Practical Tools for OR, ML and DS Lecture $9\frac{1}{2}$: Inventory #3 (Q, R)-Policies

February 27th, 2020

p depends on multiple factors:

- Impact of stockout on future sales
- Loss of goodwill
- Corporate mindset:

customer-focused vs. cost-focused

- When we minimize cost in the (Q, R) model, the parameter p controls how often we stock out.
- Often it is more intuitive and useful to specify a **desired minimum service level** instead of *p*.
- Roughly speaking, "service level" is a measure of how often we satisfy demand from in-stock inventory.

- There are multiple ways of defining the "service level" precisely. We will use the following definition, also called the "fill rate"
- The **fill rate** is the percentage of demand that is satisfied from stock.
- Let β be the desired fill rate.

$$n(R) =$$
 expected number of units short per cycle
 $Q =$ expected number of units demanded per cycle

Over the long run, the fraction of demand that stocks out is

shortage rate =
$$\frac{n(R)}{Q}$$

The fill rate is 1 minus this amount:

fill rate =
$$1 - \text{shortage rate} = 1 - \frac{n(R)}{Q}$$

We want this to be $\geq \beta$.

What is the fill rate in EOQ?

1.0

2.1

3. $\frac{1}{2}$

4. Q/λ 5. τ/T

Achieving a Fill Rate

To achieve a fill rate of β , we solve for the desired n(R):

$$n(R) = (1 - \beta)Q.$$

If we have inverse of n(R) we can use this inverse to calculate R, otherwise we can again use bisection search to find R such that $n(R) = (1 - \beta)Q$ (because n(R) is nonincreasing in R).

If we have inverse of n(R) we can use this inverse to calculate R, otherwise we can again use bisection search to find R such that $n(R) = (1 - \beta)Q$ (because n(R) is nonincreasing in R). Note that we (again) need Q to determine R! If we have inverse of n(R) we can use this inverse to calculate R, otherwise we can again use bisection search to find R such that $n(R) = (1 - \beta)Q$ (because n(R) is nonincreasing in R). Note that we (again) need Q to determine R!

But now R does not depend on p (it now depends on β instead).

We want to find R such that n(R) is within ε of $(1 - \beta)Q$.

- Set *L* = 0.
- Find an integer U large enough that n(U) ≤ (1 − β)Q. To do this, guess at U, check n(R), and keep increasing U until n(R) ≤ (1 − β)Q.
- While $U L > \varepsilon$:
 - Choose M = (L + U)/2
 - If $n(R) \leq (1-\beta)Q$, set U = R
 - If $n(R) > (1 \beta)Q$, set L = R

Set our final value to R = U

- We will once again find an iterative procedure for finding R and Q.
- We now know how to find R given a value Q (using β , not p). How about find Q given a value of R?

• Previously, *Q* was calculated from *R* and the other parameters, including *p*:

$$Q = \sqrt{\frac{2}{h}} \Big(K\lambda + p\lambda n(R) \Big)$$
 (slide 54 of lecture 9)

• We now don't have *p* — how to get around this?

• Previously, Q was calculated from R and the other parameters, including p:

$$Q = \sqrt{\frac{2}{h}} \Big(\kappa \lambda + p \lambda n(R) \Big)$$
 (slide 54 of lecture 9)

- We now don't have p how to get around this?
- For a given R and Q, there is an implicitly defined p. Recall: $F(R) = 1 - \frac{Qh}{p\lambda}$ (slide 49 of lecture 9).

Recall:
$$F(R) = 1 - \frac{Qh}{p\lambda}$$
 (slide 49 of lecture 9).
Solve for *p*:
 $p = \frac{Qh}{\lambda(1 - F(R))}$

and use this in the equation for $Q = \sqrt{\frac{2}{h}} \left(K\lambda + p\lambda n(R) \right)$ (slide 54 of lecture 9):

$$Q = \sqrt{\frac{2}{h}} \left(K\lambda + \frac{Qh}{\lambda(1 - F(R))} \lambda n(R) \right)$$

Once we have R, here is how we get Q

$$Q = \sqrt{\frac{2}{h}} \Big(K\lambda + \frac{Qh}{\lambda(1 - F(R))} \lambda n(R) \Big)$$

Now we have to solve for Q:

$$Q^{2} = \frac{2}{h} \left(K\lambda + \frac{Qh}{\lambda(1 - F(R))} \lambda n(R) \right)$$
$$Q^{2} - \frac{2n(R)}{1 - F(R)} Q - \frac{2K\lambda}{h} = 0$$

So

$$Q = \frac{n(R)}{1 - F(R)} + \sqrt{\left(\frac{n(R)}{1 - F(R)}\right)^2 + \frac{2K\lambda}{h}}.$$

Iterative Procedure for Finding Q and R for a given fill rate β

- Find $Q_0 = EOQ$
- Find R_0 from $n(R_0) = (1 \beta)Q_0$ [using bisection search]
- Plug R_0 into the equation for Q to get Q_1 . [use equation at bottom of previous slide. In that formula, use $n(R_0) = (1 - \beta)Q_0$.]
- Find R_1 from $n(R_1) = (1 \beta)Q_1$ [using bisection search]
- etc.
- Stop when R_{n+1} ≈ R_n (stop when the R_{n+1} and R_n both give the same value when rounded to the nearest integer)

Iterative Procedure for Finding Q and R for a given fill rate β — Summary

- Lots of ugly formulas!
- Point is:

Can start with $Q_0 = EOQ$.

- A value for Q and β determines a value for $R (\rightarrow R_0)$.
- A value for *Q* and for *R* determines an (implicit) value for *p*.
- A value for R and p determines a (new) value for Q $(\rightarrow Q_1)$.
- Rinse and repeat.

Computing Q, R policies for most demand distributions is a lot of work

You need to be able to calculate:

```
F(R) = P(C(\tau) \le R)
```

and

 $n(R) = E[(C(\tau) - R)^+]$

and then repeatedly use bisection search to find the value of R.

When D_1, D_2, \ldots are i.i.d. normally distributed with mean λ and variance σ^2 :

 $C(\tau)$ is distributed

- 1. Normal with mean $\lambda\tau$ and variance $\sigma^2\tau$
- 2. Normal with mean $\lambda\tau$ and variance $\sigma^2\tau^2$
- 3. Normal with mean $\lambda\tau^2$ and variance $\sigma^2\tau^2$
- 4. Poisson with mean $\lambda\tau$ and variance $\sigma^2\tau^2$
- 5. Poisson with mean $\lambda\tau^2$ and variance $\sigma^2\tau^2$

So we can use this for cdf of
$$C(\tau)$$
:
 $\mathbb{P}(C(\tau) \le x) = \mathbb{P}\left(\frac{C(\tau) - \lambda\tau}{\sigma} \le \frac{x - \lambda\tau}{\sigma}\right) = \Phi\left(\frac{x - \lambda\tau}{\sigma}\right)$
where $\Phi(\cdot)$ is the cdf of the standard normal.

Special Case: Normally Distributed Demand

What about $n(R) = E[(C(\tau) - R)^+]$?

Special Case: Normally Distributed Demand

What about $n(R) = E[(C(\tau) - R)^+]$?

Can interpret this as the expected cost for the newvendor when...

What about $n(R) = E[(C(\tau) - R)^{+}]$?

Can interpret this as the expected cost for the newvendor when...

- demand is $C(\tau)$
- inventory level is R (this was Q in Newsvendor)

•
$$c_u = 1, c_o = 0$$

What about $n(R) = E[(C(\tau) - R)^{+}]$?

Can interpret this as the expected cost for the newvendor when...

- demand is $C(\tau)$
- inventory level is R (this was Q in Newsvendor)

•
$$c_u = 1, c_o = 0$$

Using the formula from last slide Newsvendor Lecture:

$$n(R) = -\sigma \sqrt{\tau} (z \Phi(-z) - \phi(z))$$

where $z = rac{R - \lambda au}{\sigma \sqrt{ au}}$.