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EOQ model: demand occurs at a fixed known rate



Today

Random demand, multiple periods

(non-perishable goods)



Here’s what demand looks like over time when the

demand rate is random



Recall goal: keeping costs low

We usually consider 3 kinds of costs when managing inventory:

• Holding costs

• Order costs

• Penalty costs (these were 0 in EOQ, because there were

no stock-outs — we could determine exactly when to

order so that inventory was always nonnegative)



Model of random demand

λt = mean of demand in time t

σ2
t = variance of demand in time t

• Demand is independent in each time period

• These two parameters are a reasonable way to

characterize demand

• Most of our analysis will assume λt and σ2
t don’t change

with t. When we do this, we’ll write them as λ and σ2.



Notation

Dt = demand in time t

C (t) = total demand by time t

C (t) = D1 + D2 + . . . + Dt



Example

• Mean demand is λ = 30 units per week

• Variance of the weekly demand is σ2 = 15

• Suppose the lead time is τ = 5 weeks.

What is E[C (τ)]?

1. 15× 5 = 75

2. 30× 5 = 150

3. 15× 52 = 375

4. 30× 52 = 750

5. 30/2 = 15



Example

• Mean demand is λ = 30 units per week

• Variance of the weekly demand is σ2 = 15

• Suppose the lead time is τ = 5 weeks.

What is Var[C (τ)]?

1. 15× 5 = 75

2. 30× 5 = 150

3. 15× 52 = 375

4. 30× 52 = 750

5. 30/2 = 15



(Q,R) policy

• The policies we will consider are (Q,R) policies.

• In a (Q,R) policy, we set two parameters:

• the replenishment inventory level R

• the size of each replenishment order Q.

• The EOQ model also had these parameters

In EOQ we could calculate one from the other because the demand

was deterministic, and we could just aim for having 0 inventory

when the new order arrived

• In the (Q,R) model will set Q and R to deal with

random demand, also including penalties for having not

enough inventory



Here’s how a (Q,R) policy works



Here’s how a (Q,R) policy works



Continuous review can be a lot of work in the real

world

• (Q,R) policies assume the inventory level is reviewed

continuously

• To implement we either must have:

• A computer system with point-of-sale scanners that

updates inventory levels after every sale

• A person assigned to monitor inventory every hour of

every day

• As soon as we run out, we have to order more

• This can be annoying, and a lot of work



We allow stockouts, but pay a penalty



Intuitively, here’s what we are doing when we set Q

and R



Bigger R means more inventory, and fewer stockouts



Bigger R means more inventory, and fewer stockouts

The average value of these minimum inventory values is called

the “safety stock” and is indicated by “s”

More safety stock reduces stockouts.



Bigger Q means more inventory and fewer orders



Bigger Q means more cycle stock and fewer orders

The inventory in excess of s is called the “cycle stock”

This stock is depleted at the end of the cycle, and replenished

at the beginning of the cycle



Intuitively, here’s what we are doing when we set Q

and R

• Q controls the tradeoff between order frequency and

average inventory levels.

If Q is large, there are fewer orders and larger inventory

levels.

• R controls the tradeoff between inventory levels and

likelihood of stockouts.

If R is large, there is a low probability of stocking out,

but the average inventory level will be higher.



Intuitively, here’s what we are doing when we set Q

and R

• Q affects cycle stock, the inventory held to avoid

excessive replenishment costs.

• R affects safety stock, the inventory held to avoid

stockouts.

• The EOQ model kept cycle stock but no safety stock.



Optimizing the total cost

We will derive an expression for the expected cost per unit

time in terms of our decision variables Q and R , and then find

optimal values of Q and R to minimize this cost.



We’ll model our cost like this

• Ordering cost: An order for Q units costs K + cQ (same

as EOQ)

• Holding cost: Holding cost are incurred at a rate of h per

unit inventory per unit time (same as EOQ)

• Penalty: If we run out of inventory, we place the demand

we cannot satisfy on backorder and pay a cost of p for

each backordered unit (this is new)

Note that when items are backordered, our inventory position

is negative, and there is no holding cost



We model our demand like this

Dt = demand in time t, independent across t

E[Dt ] = λ (same for every t)

Var[Dt ] = σ2 (same for every t)

C (t) = D1 + D2 + . . . + Dt



Order Cost

• To compute the order cost, we want to know the number

of orders per unit time

• This will be more complex than in EOQ because the time

between orders varies



Order Cost

• I (t) = inventory on hand at time t

• O(t) = number of orders before time t

• I (t) = I (0) + Q × O(t)− C (t)

• O(t) =
C (t) + I (t)− I (0)

Q

• E(O(t)) =
λt + E[I (t)]− I (0)

Q

• E(O(t)/t) = λ/Q +
E[I (t)]− I (0)

tQ
→ λ/Q (as t →∞)

• This is the expected number of orders per unit time in the

long run — we will call it the cycle frequency

We define T = Q/λ and call it the (expected) cycle

period or cycle length



Expected Order Cost per Unit Time

Each cycle requires one order, and has a cost of K + cQ.

Therefore, the expected cost of ordering per unit time is

(K + cQ)× (λ/Q) = Kλ/Q + cλ



Expected Holding Cost per Unit Time



Expected Holding Cost per Unit Time



Expected Holding Cost per Unit Time



Expected Holding Cost per Unit Time



Expected Holding Cost per Unit Time

Amazingly enough, the long-run average inventory level is also

Q/2 + s when demand is stochastic

Knowing why is outside of the scope of this course.

Unfortunately, explaining it in a compact way requires tools from more

advanced courses.



What is the safety stock?

What is the safety stock s?

1. R − λT
2. Q − λT
3. R − λτ
4. Q − λτ
5. Q/2



Expected Holding Cost per Unit Time

The (long-run) average inventory level is:

s +
Q

2
= R − λτ +

Q

2
.



Expected Holding Cost per Unit Time

• Next, we find the expected holding cost per unit time by

multiplying the long-run average inventory by the holding

cost per unit and per unit time.

• The problem is that we have not restricted the inventory

to positive values, and our next step assumes positive

values of inventory at all times!

• However, stockouts and the resulting backorders are

usually rare, so this approximation is not likely to result in

major errors.



Expected Holding Cost per Unit Time

Our approximation to holding cost assumes we pay negative

holding costs here, where we actually pay zero holding costs.



Expected Holding Cost per Unit Time

h
(
R − λτ +

Q

2

)+
≈ h
(
R − λτ +

Q

2

)
Our approximation to holding cost will be good enough

because we will allow only a small number of stockouts.



Stockout Cost

• While we allow backorders, they are undesirable and we

should limit them.

• To do this, we include a penalty cost in the model for

each stockout.

• Each unit of demand that cannot be met from stock will

incur a penalty cost of p.



How many stockout incidences we expect to see (per

unit time)?

• We are exposed to stockout risk during the lead time.

• Before placing the replenishment order, we have at least

R units in stock, and there is no risk of running out.

• Once the replenishment order is placed, we know that we

will have to wait a known and fixed amount of time

before any more stock comes in. We get a stockout if the

demand over the lead time exceeds the reorder

quantity R .



Stockout Cost

• Let N be the number of items short in a particular cycle.

• We emphasize that N is a function of R by writing it as

N(R).

• Let t be the time when inventory hits R in this cycle.

• S = Dt+1 + Dt+2 + . . . + Dt+τ is the demand during the

lead time in this cycle

• N(R) = max{S − R , 0} = (S − R)+ (for this particular

cycle)



Stockout Cost

• Assuming demand is independent and identically

distributed (over time), we have

S = C (τ) (the total amount of demand in τ time units)

• Now we can talk about the expected number of stock

outs in any cycle (because demand is time independent).

We denote this by n(R):

n(R) = EN(R) = E[(S − R)+] = E[(C (τ)− R)+]

• So the expected number of units short per unit time is

n(R)/E(length of a cycle) =

n(R)/T =

n(R)/(Q/λ) = λn(R)/Q

• Stockout cost: penalty for a stockout is p per unit.

• Thus, the expected total stockout cost per unit time is

pλn(R)

Q
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Stockout Cost

• Assuming demand is independent and identically

distributed (over time), we have

S = C (τ) (the total amount of demand in τ time units)

• Now we can talk about the expected number of stock

outs in any cycle (because demand is time independent).

We denote this by n(R):

n(R) = EN(R) = E[(S − R)+] = E[(C (τ)− R)+]

• So the expected number of units short per unit time is

n(R)/E(length of a cycle) = n(R)/T =

n(R)/(Q/λ) = λn(R)/Q

• Stockout cost: penalty for a stockout is p per unit.

• Thus, the expected total stockout cost per unit time is

pλn(R)

Q



Total Cost

The total cost per unit time is found by summing the previous

expressions:

G (Q,R) =
Kλ

Q
+ cλ︸ ︷︷ ︸

expected order cost per unit time

+ h
(
R − λτ +

Q

2

)
︸ ︷︷ ︸

expected holding cost per unit time (≈)

+
pλn(R)

Q︸ ︷︷ ︸
expected stockout cost per unit time

This is what we want to minimize

The decision variables are Q and R
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Total Cost

The total cost per unit time is found by summing the previous

expressions:
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+ cλ︸ ︷︷ ︸
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Optimizing G (Q,R)

Find critical points:
∂G (Q,R)

∂Q
= 0 and

∂G (Q,R)

∂R
= 0.

This will be a minimizer, because the cost is convex (no

proof).



Optimizing G (Q,R)

G (Q,R) =
Kλ

Q
+ cλ + h

(
R − λτ +

Q

2

)
+

pλn(R)

Q
∂G (Q,R)

∂R
=



Optimizing G (Q,R)

G (Q,R) =
Kλ

Q
+ cλ + h

(
R − λτ +

Q

2

)
+

pλn(R)

Q
∂G (Q,R)

∂R
= h +

pλ

Q

dn(R)

dR



What is
dn(R)

dR
?

Recall: n(R) = E[(C (τ)− R)+]

dn(R)

dR
=

d

dR
E[(C (τ)− R)+]

= E[
d

dR
(C (τ)− R)+] (under certain assumptions)

= E[−1{C(τ)>R}]

= −P(C (τ) > R)

= −(1− F (R))

= F (R)− 1

where F (·) is the cdf of C (τ), i.e., F (x) = P(C (τ) ≤ x).



What is
dn(R)

dR
?

Recall: n(R) = E[(C (τ)− R)+]

dn(R)

dR
=

d

dR
E[(C (τ)− R)+]

= E[
d

dR
(C (τ)− R)+] (under certain assumptions)

= E[−1{C(τ)>R}]

= −P(C (τ) > R)

= −(1− F (R))

= F (R)− 1

where F (·) is the cdf of C (τ), i.e., F (x) = P(C (τ) ≤ x).



Optimizing G (Q,R)

G (Q,R) =
Kλ

Q
+ cλ + h

(
R − λτ +

Q

2

)
+

pλn(R)

Q
∂G (Q,R)

∂R
= h +

pλ

Q

dn(R)

dR

= h +
pλ

Q
(F (R)− 1).



Optimizing G (Q,R)

∂G (Q,R)

∂R
= h +

pλ

Q
(F (R)− 1)

So
∂G (Q,R)

∂R
= 0 means R is so that

F (R) = −h Q

pλ
+ 1.



Optimizing G (Q,R)

When we know the inverse of F (x) = P(C (τ) ≤ x), then we

have an explicit expression for R such that
∂G (Q,R)

∂R
= 0:

R = F−1(1− h
Q

pλ
)

provided we know Q.



Optimizing G (Q,R)

When we know the inverse of F (x) = P(C (τ) ≤ x), then we

have an explicit expression for R such that
∂G (Q,R)

∂R
= 0:

R = F−1(1− h
Q

pλ
)

provided we know Q.



Optimizing G (Q,R)

When we do not know the inverse of F (x) = P(C (τ) ≤ x),

then we can still use bisection search to find R such that

F (R) = 1− h
Q

pλ

provided we know Q.
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When we do not know the inverse of F (x) = P(C (τ) ≤ x),
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Optimizing G (Q,R)

G (Q,R) =
Kλ

Q
+ cλ + h

(
R − λτ +

Q

2

)
+

pλn(R)

Q
∂G (Q,R)

∂Q
= −Kλ

Q2
+

h

2
− pλn(R)

Q2



Optimizing G (Q,R)

∂G (Q,R)

∂Q
= −Kλ

Q2
+

h

2
− pλn(R)

Q2
= 0

Solving for Q:

Q2 =
2

h

(
Kλ + pλn(R)

)
So

Q =

√
2

h

(
Kλ + pλn(R)

)
provided we know R (or more precisely n(R)).
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Optimizing G (Q,R)

Want Q and R so that

F (R) = 1− h
Q

pλ

Q =

√
2

h

(
Kλ + pλn(R)

)
are true simultaneously.

Solve iteratively!
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(using bisection search, or F−1 if you know it.)
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Optimizing G (Q,R)

Etcetera! Keep going around in circles!



Optimizing G (Q,R)

Stop when Qn+1 ≈ Qn and Rn+1 ≈ Rn (up to some specified

accuracy)



Done!

We developed a method to find optimal Q and R in this

model, with assumptions

• Holding costs: rate of h

• Order costs: fixed component K and variable component

c

• Penalty costs: p per unit stock out



Done?

We developed a method to find optimal Q and R in this

model, with assumptions

• Holding costs: rate of h

• Order costs: fixed component K and variable component

c

• Penalty costs: p per unit stock out

How to specify p?


