


Service Levels in (Q, R) Systems

p depends on multiple factors:

e Impact of stockout on future sales
e Loss of goodwill

e Corporate mindset:
customer-focused vs. cost-focused



Service Levels in (Q, R) Systems

e When we minimize cost in the (Q, R) model, the
parameter p controls how often we stock out.

e Often it is more intuitive and useful to specify a desired
minimum service level instead of p.

e Roughly speaking, “service level” is a measure of how
often we satisfy demand from in-stock inventory.



Definition of Service Level

e There are multiple ways of defining the “service level”
precisely. We will use the following definition, also called
the “fill rate”

e The fill rate is the percentage of demand that is satisfied
from stock.

e Let 5 be the desired fill rate.



Shortage Rate

n(R) = expected number of units short per cycle

@ = expected number of units demanded per cycle

Over the long run, the fraction of demand that stocks out is

n(R)
Q

shortage rate =




Fill Rate

The fill rate is 1 minus this amount:

n(R)
Q

fill rate = 1 — shortage rate =1 —

We want this to be > .



What is the fill rate in EOQ?
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Achieving a Fill Rate

To achieve a fill rate of 3, we solve for the desired n(R):

n(R) = (1— 8)Q.

n(R)
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Achieving a Fill Rate

If we have inverse of n(R) we can use this inverse to calculate
R, otherwise we can again use bisection search to find R such
that n(R) = (1 — 5)Q (because n(R) is nonincreasing in R).
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Achieving a Fill Rate

If we have inverse of n(R) we can use this inverse to calculate
R, otherwise we can again use bisection search to find R such
that n(R) = (1 — 5)Q (because n(R) is nonincreasing in R).

Note that we (again) need Q to determine R!

But now R does not depend on p (it now depends on /3
instead).



Bisection search to find R

We want to find R such that n(R) is within € of (1 — 3)Q.

e Set L =0.

e Find an integer U large enough that n(U) < (1 — §)Q.
To do this, guess at U, check n(R), and keep increasing
U until n(R) < (1 - 9)Q.

e While U — L > e:

e Choose M = (L+ U)/2
o If n(R) < (1-p5)Q,set U=R
o If n(R) >(1-p5)Q,set L=R

Set our final valueto R = U



Same idea as before: iteratively finding R and Q

We will once again find an iterative procedure for finding R
and Q.

We now know how to find R given a value Q (using 3, not p).

How about find @ given a value of R?



Once we have R, here is how we get @

e Previously, @ was calculated from R and the other
parameters, including p:

Q= \/% (K)\ + pAn(R)) (slide 54 of lecture 9)

e We now don’t have p — how to get around this?




Once we have R, here is how we get @

e Previously, @ was calculated from R and the other
parameters, including p:

Q= \/% (K)\ + pAn(R)) (slide 54 of lecture 9)

e We now don’t have p — how to get around this?

e For a given R and Q, there is an implicitly defined p.
Recall: oh
F(R)y=1- X (slide 49 of lecture 9).



Once we have R, here is how we get @

h
Recall: F(R) =1— S—)\ (slide 49 of lecture 9).

Solve for p:

_ Gh
P=XT-F(R)

2
and use this in the equation for Q@ = \/E (K/\ + pAn(R))
(slide 54 of lecture 9):

2 Qh




Once we have R, here is how we get @

2 Qh
Q= \/E(K)\ Y] F(R)))\n(R)>

Now we have to solve for Q:

5 2 Qh

@ = E(K)\—l- m)\n(ﬁ’))
5 2n(R) 2K\

Q _1—F(R)Q_ ho=0

So

n(R) n(R) \°> 2K\
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Iterative Procedure for Finding Q and R for a given
fill rate

e Find Qy = EOQ
e Find Ry from n(Ry) = (1 — 3)Qo [using bisection search]
e Plug Ry into the equation for @ to get Q;.
[use equation at bottom of previous slide. In that
formula, use n(Ry) = (1 — 5)Qo.]
e Find Ry from n(R;) = (1 — 5)@Q; [using bisection search]
e ctc.

e Stop when R,.; ~ R, (stop when the R, and R, both
give the same value when rounded to the nearest integer)



Iterative Procedure for Finding Q and R for a given

fill rate 5 — Summary

e Lots of ugly formulas!

e Point is:
Can start with @y = EOQ.
e A value for Q and 3 determines a value for R (— Ryp).
e A value for Q and for R determines an (implicit) value
for p.
e A value for R and p determines a (new) value for Q
(—> Ql)

e Rinse and repeat.



Special Case: Normally Distributed Demand

Computing @, R policies for most demand distributions is a lot
of work

You need to be able to calculate:
F(R) = P(C(r) <R)

and

n(R) = E[(C(r) = R)"]

and then repeatedly use bisection search to find the value of R.



Special Case: Normally Distributed Demand

When Dy, D,, ... are i.i.d. normally distributed with mean A
and variance o°:

C(7) is distributed

Normal with mean A7 and variance o7

Normal with mean A7 and variance 72

Normal with mean \72 and variance o°72
Poisson with mean A7 and variance 72

o> N =

Poisson with mean \72 and variance 72



Special Case: Normally Distributed Demand

So we can use this for cdf of C(7):
C(r) = A1 _x—=2A1 X — AT
< = < =
P(C(7) < x) ]P( o -0 ) (D( o )
where ®(+) is the cdf of the standard normal.




Special Case: Normally Distributed Demand

What about n(R) = E[(C(7) — R)*]?
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Special Case: Normally Distributed Demand

What about n(R) = E[(C(7) — R)*]?

Can interpret this as the expected cost for the newvendor
when...

e demand is C(7)
e inventory level is R (this was @ in Newsvendor)

e c,=1¢=0

Using the formula from last slide Newsvendor Lecture:
n(R) = —ov/7(2®(-2) — ¢(2))
R— At
o\T

where z =




