Service Levels in \((Q, R)\) Systems

\(p\) depends on multiple factors:

- Impact of stockout on future sales
- Loss of goodwill
- Corporate mindset:
 - customer-focused vs. cost-focused
Service Levels in \((Q, R)\) Systems

- When we minimize cost in the \((Q, R)\) model, the parameter \(p\) controls how often we stock out.
- Often it is more intuitive and useful to specify a desired minimum service level instead of \(p\).
- Roughly speaking, “service level” is a measure of how often we satisfy demand from in-stock inventory.
Definition of Service Level

- There are multiple ways of defining the “service level” precisely. We will use the following definition, also called the “fill rate”
- The fill rate is the percentage of demand that is satisfied from stock.
- Let β be the desired fill rate.
Shortage Rate

\[n(R) = \text{expected number of units short per cycle} \]
\[Q = \text{expected number of units demanded per cycle} \]

Over the long run, the fraction of demand that stocks out is

\[\text{shortage rate} = \frac{n(R)}{Q} \]
The fill rate is 1 minus this amount:

\[\text{fill rate} = 1 - \text{shortage rate} = 1 - \frac{n(R)}{Q} \]

We want this to be \(\geq \beta \).
What is the fill rate in EOQ?

1. 0
2. 1
3. $\frac{1}{2}$
4. $\frac{Q}{\lambda}$
5. $\frac{\tau}{T}$
Achieving a Fill Rate

To achieve a fill rate of β, we solve for the desired $n(R)$:

$$n(R) = (1 - \beta)Q.$$
Achieving a Fill Rate

If we have inverse of \(n(R) \) we can use this inverse to calculate \(R \), otherwise we can again use bisection search to find \(R \) such that \(n(R) = (1 - \beta)Q \) (because \(n(R) \) is nonincreasing in \(R \)).
If we have inverse of \(n(R) \) we can use this inverse to calculate \(R \), otherwise we can again use bisection search to find \(R \) such that \(n(R) = (1 - \beta)Q \) (because \(n(R) \) is nonincreasing in \(R \)). Note that we (again) need \(Q \) to determine \(R \)!
If we have inverse of $n(R)$ we can use this inverse to calculate R, otherwise we can again use bisection search to find R such that $n(R) = (1 - \beta)Q$ (because $n(R)$ is nonincreasing in R). Note that we (again) need Q to determine R!

But now R does not depend on p (it now depends on β instead).
We want to find R such that $n(R)$ is within ε of $(1 - \beta)Q$.

- Set $L = 0$.
- Find an integer U large enough that $n(U) \leq (1 - \beta)Q$. To do this, guess at U, check $n(R)$, and keep increasing U until $n(R) \leq (1 - \beta)Q$.
- While $U - L > \varepsilon$:
 - Choose $M = (L + U)/2$
 - If $n(R) \leq (1 - \beta)Q$, set $U = R$
 - If $n(R) > (1 - \beta)Q$, set $L = R$

Set our final value to $R = U$.
Same idea as before: iteratively finding R and Q

We will once again find an iterative procedure for finding R and Q.

We now know how to find R given a value Q (using β, not p). How about find Q given a value of R?
Once we have R, here is how we get Q

- Previously, Q was calculated from R and the other parameters, including p:
 \[Q = \sqrt{\frac{2}{h}} \left(K\lambda + p\lambda n(R) \right) \]
 (slide 54 of lecture 9)
- We now don’t have p — how to get around this?
Once we have R, here is how we get Q

- Previously, Q was calculated from R and the other parameters, including p:
 \[
 Q = \sqrt{\frac{2}{h} \left(K\lambda + p\lambda n(R) \right)}
 \]
 (slide 54 of lecture 9)

- We now don’t have p — how to get around this?

- For a given R and Q, there is an implicitly defined p. Recall:
 \[
 F(R) = 1 - \frac{Qh}{p\lambda}
 \]
 (slide 49 of lecture 9).
Once we have R, here is how we get Q

Recall: $F(R) = 1 - \frac{Qh}{p\lambda}$ (slide 49 of lecture 9).

Solve for p:

$$p = \frac{Qh}{\lambda(1 - F(R))}$$

and use this in the equation for $Q = \sqrt{\frac{2}{h} \left(K\lambda + p\lambda n(R) \right)}$ (slide 54 of lecture 9):

$$Q = \sqrt{\frac{2}{h} \left(K\lambda + \frac{Qh}{\lambda(1 - F(R))}\lambda n(R) \right)}$$
Once we have R, here is how we get Q

$$Q = \sqrt{\frac{2}{h} \left(K\lambda + \frac{Qh}{\lambda(1 - F(R))}\lambda n(R) \right)}$$

Now we have to solve for Q:

$$Q^2 = \frac{2}{h} \left(K\lambda + \frac{Qh}{\lambda(1 - F(R))}\lambda n(R) \right)$$

$$Q^2 - \frac{2n(R)}{1 - F(R)} Q - \frac{2K\lambda}{h} = 0$$

So

$$Q = \frac{n(R)}{1 - F(R)} + \sqrt{\left(\frac{n(R)}{1 - F(R)} \right)^2 + \frac{2K\lambda}{h}}.$$
Iterative Procedure for Finding Q and R for a given fill rate β

- Find $Q_0 = EOQ$
- Find R_0 from $n(R_0) = (1 - \beta)Q_0$ [using bisection search]
- Plug R_0 into the equation for Q to get Q_1.
 [use equation at bottom of previous slide. In that formula, use $n(R_0) = (1 - \beta)Q_0$.]
- Find R_1 from $n(R_1) = (1 - \beta)Q_1$ [using bisection search]
- etc.
- Stop when $R_{n+1} \approx R_n$ (stop when the R_{n+1} and R_n both give the same value when rounded to the nearest integer)
Iterative Procedure for Finding Q and R for a given fill rate β — Summary

- Lots of ugly formulas!
- Point is:

 Can start with $Q_0 = \text{EOQ}$.

 - A value for Q and β determines a value for R ($\rightarrow R_0$).
 - A value for Q and for R determines an (implicit) value for p.
 - A value for R and p determines a (new) value for Q ($\rightarrow Q_1$).
 - Rinse and repeat.
Special Case: Normally Distributed Demand

Computing Q, R policies for most demand distributions is a lot of work.

You need to be able to calculate:

$$F(R) = P(C(\tau) \leq R)$$

and

$$n(R) = E[(C(\tau) - R)^+]$$

and then repeatedly use bisection search to find the value of R.
Special Case: Normally Distributed Demand

When D_1, D_2, \ldots are i.i.d. normally distributed with mean λ and variance σ^2:

$C(\tau)$ is distributed

1. Normal with mean $\lambda\tau$ and variance $\sigma^2\tau$
2. Normal with mean $\lambda\tau$ and variance $\sigma^2\tau^2$
3. Normal with mean $\lambda\tau^2$ and variance $\sigma^2\tau^2$
4. Poisson with mean $\lambda\tau$ and variance $\sigma^2\tau^2$
5. Poisson with mean $\lambda\tau^2$ and variance $\sigma^2\tau^2$
So we can use this for cdf of $C(\tau)$:

$$
\mathbb{P}(C(\tau) \leq x) = \mathbb{P}
\left(\frac{C(\tau) - \lambda \tau}{\sigma} \leq \frac{x - \lambda \tau}{\sigma} \right)
= \Phi \left(\frac{x - \lambda \tau}{\sigma} \right)
$$

where $\Phi(\cdot)$ is the cdf of the standard normal.
What about $n(R) = E[(C(\tau) - R)^+]$?
What about $n(R) = E[(C(\tau) - R)^+]$?

Can interpret this as the expected cost for the newvendor when...
Special Case: Normally Distributed Demand

What about \(n(R) = E[(C(\tau) - R)^+] \)?

Can interpret this as the expected cost for the newvendor when...

- demand is \(C(\tau) \)
- inventory level is \(R \) (this was \(Q \) in Newsvendor)
- \(c_u = 1, \ c_o = 0 \)
Special Case: Normally Distributed Demand

What about \(n(R) = E[(C(\tau) - R)^+] \)?

Can interpret this as the expected cost for the newvendor when...

- demand is \(C(\tau) \)
- inventory level is \(R \) (this was \(Q \) in Newsvendor)
- \(c_u = 1, \ c_o = 0 \)

Using the formula from last slide Newsvendor Lecture:

\[
n(R) = -\sigma \sqrt{\tau} (z \Phi(-z) - \phi(z))
\]

where \(z = \frac{R - \lambda \tau}{\sigma \sqrt{\tau}} \).