same fy, ..., 3p minimize

—2x log-likelihood

» We define the Deviance to be

Deviance = —2x log-likelihood
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Deviance is the analog of sum of squares

Logistic regression:
Notation: p; = L(,BO + ,81X,'71 + ...+ /BPXi7P)
For simplicity: Assume the binary, not binomial, case

The MLE maximizes

_ler 1)’:

and minimizes
Deviance := —ZZ [y, log(p;) + (1 — yi)log(1 — p;)
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Deviance residuals

n
Deviance := —2) [y,- log(pi) + (1 — yi) log(1 — ﬁi)}
i=1

<0

n

2
= {(Deviance residual)i}
i=1

where

(Deviance residual); = :t\/2{y,- log(pi) + (1 — y;) log(1 — ﬁ;)}

» =+ is determined so that the deviance residual has the same
e
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Deviance residuals: when are they small?

n

2
Deviance = Z {(Deviance residual)i}
i=1

(Deviance residual); = i\/—2{y,~ log(pi) + (1 — yi) log(1 — ;3,-)}

(Deviance residual); = 0 if and only if
> yy=1and p;=1
or

» yi=0and p; =0
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Deviance and AIC

Binary data:
AIC = Deviance + 2 x (# parameters)
Binomial data:

AIC = Deviance + 2 x (# parameters) + constant

The constant comes from the logs of the binomial coefficients
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AIC for model comparison

AIC = —2log (maximized IikeIihood)
+ 2 (number of parameters)

= Deviance +2 (number of parameters)
~—

poor fit penalty ~~
complexity penalty

» AIC can be used with any GLM

» including any LM

» Smaller is better: Models with small AIC predict better
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