Practical Tools for OR, ML and DS

 Lecturfe $9 \frac{1}{2}$: Inventory \#3 (Q, R)-Policies in .February 27th, 2020

Service Levels in (Q, R) Systems

p depends on multiple factors:

- Impact of stockout on future sales
- Loss of goodwill
- Corporate mindset: customer-focused vs. cost-focused

Service Levels in (Q, R) Systems

- When we minimize cost in the (Q, R) model, the parameter p controls how often we stock out.
- Often it is more intuitive and useful to specify a desired minimum service level instead of p.
- Roughly speaking, "service level" is a measure of how often we satisfy demand from in-stock inventory.

Definition of Service Level

- There are multiple ways of defining the "service level" precisely. We will use the following definition, also called the "fill rate"
- The fill rate is the percentage of demand that is satisfied from stock.
- Let β be the desired fill rate.

Shortage Rate

$n(R)=$ expected number of units short per cycle $Q=$ expected number of units demanded per cycle

Over the long run, the fraction of demand that stocks out is

$$
\text { shortage rate }=\frac{n(R)}{Q}
$$

Fill Rate

The fill rate is 1 minus this amount:

$$
\text { fill rate }=1-\text { shortage rate }=1-\frac{n(R)}{Q}
$$

We want this to be $\geq \beta$.

What is the fill rate in EOQ?

1. 0
2. 1
3. $\frac{1}{2}$
4. Q / λ
5. τ / T

Achieving a Fill Rate

To achieve a fill rate of β, we solve for the desired $n(R)$:

$$
n(R)=(1-\beta) Q
$$

Achieving a Fill Rate

If we have inverse of $n(R)$ we can use this inverse to calculate R, otherwise we can again use bisection search to find R such that $n(R)=(1-\beta) Q$ (because $n(R)$ is nonincreasing in R).

Achieving a Fill Rate

If we have inverse of $n(R)$ we can use this inverse to calculate R, otherwise we can again use bisection search to find R such that $n(R)=(1-\beta) Q$ (because $n(R)$ is nonincreasing in R).

Note that we (again) need Q to determine R !

Achieving a Fill Rate

If we have inverse of $n(R)$ we can use this inverse to calculate R, otherwise we can again use bisection search to find R such that $n(R)=(1-\beta) Q$ (because $n(R)$ is nonincreasing in R).

Note that we (again) need Q to determine R !
But now R does not depend on p (it now depends on β instead).

Bisection search to find R

We want to find R such that $n(R)$ is within ε of $(1-\beta) Q$.

- Set $L=0$.
- Find an integer U large enough that $n(U) \leq(1-\beta) Q$.

To do this, guess at U, check $n(R)$, and keep increasing U until $n(R) \leq(1-\beta) Q$.

- While $U-L>\varepsilon$:
- Choose $M=(L+U) / 2$
- If $n(R) \leq(1-\beta) Q$, set $U=R$
- If $n(R)>(1-\beta) Q$, set $L=R$

Set our final value to $R=U$

Same idea as before: iteratively finding R and Q

We will once again find an iterative procedure for finding R and Q.

We now know how to find R given a value Q (using β, not p).
How about find Q given a value of R ?

Once we have R, here is how we get Q

- Previously, Q was calculated from R and the other parameters, including p :
$Q=\sqrt{\frac{2}{h}(K \lambda+p \lambda n(R))}$ (slide 54 of lecture 9)
- We now don't have p - how to get around this?

Once we have R, here is how we get Q

- Previously, Q was calculated from R and the other parameters, including p :
$Q=\sqrt{\frac{2}{h}(K \lambda+p \lambda n(R))}$ (slide 54 of lecture 9)
- We now don't have p - how to get around this?
- For a given R and Q, there is an implicitly defined p. Recall:
$F(R)=1-\frac{Q h}{p \lambda}$ (slide 49 of lecture 9).

Once we have R, here is how we get Q

Recall: $F(R)=1-\frac{Q h}{p \lambda}$ (slide 49 of lecture 9).
Solve for p :
$p=\frac{Q h}{\lambda(1-F(R))}$
and use this in the equation for $Q=\sqrt{\frac{2}{h}(K \lambda+p \lambda n(R))}$ (slide 54 of lecture 9):
$Q=\sqrt{\frac{2}{h}\left(K \lambda+\frac{Q h}{\lambda(1-F(R))} \lambda n(R)\right)}$

Once we have R, here is how we get Q

$$
Q=\sqrt{\frac{2}{h}\left(K \lambda+\frac{Q h}{\lambda(1-F(R))} \lambda n(R)\right)}
$$

Now we have to solve for Q :

$$
\begin{aligned}
& Q^{2}=\frac{2}{h}\left(K \lambda+\frac{Q h}{\lambda(1-F(R))} \lambda n(R)\right) \\
& Q^{2}-\frac{2 n(R)}{1-F(R)} Q-\frac{2 K \lambda}{h}=0
\end{aligned}
$$

So

$$
Q=\frac{n(R)}{1-F(R)}+\sqrt{\left(\frac{n(R)}{1-F(R)}\right)^{2}+\frac{2 K \lambda}{h}} .
$$

Iterative Procedure for Finding Q and R for a given

 fill rate β- Find $Q_{0}=E O Q$
- Find R_{0} from $n\left(R_{0}\right)=(1-\beta) Q_{0}$ [using bisection search]
- Plug R_{0} into the equation for Q to get Q_{1}. [use equation at bottom of previous slide. In that formula, use $n\left(R_{0}\right)=(1-\beta) Q_{0}$.]
- Find R_{1} from $n\left(R_{1}\right)=(1-\beta) Q_{1}$ [using bisection search]
- etc.
- Stop when $R_{n+1} \approx R_{n}$ (stop when the R_{n+1} and R_{n} both give the same value when rounded to the nearest integer)

Iterative Procedure for Finding Q and R for a given fill rate β - Summary

- Lots of ugly formulas!
- Point is:

Can start with $Q_{0}=E O Q$.

- A value for Q and β determines a value for $R\left(\rightarrow R_{0}\right)$.
- A value for Q and for R determines an (implicit) value for p.
- A value for R and p determines a (new) value for Q $\left(\rightarrow Q_{1}\right)$.
- Rinse and repeat.

Special Case: Normally Distributed Demand

Computing Q, R policies for most demand distributions is a lot of work

You need to be able to calculate:
$F(R)=P(C(\tau) \leq R)$
and
$n(R)=E\left[(C(\tau)-R)^{+}\right]$
and then repeatedly use bisection search to find the value of R.

Special Case: Normally Distributed Demand

When D_{1}, D_{2}, \ldots are i.i.d. normally distributed with mean λ and variance σ^{2} :
$C(\tau)$ is distributed

1. Normal with mean $\lambda \tau$ and variance $\sigma^{2} \tau$
2. Normal with mean $\lambda \tau$ and variance $\sigma^{2} \tau^{2}$
3. Normal with mean $\lambda \tau^{2}$ and variance $\sigma^{2} \tau^{2}$
4. Poisson with mean $\lambda \tau$ and variance $\sigma^{2} \tau^{2}$
5. Poisson with mean $\lambda \tau^{2}$ and variance $\sigma^{2} \tau^{2}$

Special Case: Normally Distributed Demand

So we can use this for cdf of $C(\tau)$:
$\mathbb{P}(C(\tau) \leq x)=\mathbb{P}\left(\frac{C(\tau)-\lambda \tau}{\sigma} \leq \frac{x-\lambda \tau}{\sigma}\right)=\Phi\left(\frac{x-\lambda \tau}{\sigma}\right)$
where $\Phi(\cdot)$ is the cdf of the standard normal.

Special Case: Normally Distributed Demand

What about $n(R)=E\left[(C(\tau)-R)^{+}\right]$?

Special Case: Normally Distributed Demand

What about $n(R)=E\left[(C(\tau)-R)^{+}\right]$?
Can interpret this as the expected cost for the newvendor when...

Special Case: Normally Distributed Demand

What about $n(R)=E\left[(C(\tau)-R)^{+}\right]$?
Can interpret this as the expected cost for the newvendor when...

- demand is $C(\tau)$
- inventory level is R (this was Q in Newsvendor)
- $c_{u}=1, c_{o}=0$

Special Case: Normally Distributed Demand

What about $n(R)=E\left[(C(\tau)-R)^{+}\right]$?
Can interpret this as the expected cost for the newvendor when...

- demand is $C(\tau)$
- inventory level is R (this was Q in Newsvendor)
- $c_{u}=1, c_{o}=0$

Using the formula from last slide Newsvendor Lecture:
$n(R)=-\sigma \sqrt{\tau}(z \Phi(-z)-\phi(z))$
where $z=\frac{R-\lambda \tau}{\sigma \sqrt{\tau}}$.

