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Announcements

I submit recitation by 4:30pm ET Friday

I homework due 2:30pm ET Wednesday

I project milestone 1 due Sunday 4/18/2020 at noon
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Part 1: Linear Regression - Introduction

Regression can

I investigate how variables are related,

I predict future values of variables, and

I show how output variables will change
if we change input variables.

. . . the last step can be useful for control!
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Regression examples (from Kaggle)
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Regression for insurance claim predictions
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Regression for finance

7 / 77



Regression for social network analysis
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Regression setup

we want to predict output given inputs

I p input variables X1, . . . ,Xp ∈ R
I also called “predictors”, “independent variables”,

“covariates”

I output variable Y ∈ R
I also called “outcome”, “response”, “dependent variable”,

“label”, “target” . . .

In the Allstate example:

I Y is the cost of an insurance claim.

I X1, . . . ,Xp are the properties of the insured and his/her
vehicle, e.g., credit score, age of the vehicle, . . .
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Linear models

linear model assumption: for some parameters β0, . . . , βp ∈ R,

E (Y |X1, . . . ,Xp) = β0 + β1X1 + β2X2 + · · ·+ βpXp

hence
Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ε

where ε is variation of Y about E (Y |X1, . . . ,Xp)

I β0 is the intercept
I β1, . . . , βp are called regression coefficients

I also called “slopes” or “partial derivatives”:

βj =
∂

∂Xj
E (Y |X1, . . . ,Xp)

I ε is the unpredictable variation in Y
I also called the “noise”, “error”, or “residual variation”
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Data

observe (Yi ,Xi ,1, . . . ,Xi ,p), for i = 1, . . . , n

I n observations total

I i = index of “observation” = “subject” = “row in data
spreadsheet”

I so the linear regression model can be rewritten as

Yi = β0 + β1Xi ,1 + β2Xi ,2 + · · ·+ βpXi ,p + εi

I notice that β0, β1, . . . , βp do not depend on i

I the columns of the data spreadsheet are Yi ,Xi ,1, . . . ,Xi ,p

i Yi Xi ,1 Xi ,2 . . . Xi ,p

1 2.3 1.1 6.2 . . . 5.9
2 12.7 2.4 5.4 . . . 9.6
3 6.3 0.9 6.9 . . . 1.5
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Least squares estimation

What if we don’t know the output Yi for some subject i?
Predict it!

I Given estimates β̂0, . . . , β̂p for the regression coefficients,
predict Yi as

Ŷi = β̂0 + β̂1Xi ,1 + β̂2Xi ,2 + · · ·+ β̂pXi ,p

I Ŷi is an estimate of
E (Yi |Xi ,1, . . . ,Xi ,p) = β0 + β1Xi ,1 + β2Xi ,2 + · · ·+ βpXi ,p

I β̂0, β̂1, . . . , β̂p find the “best” predictor by minimizing

n∑
i=1

(Yi − Ŷi )
2

Q: Why minimize the square?
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Residuals and Fitted Values

Fitted value: Ŷi = β̂0 + β̂1Xi ,1 + β̂2Xi ,2 + · · ·+ β̂pXi ,p

Residual: ε̂i = Yi − Ŷi (estimates εi )

Least-squares: makes the sum of square residuals

n∑
i=1

ε̂2i

as small as possible.
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Least Squares, in pictures
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When is a model linear?

Linear regression assumes

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ε.

Definition: A model is linear if Y is linear in the parameters
(linear in β0, . . . , βp).

Key point: Covariates X1, . . . ,Xp can be anything observable.
They can be nonlinear functions of measured quantities.
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Nonlinear models

I Nonlinear regression is covered in more advanced courses

I For this course, you only need to know a nonlinear model
when you see it

Example:
Y = β0 + β1 exp(β2X ) + ε

This model is nonlinear because Y is a nonlinear function of β2.

Example:
Y = β0 + β31β

4
2 exp(X ) + ε

This model is nonlinear in the parameters, but can be rewritten
as a linear model in β′1 = β31β

4
2

Y = β0 + β′1 exp(X ) + ε
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Which of these models are linear in the parameters?

1.Y = β0 + β1 × (CavityWidth) + β2 × (CavityWidth)2,

2.Y = β0 + β1 × (CavityWidth) + (β2 × CavityWidth)2,

3.Y = β0 + β1 × (CavityWidth) + exp(β2 × CavityWidth),

I (yes) none of them

I (no) 1 only

I (up) 2 only

I (down) 3 only

I (coffee) more than one
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Which of these can be rewritten as a linear model?

1.Y = β0 + β1 × (CavityWidth) + β2 × (CavityWidth)2,

2.Y = β0 + β1 × (CavityWidth) + (β2 × CavityWidth)2,

3.Y = β0 + β1 × (CavityWidth) + exp(β2 × CavityWidth),

I (yes) none of them
I (no) 1 only
I (up) 2 only
I (down) 3 only
I (coffee) more than one
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Why python?
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How to access python

two options to use python:

I install Anaconda python distribution on your computer

I use Google colab: no installation needed

see https://people.orie.cornell.edu/mru8/orie3120/

read/jupyter.pdf for details on using jupyter
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A guide to python packages we use

I numpy (np): mathematical operations (esp. linear algebra)

I scipy: more mathematical operations (including statistics)

I pandas (pd): manipulate data tables (dataframes)

I matplotlib (plt): for plotting

I seaborn: for statistical plots

I sklearn: for machine learning (regression and beyond)

I statsmodels (sm): statistical models

Q: why so many packages?
A: python is a lightweight, flexible language with a large
developer community
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Example: Electricity Usage

I We are managing a large complex of apartments in the
Northeast.

I We pay for the electricity used by our residents.

I We would like to predict electricity usage so that we can
estimate how much money should be set aside.

Demo:
https://github.com/madeleineudell/orie3120-sp2020/

blob/master/demos/linear-regression.ipynb
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Predictors (Independent Variables)

The following predictors were measured during data collection:

I year (1989 – 1994)

I month (1 – 12)

I usage (of electricity for month)

I temperature (average temperature for month)

We added two additional predictors:

I yearcts = year + (month - 1)/12.

I tempsqr = temperature2.
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Here is python code for loading and plotting the data

usage = pd.read_csv(’elec_usage.txt’)

usage[’tempsqr’] = usage[’temperature’]^2

usage[’yearcts’] = usage[’year’] + (usage[’month’]-1)/12

usage.plot.scatter(x=’temperature’, y=’usage’)

seaborn.pairplot(usage)

27 / 77



We fit this linear regression model

usage = β0 + β1temp + β2temp
2 + ε

Here

I Y = usage

I X1 = temp

I X2 = temp2
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Here’s how we fit this linear regression model

Y, X = dmatrices(’usage ~ 1 + temperature + temperature^2’,\

data=usage, return_type=’dataframe’)

model = sm.OLS(Y, X).fit()
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Here’s how to get Python to tell us

the estimated regression coefficients

model.summary()
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Output of model summary

OLS Regression Results

==============================================================================

Dep. Variable: usage R-squared: 0.785

Model: OLS Adj. R-squared: 0.768

Method: Least Squares F-statistic: 45.76

Date: Sun, 05 Apr 2020 Prob (F-statistic): 4.00e-16

Time: 15:16:34 Log-Likelihood: -210.02

No. Observations: 55 AIC: 430.0

Df Residuals: 50 BIC: 440.1

Df Model: 4

Covariance Type: nonrobust

===================================================================================

coef std err t P>|t| [0.025 0.975]

-----------------------------------------------------------------------------------

Intercept -289.2222 2358.062 -0.123 0.903 -5025.530 4447.086

temperature -0.5207 0.792 -0.657 0.514 -2.112 1.070

temperature ^ 2 -0.8402 0.785 -1.071 0.290 -2.416 0.736

month -1.0414 8.117 -0.128 0.898 -17.344 15.261

year -11.9054 97.321 -0.122 0.903 -207.381 183.570

yearcts 12.1097 98.509 0.123 0.903 -185.751 209.970

==============================================================================

Omnibus: 0.462 Durbin-Watson: 1.166

Prob(Omnibus): 0.794 Jarque-Bera (JB): 0.216

Skew: 0.153 Prob(JB): 0.898

Kurtosis: 3.025 Cond. No. 8.81e+15

==============================================================================
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This command also provided other statistical analyses

I Standard errors, p-values and t-values for each βj
I Residual standard error

I Multiple R-squared and Adjusted R-squared

I F statistic and associated p-value
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When are these statistical analyses appropriate?

Statistical quantities in summary (standard errors, p-values,
t-values, R squared, F statistic, . . . ) are computed assuming
that ε1, . . . , εn

1. are mutually independent

2. are independent of Xi ,j

3. are normally distributed

4. have a constant variance

I when these assumptions are true, we can use these
quantities to lead us towards better models.

I if these assumptions are false, these statistics can be
misleading.

I we can alter the data to make assumptions more true;
sometimes improves model fit, too!

To check whether these assumptions are true, we must look at
the residuals. We will show how to do this later.
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Regression coefficients and standard errors

I Estimated regression coefficients: β̂0, . . . , β̂p
I Std. Errors

I the jth std. error is the standard deviation of β̂j
I an approximate 95% confidence interval for βj is

Estimate ± (2)(Std. Error)
I Used to quantify error in the estimates
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Statistical tests

we may assess how well the model fits using a variety of
statistical tests:

I t value
I t value = Estimate β̂j / Std. Error of β̂j
I how big is the coefficient’s mean relative to its error?

I p value
I the probability of a t value as large or larger than the one

actually observed, if βj = 0.
I If this probability is small, then βj is probably not 0.
I Formally, we reject the hypothesis that βj = 0 at the α =

0.05 significance level if p value < 0.05.
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More statistical tests

I Residual std. error
I estimates the standard deviation of the εi

I F statistic
I tests the hypothesis that β1 = 0, β2 = 0, . . . , and βp = 0

i.e., that Y is NOT related to ANY of the predictors
I often it is obvious that this hypothesis is false
I used occasionally for more sophisticated procedures built on

top of linear regression.
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Variance explained

I Multiple R Squared
I A number between 0 and 1 that tells how well the data is

explained by the linear model.
I Can be used to choose between different predictors.

I Adjusted R Squared
I Like multiple R squared, but adjusted for the number of

predictor variables.

I These are explained on the next few slides.
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Multiple R Squared

I Multiple R Squared is the squared correlation between the
observed and fitted values,

R2 = ρ(Y , Ŷ )2

I it is “multiple” because Ŷ uses all of the predictors

I ρ(Y , Ŷ ) is the sample correlation

ρ(Y , Ŷ ) =

∑
i (Yi − avg(Y ))(Ŷi − avg(Ŷ ))√∑

i (Yi − avg(Y ))2
√∑

i (Ŷi − avg(Ŷ ))2

I The closer R2 is to 1, the better Ŷi predicts Yi .

38 / 77



Why use R2?

I R2 can be used to determine which set of predictors is best.

I bigger R2 is better

I problem: R2 is biased in favor of more predictors
I adding predictors increases R2

I even if the additional predictors are not related to Yi

I The bias of R2 can be fixed by using

Adjusted R2 = 1− (1− R2)
n − 1

n − p − 1

(recall n=number of observations, p=number of covariates)

I Adjusted R2 is preferred to R2
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How to check assumptions that undergird statistics?

Statistics computed are valid if ε1, . . . , εn

1. independence I: are mutually independent

2. independence II: are independent of covariates

3. normality: are normally distributed

4. homoskedasticity: have a constant variance

To check whether these assumptions are true, we must look at
the residuals
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Residuals analysis: mutual independence

Let’s look at each assumption and see how it can be checked.

Assumption 1. ε1, . . . , εn are mutually independent

I this assumption might be violated if the observations are in
time or spatial order

I check by: plotting ε̂i versus ε̂i−1
I should see no pattern
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Residuals analysis – checking mutual independence

with a scatterplot

This code will show scatterplots from data with mutual
independence.

# generate data

n = 500 # number of observations

eps = randn(n) # independent normal (0,1)

x = 10* rand(n) # uniform (0 ,10)

y = x + eps

# form and fit model

model = sm.OLS(y, x).fit()

resid = model.resid

plt.scatter(resid[:-1], resid [1:])
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Residuals analysis – checking mutual independence

with a scatterplot

This code will show scatterplots from data without mutual
independence.

# generate data

n = 500 # number of observations

a = 1 # use this to control the correlation

w = randn(n+1) # independent normal (0,1)

eps = w[:-1] + a*w[1:] # normal , not independent

x = 10* rand(n) # uniform (0 ,10)

y = x + eps

# form and fit model

model = sm.OLS(y, x).fit()

resid = model.resid

plt.scatter(resid[:-1], resid [1:])
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Mutually independent residuals? yes/no
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Check mutual independence with autocorrelations

I plot the autocorrelation function:

r(t) = corr(ε̂i , ε̂i−t)

I r(t) should be 0 for all t > 0 (except for random variation)
I no (or only a few) autocorrelations should be outside the

test bounds
I t is called the lag

I the scatterplots only looked at lag = 1
I of course, we could have looked at other lags
I but autocorrelations let us look at all lags simultaneously
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Check mutual independence with autocorrelations

This code plots the autocorrelation for data with mutual
independence.

n = 500 # number of observations

eps = randn(n) # independent normal (0,1)

x = 10* rand(n) # uniform (0 ,10)

y = x + eps

# form and fit model

model = sm.OLS(y, x).fit()

resid = model.resid

plt.acorr(resid)
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Check mutual independence with autocorrelations

This code plots the autocorrelation for data without mutual
independence.

n = 500 # number of observations

a = 1 # use this to control the correlation

w = randn(n+1) # independent normal (0,1)

eps = w[:-1] + a*w[1:] # normal , not independent

x = 10* rand(n) # uniform (0 ,10)

y = x + eps

# form and fit model

model = sm.OLS(y, x).fit()

resid = model.resid

plt.acorr(resid)
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Check mutual independence with autocorrelations
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Check mutual independence with autocorrelations
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Residuals analysis – linear in the predictors

Assumption 2. model is linear in the predictors (the Xi ,j)

I equivalently, ε1, . . . , εn are independent of all Xi ,j

I Check by: plotting ε̂i versus Xi ,j for j = 1, . . . , p

I we should see that the average value of the ε̂i does not
depend on Xi ,j .

I if it does, then there is a problem
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Residuals analysis – linear in the predictors

Plot residuals vs covariates to test linearity

plt.subplot (2,1,1)

p = plt.scatter(x,y,marker=’o’,label =" observed ")

plt.scatter(x,yhat ,marker ="+", color="red",label=" predicted ")

plt.legend ()

plt.subplot (2,1,2)

plt.scatter(x,resid)

plt.xlabel ("x")

plt.ylabel (" residual ")

55 / 77



Residuals analysis – linear in the predictors

This code forms a model for which outcome is not linear in the
predictor.

n = 500 # number of observations

eps = randn(n) # independent normal (0,1)

x = 10* rand(n) # uniform (0 ,10)

y = x + x**2 + eps

# form and fit model

model = sm.OLS(y, x).fit()

resid = model.resid

yhat = model.predict ()
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Residuals analysis – linear in the predictors

Here’s how we fix the fit on the previous slide:
use the square as a feature

df = pd.DataFrame ()

df[’x’] = x

df[’xsq ’] = x**2

model = sm.OLS(y, df).fit()
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Residuals detect nonlinearity better than raw data

In the next slide, data are simulated from:

n = 200

x1 = beta(2,2,n)

x2 = randn(n)

y = sin(2* math.pi*x1) + 2*x2 + .23* randn(n)
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Residuals detect nonlinearity better than raw data
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Checking for nonlinearity
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Checking for nonlinearity
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Residuals analysis – normal distribution

Assumption 3. ε1, . . . , εn are normally distributed

I normal probability plot

I should see a straight line

I a pattern means skewness or heavy-tails
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Interpreting normal plots
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Interpreting normal plots
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Interpreting normal plots
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Interpreting normal plots

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
convex−concave = heavy−tailed

Sample Quantiles

T
he

or
et

ic
al

 Q
ua

nt
ile

s

66 / 77



Interpreting normal plots
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Checking for normal errors

This code generates q-q plots for normal residuals:

n=500

eps = randn(n) # normal residuals

x = 10* rand(n)

y = x + eps

model = sm.OLS(y,x).fit()

sm.qqplot(model.resid , line =’45’);
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Checking for normal errors

This code generates q-q plots for residuals that are not normal:

n=500

eps = exp(randn(n)) # not normal

x = 10* rand(n)

y = x + eps

model = sm.OLS(y,x).fit()

sm.qqplot(model.resid , line =’45’);
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Checking for normal errors
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Checking for normal errors
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Checking for normal errors
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Residuals analysis – constant variance

Assumption 4. ε1, . . . , εn have a constant variance

I plot absolute residuals against fitted values
I plot absolute residuals against Xi ,j for each j

I should see that the distribution does not depend on Xi,j

I if it does, then the variance is not constant

I we call non-constant variance “heteroscedasticity”
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Checking for normal errors

This code generates absolute residual plots for constant variance:

n=500

eps = randn(n)

x = 10* rand(n)

y = x + eps

model = sm.OLS(y,x).fit()

plt.scatter(x,np.abs(model.resid))
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Checking for normal errors

This code generates absolute residual plots for non-constant
variance:

n=500

x = 10* rand(n)

eps = x*randn(n) # variance of noise depends on x

y = x + eps

model = sm.OLS(y,x).fit()

plt.scatter(x,np.abs(model.resid))
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Checking for non-constant variance
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Strategy for regression data analysis:

1. Decide: what problem(s) are you trying to solve?
I keep the problem in mind while doing the remaining steps

2. Find (or collect) useful data

3. Find a useful model
I all models are wrong (George Box)
I some models are useful

4. Check model
I how well does the model fit the data?

5. Modify model, if necessary

6. Use model to solve problem(s)
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