
Discrete Event Simulation &
Queuing Systems

ORIE 3120
Lecture 10

March 3rd and 5th

Simulation

Using the computer as our laboratory!

Implement (mathematical) model of (physical)
system on computer.

Do experiments on model to draw conclusions
about system.

Examples

• Traffic lights
• Plant breeding
• Setting prices
• Design of cryptocurrency
• Staffing (of, e.g., call centers)
• Verifying analytic results
• https://www.youtube.com/watch?v=0ZGbIKd0XrM

https://www.youtube.com/watch?v=0ZGbIKd0XrM

There are 2 kinds of simulation

• Discrete event simulation
• Discrete time simulation

• The focus in this course will be on discrete
event simulation

Overview

• Example: The Cookie Problem

• Discrete Event Simulation

• A Graphical Language

• Programming a Simulation in MS Excel

Cookie Problem (#1)

Trays of
cookies arrive
every 13.75
minutes

Oven capacity is
two trays

Oven cycle is 13.5
minutes, cannot
be interrupted

Another example

Ride sharing at an airport

Riders arrive
randomly

A queue of riders
can build up If riders wait too long,

some will find another
way home

If the driver queue is too
long, some will leave

Drivers arrive
randomly A queue of drivers

can build up

Riders & drivers are
matched

Cookie Problem (#1)

Trays of
cookies arrive
every 13.75
minutes

Oven capacity is
two trays

Oven cycle is 13.5
minutes, cannot
be interrupted

What is the average rate at which trays leave the
oven?

(a) 1 tray / 13.5 min = 0.074 trays/min
(b) 2 trays / 13.5 min = 0.148 trays/min
(c) 1 tray / 13.75 min = 0.073 trays/min
(d) 2 trays / 13.75 min = 0.145 trays/min
(e) none of the above

What is the average rate at which trays leave the
oven?

(a) 1 tray / 13.5 min = 0.074 trays/min
(b) 2 trays / 13.5 min = 0.148 trays/min
(c) 1 tray / 13.75 min = 0.073 trays/min
(d) 2 trays / 13.75 min = 0.145 trays/min
(e) none of the above

Cookie Problem (#2)

Trays of
cookies arrive
every 13.75
minutes on
average

A queue of trays
can build up due
to randomness of
arrivals

Oven cycle is 13.5
minutes, cannot
be interrupted

Oven capacity is
two trays

Time between
arrivals is
uniformly
distributed in
[10.5,17]

What is the average rate at which trays leave the
oven?

(a) 1 tray / 13.5 min = 0.074 trays/min
(b) 2 trays / 13.5 min = 0.148 trays/min
(c) 1 tray / 13.75 min = 0.073 trays/min
(d) 2 trays / 13.75 min = 0.145 trays/min
(e) none of the above

What is the average rate at which trays leave the
oven?

(a) 1 tray / 13.5 min = 0.074 trays/min
(b) 2 trays / 13.5 min = 0.148 trays/min
(c) 1 tray / 13.75 min = 0.073 trays/min
(d) 2 trays / 13.75 min = 0.145 trays/min
(e) none of the above

Cookie Problem (#3)

Trays of
cookies arrive
every 6
minutes on
average

A queue of trays
can build up due
to randomness of
arrivals

Oven capacity is
two trays

Time between
arrivals is
uniformly
distributed in
[4,8]

Oven cycle is 13.5
minutes, cannot
be interrupted

What is the average rate at which trays leave the
oven?

(a) 1 tray / 13.5 min = 0.074 trays/min
(b) 2 trays / 13.5 min = 0.148 trays/min
(c) 1 tray / 6 min = 0.167 trays/min
(d) 2 trays / 6 min = 0.333 trays/min
(e) none of the above

What is the average rate at which trays leave the
oven?

(a) 1 tray / 13.5 min = 0.074 trays/min
(b) 2 trays / 13.5 min = 0.148 trays/min
(c) 1 tray / 6 min = 0.167 trays/min
(d) 2 trays / 6 min = 0.333 trays/min
(e) none of the above

Cookie Problem (#4)

Trays of p.b.
arrive every 14
minutes on
average,
uniform over
[12,16]

Trays of c.c.
arrive every
13.5 minutes
on average

Queues of trays
can build up due
to randomness of
arrivals

Oven cycle is 13.5
minutes but
cannot be
interrupted

Oven capacity is
two trays (can be
of mixed type)

Maximum
throughput is 2
trays every 13.5
minutes

uniform over
[9,18]

What is the average rate at which trays leave the
oven?

(a) 2 trays / 13.5min = .148 trays/min
(b) 1 tray / 13.5min + 1 tray/ 14min= .145 trays / min
(c) 1 tray / 13.5 min = .074 trays/min
(d) 1 tray / 14 min = .071 trays/min
(e) none of the above

What is the average rate at which trays leave the
oven?

(a) 2 trays / 13.5min = .148 trays/min
(b) 1 tray / 13.5min + 1 tray/ 14min= .145 trays /

min
(c) 1 tray / 13.5 min = .074 trays/min
(d) 1 tray / 14 min = .071 trays/min
(e) none of the above

Point is...

Can still answer this particular question
analytically, but…

… it’s easy to simulate and get an answer!

Some questions are even harder
to answer analytically

• What is the average # of trays in queue?
• How often does the # of trays in queue exceed 5?

Answers may depend on the priority rule:
“Always fill oven” or “cook on arrival”
• Which priority rule gives the smaller average # of

trays in queue?

But again it is easy to simulate and get an answer!

Examples from ride sharing

• What fraction of riders won’t be able to get a car?
• What fraction of riders will have to wait longer

than 10 minutes to be picked up?
• What is the average price that riders will pay?
• How much money per hour will drivers earn?
• What pricing algorithm should I use to maximize

the total value created for riders and drivers?

Again easy to simulate and get an answer!

Discrete Event Simulation

• The system is described by a state.
• The state changes only at discrete points in

time, called events.
• The interval between events is called a delay,

or duration. The delay could be random.
• Events can trigger other events depending on

conditions that depend on the state.

The Cookie Problem

• What is the state of the system?
• At what points in time (events) does the state

change?
• What are the delays?
• What events could trigger other events?
• What are the conditions under which events

are triggered?

Discrete Event Simulation is
powerful.
• It models complex behavior with simple

language of “states”, “events”, “delays”,
“conditions”, and “triggers”

• It can jump in time from one event to another
• Nothing ‘interesting’ happens between events: no

change in state
• This allows it to rapidly simulate days/weeks/years

of real-time activity.
• If the state is simple (e.g. inventory counts)

then processing time and memory required
are very small.

Discrete Event Simulation can
be fast.
• Two models of semiconductor fab

• One focused on wafer-level simulation
• Kept track of each tray of wafers

• One focused on machine cycles
• Counted wafers

• Same question asked of both models
• Is there enough capacity to meet demand?

• Same answer from both models
• But one model (wafer counter) ran 10,000 X

faster

Overview

• Example: The Cookie Problem

• A Model of Behavior: Discrete Event
Simulation

• A Graphical Language

• Programming a Simulation in MS Excel

How a Discrete Event Simulation
Works
• At any point in time there is an ordered list of events scheduled to

occur in the future (the event queue).
• The state of the system is described by state variables.
• The simulation engine removes the first event from the event queue

and advances the simulation clock to the time recorded on that event.
• The function associated with that event is called.

• The function may change the values of the state variables.
• The simulation engine checks to see if any trigger conditions are

satisfied.
• If a trigger condition is satisfied, the simulation engine creates a new event

for each trigger.
• The scheduled time for the new event is the current simulation clock time

plus any delay associated with the trigger.
• The new event is inserted into the event queue in order of the event time.

• The simulation continues until there are no more events in the event
queue, or until a simulation stop time is reached.

Scheduled Events Sorted in Increasing Order of Scheduled Time

Time:
Event:

4.0
EndService

4.3
Arrival

Current Time: 3.3

… later times
… other events

How a Discrete Event Simulation
Works

Time:
Event:

4.0
EndService

4.3
Arrival

Remove Next
Scheduled
Event

Current Time: 3.3

Scheduled Events Sorted in Increasing Order of Scheduled Time

How a Discrete Event Simulation
Works

Time:
Event:

4.0
EndService

4.3
Arrival

Advance
Simulation
Clock

Current Time: 3.3

Current Time: 4.0

Scheduled Events Sorted in Increasing Order of Scheduled Time

How a Discrete Event Simulation
Works

Time:
Event:

4.0
EndService

4.3
Arrival

Execute State
Change
Function

Current Time: 4.0

Scheduled Events Sorted in Increasing Order of Scheduled Time

How a Discrete Event Simulation
Works

Time:
Event:

4.0
EndService

If Condition
Satisfied…

4.3
Arrival

Current Time: 4.0

Scheduled Events Sorted in Increasing Order of Scheduled Time

How a Discrete Event Simulation
Works

Time:
Event:

4.0
EndService

If Condition
Satisfied…

Generate
New Event(s)
with later
time(s)

4.3
Arrival

Current Time: 4.0

Scheduled Events Sorted in Increasing Order of Scheduled Time

Insert Event
into Schedule

4.3
Arrival

Current Time: 4.0

Scheduled Events Sorted in Increasing Order of Scheduled Time

How a Discrete Event Simulation
Works

Insert Event
into Schedule

4.3
Arrival

Current Time: 4.0

Scheduled Events Sorted in Increasing Order of Scheduled Time

How a Discrete Event Simulation
Works

4.3
Arrival

Current Time: 4.0

Remove Next
Scheduled
Event

Scheduled Events Sorted in Increasing Order of Scheduled Time

How a Discrete Event Simulation
Works

Repeat

… later times
… other events

How a Discrete Event
Simulation Works: Summary

Time:
Event:

4.0
EndService

4.3
Arrival

Remove Next
Scheduled
Event

Advance
Simulation
Clock

Execute State
Change
Function

If Condition
Satisfied…

Generate
New Event(s)
with later
time(s)

Insert Event
into Schedule

Current Time: 3.3

Current Time: 4.0

Scheduled Events Sorted in Increasing Order of Scheduled Time

The Simplified Cookie Problem

Trays of
cookies arrive
every 13.75
minutes on
average

A queue of trays
can build up due
to randomness of
arrivals

Oven cycle is 25
minutes but
cannot be
interrupted

Oven capacity is
two trays

Maximum
throughput is 2
trays every 25
minutes

Time between
arrivals is
uniformly
distributed in
[10.5,17]

Modeling

• State of the system
• Q = number of trays in queue (0,1, 2,…)
• P = number of trays in oven (0,1, or 2)

• Events that change system
• Arrival (Q increases)
• Start (Q decreases, P increases)
• Finish (P decreases)
• Initialize (set P and Q to initial values)

Modeling Triggers and Delays

• Start triggers Finish with delay of 25 minutes
• Call this OvenCycleTime
• OvenCycleTime = 25

• Arrival triggers Arrival with delay of 13.75
minutes, on average
• Call this InterarrivalTime
• InterarrivalTime =10.5 + Rnd()*(17-10.5)
• Rnd() is a pseudo-random number in (0,1)

Modeling Conditional Triggers

• Arrival triggers Start if P=0
• Call this condition OvenIsEmpty
• OvenIsEmpty = if(P=0,true,false)

• Finish triggers Start if Q>0
• Call this condition CookiesInQueue
• CookiesInQueue = if (Q>0,true,false)

Modeling State Changes

• Arrival: Q = Q+1
• Finish: P = 0
• Start: if Q > 2 then P = 2, else P = Q; Q = Q-P

• Start does not get triggered unless Q is at least 1
• Initialize: Q=0,P=0

Overview

• Motivation: The Cookie Problem

• A Model of Behavior: Discrete Event
Simulation

• Event Graph Language

• Programming a Simulation in MS Excel

Event Graph Language
We will use Excel drawing tools to describe
discrete event simulations using the event
graph language

BeginService

ServiceTime

Condition

NextQueue
ToConsider

EndService

Delay

Event

Event

Switch

Graph Language is for
Illustration Purposes
Graph language implements event, trigger and
delay logic of simulation

Could also implement this yourself in any
general purpose language (e.g., Python)

[Still have to implement state changes in VBA]

Next few slides uses Excel
Implementation

… but the main purpose is to serve as an
example what Discrete Event Simulation is.

The Simplified Cookie Model

CookiesInQueue

Initialize

Arrival

Start

Finish

OvenIsEmpty

InterarrivalTime

OvenCycleTime

The Simplified Cookie Model

CookiesInQueue

Initialize

Arrival

Start

Finish

OvenIsEmpty

InterarrivalTime

OvenCycleTime

Q=0;
P=0

Q=Q+1

If Q>2 then P=2, else P=Q;
Q=Q-P

P=0

=10.5+rnd()*(6.5)

=25

=if(P=0,true,false)

=if(Q>0,true,false)

First Event

Second Event

What does the event queue look
like right now?

(a) Start at t=0, Finish at t=25
(b) Start at t=0
(c) Arrival at a time randomly distributed

between 10.5 and 17
(d) Start at t=0, Arrival at a time randomly

distributed between 10.5 and 17
(e) Finish at t=25

Second Event

What does the event queue look
like right now?

(a) Start at t=0, Finish at t=25
(b) Start at t=0
(c) Arrival at a time randomly distributed

between 10.5 and 17
(d) Start at t=0, Arrival at a time randomly

distributed between 10.5 and 17
(e) Finish at t=25

Second Event

Third Event

What does the event queue look
like right now?

(a) Arrival at a time randomly distributed
between 10.5 and 17; Finish at t=25

(b) Arrival at a time randomly distributed
between 10.5 and 17; Finish at t=0

(c) Arrival at a time randomly distributed
between 10.5 and 17; Finish at a time
randomly distributed between 0 and 25

(d) Finish at a time randomly distributed
between 0 and 25

(e) Finish at t=25

Third Event

What does the event queue look
like right now?

(a) Arrival at a time randomly distributed
between 10.5 and 17; Finish at t=25

(b) Arrival at a time randomly distributed
between 10.5 and 17; Finish at t=0

(c) Arrival at a time randomly distributed
between 10.5 and 17; Finish at a time
randomly distributed between 0 and 25

(d) Finish at a time randomly distributed
between 0 and 25

(e) Finish at t=25

Third Event

Fourth Event

What does the event queue look
like right now?

(a) Arrival at time t+Uniform(10.5,17);
Finish at time 25

(b) Finish at time 25
(c) Arrival at time t+Uniform(10.5,17)
(d) Arrival at time t+Uniform(10.5,17), Start

at time t
(e) Arrival at time t+Uniform(10.5,17);

Finish at time 25, Start at time t

Fourth Event

What does the event queue look
like right now?

(a) Arrival at time t+Uniform(10.5,17);
Finish at time 25

(b) Finish at time 25
(c) Arrival at time t+Uniform(10.5,17)
(d) Arrival at time t+Uniform(10.5,17), Start

at time t
(e) Arrival at time t+Uniform(10.5,17);

Finish at time 25, Start at time t

Fourth Event

Fifth Event

Graph Rules

• There must be one event node that has no incoming
arcs (triggers): this is the first event

• Nodes must be connected (use MS Excel connectors).
• Condition nodes trigger all outgoing arcs, if condition

is true
• There are no “yes/no” branches in this language
• You will need two condition nodes to model a branching

process (one for the “yes” and one for the “no”)
• Events can be triggered only by other events,

through condition nodes and delay nodes

Yes-No Branches are not allowed
Instead use two conditions

Event1

Event2

Is
Queue

?
Event3

Yes

No

Event1

Event2

Is
Queue

?

Event3

Is Not
Queue

?

In Recitation & HW, you will get
hands-on experience
• First, you will create an MS Excel style event

graph to model a problem

• Then, you will program and run the
simulation model.

Overview

• Motivation: The Cookie Problem

• A Model of Behavior: Discrete Event
Simulation

• A Graphical Language

• Programming a Simulation in MS Excel

Now we’ll focus on this
particular Excel implementation

• Use Visual Basic for Applications (VBA) in Excel
• Use simulation template file to start

• “SimplifiedCookie.xls”
• Contains code to analyze graph and run simulation
• Simplified model is already coded

Building the Graphical Model

Model in Excel

Use Tokens in Text Strings

• Template code ignores shape
• Use tokens to indicate type of node

• = for events
• + for delays
• ? for conditions

Model With Tokens

Analyze and Run Dialog

First build
the model
and check
for errors

Debug:
run one
event at
a time

Switch to view different sheets
(Model, Log, Trace) as desired

Set simulation
duration

Run until
done

English Interpretation on Sheet
“SimLog”

Coding the Components

Switch to Visual Basic Editor
(<Alt><F11>)

Development Code: Do not modify
(all variables and objects beginning
with “Sim” are reserved)

User Code: Put your code here. Add
more modules if you like

You Write the Code:
Declare Your State Variables

Q is the variable tracking the number of trays in the
queue.

Global means it is available for use in other modules.

P is the number of trays in the oven.

'Declare your variables here
Global Q As Integer
Global P As Integer
Global CumulativeCompletions As Integer

CumulativeCompletions is a statistic we want to
compute; it is not essential to the model.

Write the Event Functions
(to change the state)

Function Initialize()
'every simulation should have a function
which initializes the state variables
Q = 0
P = 0
CumulativeCompletions = 0
End Function

Function Arrival()
'this represents the arrival of a tray of cookies
Q = Q + 1
End Function

Function Start()
'this function represents the start of the oven cycle
If Q > 2 Then P = 2 Else P = Q
Q = Q - P
End Function

Function Finish()
'this function represents the end of the oven cycle
CumulativeCompletions = CumulativeCompletions + P
P = 0
End Function

Write the Condition Functions:
to Test the State

Function CookiesInQueue() As Integer
'this illustrates the if...then...else statement
If Q > 0 Then CookiesInQueue = True Else CookiesInQueue = False
End Function

Function OvenIsEmpty() As Integer
If P = 0 Then OvenIsEmpty = True Else OvenIsEmpty = False
End Function

Condition functions must return an
integer:
True = -1; False = 0

Question

Which of these lines of code returns True if N < 5
inside of a function called F?

(a) If N<5 Then Return True Else Return False
(b) If N<5 Then F=True Else F=False
(c) If N<5 Return True Else Return False
(d) If N<5 F=True Else F=False
(e) None of the above

Question

Which of these lines of code returns True if N < 5
inside of a function called F?

(a) If N<5 Then Return True Else Return False
(b) If N<5 Then F=True Else F=False
(c) If N<5 Return True Else Return False
(d) If N<5 F=True Else F=False
(e) None of the above

Question

Which of these lines of code returns True if N < 5
inside of a function called F?

(a) If N<5 Then F=-1 Else F=0
(b) If N<5 Then F=1 Else F=0
(c) If N<5 Then F=1 Else F=-1
(d) If N<5 Then F=0 Else F=-1
(e) None of the above

Question

Which of these lines of code returns True if N < 5
inside of a function called F?

(a) If N<5 Then F=-1 Else F=0
(b) If N<5 Then F=1 Else F=0
(c) If N<5 Then F=1 Else F=-1
(d) If N<5 Then F=0 Else F=-1
(e) None of the above

Write the Code to Generate
Delays and Durations

Function OvenCycleTime() As Variant
'functions that return a value for time should use the Variant data type
OvenCycleTime = 25
End Function

Function InterarrivalTime() As Variant
'this function returns a random interarrival time
Dim duration As Variant 'local variable declaration; duration will be the length of the
interarrival time
duration = 10.5 + Rnd() * 6.5 'duration will be a random number uniformly distributed
between 10.5 and 17.
InterarrivalTime = duration 'this is how you return a value
End Function

Question

How do I create a random variable that is Uniformly
distributed between 5 and 7?

(a) duration = 5 + 7*Rnd()
(b) duration = 7 + 5*Rnd()
(c) duration = 5 + 2*Rnd()
(d) duration = 2 + 5*Rnd()
(e) None of the above

Debugging the Model

Debug: Step Through Model

Define Ranges to Store
Variables

Write Code to Store Variables

Function OutputVariables()

Worksheets("Sheet1").Range("Number_of_Trays_in_Queue").Value = Q

Worksheets("Sheet1").Range("Number_of_Trays_in_Oven").Value = P

Worksheets("Sheet1").Range("Cumulative_Completions").Value = CumulativeCompletions

End Function

Your range names Your state variables

Function Initialize()
'every simulation should have a function which initializes the state variables
Q = 0
P = 0
CumulativeCompletions = 0
OutputVariables
End Function

Function Arrival()
'this represents the arrival of a tray of cookies
Q = Q + 1
OutputVariables
End Function

Function Start()
'this function represents the start of the oven cycle
If Q > 2 Then P = 2 Else P = Q
Q = Q - P
OutputVariables
End Function

Function Finish()
'this function represents the end of the oven cycle
CumulativeCompletions = CumulativeCompletions + P
P = 0
OutputVariables
End Function

Modify Code to Store Variables
After Each Event

Input/Output

• If you want to read input data from the
spreadsheet (eg. Initial parameter settings),
use ranges in a similar way.

• Now, single step through your simulation
watching your variables change with each
event.
• The more variables you track, the easier it will be

to debug your model.

First Event

Second Event

Third Event

Fourth Event

Fifth Event

Running the Model,
Collecting its Output

Creating a Trace

• A trace is a history of your state variables after each
event

• The simulator automatically writes out whatever is in
the range called “SimTraceRange” before and after
each event
• Stored on separate lines of sheet “SimTrace”

• It also writes out the labels found in the range called
“SimTraceLabelRange” at the head of this list.

• You must define these two ranges.

Define Trace and Label Ranges

This is how a trace looks.

There are 2 rows for
each event: begin and
end. The 2nd row
captures time spent in
state (“Elapsed time”)

This is how a trace looks.

To see how a variable changes over time, make an X-Y scatter
plot. Get X from “Current Time” and Y from the variable you
want to plot (e.g., “Number of Trays in Queue”)

Analyzing the Output

X-Y Scatter Plot

Statistics Computed After Each Run

• Statistics inserted into first four lines of trace output.
• Four statistics computed (Min, Max, Mean, Std. Dev.)

even if they don’t make sense for your particular
state variables

One Problem

• If you copy and paste a node or a connector,
MS Excel does not give it a new name.

• Since the code uses the name of the
autoshape to identify it, the code gets
confused.

• Be sure to create each node from the shapes
menu fresh, to make sure it has a unique
name.

Overview

• Motivation: The Cookie Problem

• A Model of Behavior: Discrete Event
Simulation

• A Graphical Language

• Programming a Simulation in MS Excel

Key Lessons

• Discrete event simulation is a flexible way to
describe a system’s behavior.

• Basic simulations can be implemented in
Excel, but require user coding in VBA.

• The structure of a simulation model can be
described with an event graph.

• Building, running, and analyzing a simulation
model is a structured process.

