Practical Tools for OR, ML and DS

Lecture 8: Inventory #2 Newsvendor

February 13th, 2020

Recall the assumptions in EOQ

- Known and constant demand rate
- Known and constant lead time
- Instantaneous receipt of material
- No quantity discounts
- No stock outs permitted
- No penalty costs (only order & holding costs)

These assumptions don't fit in some problems

Let's consider a totally different set of assumptions

- We plan for only a single period
- Demand is random
- Deliveries are made before the demand
- Stockouts are allowed
- No holding costs
- Penalty costs are proportional to the underage and overage amounts
- No ordering costs: the cost of buying an item is accounted for by the overage penalty

Let's consider a totally different set of assumptions

- We plan for only a single period
- Demand is random
- Deliveries are made before the demand
- Stockouts are allowed
- No holding costs
- Penalty costs are proportional to the underage and overage amounts
- No ordering costs: the cost of buying an item is accounted for by the overage penalty

This set of assumptions is called the "Newsvendor" model

Newsvendor model

Notation

D = demand, a random variable

F(x) = cumulative distribution function of demand

- $c_o =$ penalty cost per unit of inventory remaining at the end of the period, "overage" cost
- c_u = penalty cost per unit of unsatisfied demand,"underage" cost

G(Q, D) = total cost when Q units are ordered and D is the demand

- We ordered too many!
- *#* of units of overage is *Q* − *D* if *Q* is bigger than *D*,
 otherwise zero.

of units, overage =
$$\begin{cases} Q - D & \text{for } Q \ge D \\ 0 & \text{for } Q < D \end{cases}$$
$$= \max\{Q - D, 0\}$$
$$= (Q - D)^+.$$

- We ordered too few!
- *#* of units of overage is *D* − *Q* if *D* is bigger than *Q*,
 otherwise zero.

$$\# ext{ of units, underage} = egin{cases} D-Q & ext{for } D \geq Q \\ 0 & ext{for } D < Q \\ = \max\{D-Q,0\} \\ = (D-Q)^+. \end{cases}$$

$$egin{aligned} G(Q,D) &= c_o(ext{units of overage}) + c_u(ext{units of underage}) \ &= c_o(Q-D)^+ + c_u(D-Q)^+ \end{aligned}$$

Note: Because D is random, G(Q, D) is random

Example

Q = 10 gives an average total cost of 6.014

Q = 1 gives an average total cost of 6.95

Q = 5 gives an average total cost of 2.952

Average total cost vs. Q

We'll minimize the expected cost

- We don't know *D* when we choose *Q*, so we can't choose *Q* to minimize *G*(*Q*, *D*).
- Instead, we'll choose Q to minimize $\mathbb{E}[G(Q, D)]$
- The expected cost is:

$$\mathbb{E}[G(Q,D)] = \mathbb{E}[c_o(Q-D)^+ + c_u(D-Q)^+]$$

• We will again find the optimum Q by setting derivative equal to zero, $\frac{d}{dQ}\mathbb{E}[G(Q, D)] = 0$, and solving for Q.

What is $\frac{d}{dQ}\mathbb{E}[G(Q,D)]$?

Let's rewrite $\mathbb{E}[G(Q, D)]$. The random variable D can be discrete or continuous.

Recall from ENGRD 2700:

 If X is a discrete random variable with probability mass function P(X = i) = p_i for i = 0, 1, 2, ..., then

$$\mathbb{E}g(X) = \sum_{i=0}^{\infty} g(i)p_i.$$

• If X is a continuous random variable with probability density function f(x), then

$$\mathbb{E}g(X) = \int_{-\infty}^{\infty} g(x)f(x)dx.$$

What is $\frac{d}{dQ}\mathbb{E}[G(Q,D)]$?

If D is discrete then

$$\begin{split} \mathbb{E}[G(Q,D)] &= \mathbb{E}[c_o(Q-D)^+ + c_u(D-Q)^+] \\ &= \sum_{i=0}^{\infty} (c_o(Q-i)^+ + c_u(i-Q)^+)p_i \\ &= \sum_{i=0}^{\lfloor Q \rfloor} c_o(Q-i)p_i + \sum_{i=\lfloor Q \rfloor + 1}^{\infty} c_u(i-Q)p_i. \end{split}$$

So, Q is not an integer, the derivative is

$$egin{aligned} rac{d}{dQ} \mathbb{E}[G(Q,D)] &= \sum_{i=0}^{\lfloor Q
floor} c_o p_i - \sum_{i= \lfloor Q
floor + 1}^{\infty} c_u p_i \ &= c_o \mathbb{P}(D < Q) - c_u \mathbb{P}(D > Q) \end{aligned}$$

$$\begin{split} \frac{d}{dQ} \mathbb{E}[G(Q,D)] &= \mathbb{E}[\frac{d}{dQ}G(Q,D)] \\ &= \mathbb{E}[\frac{d}{dQ}(c_o(Q-D)^+ + c_u(D-Q)^+)] \\ &= \mathbb{E}[\frac{d}{dQ}c_o(Q-D)^+ + \frac{d}{dQ}c_u(D-Q)^+] \\ &= \mathbb{E}[\frac{d}{dQ}c_o(Q-D)^+] + \mathbb{E}[\frac{d}{dQ}c_u(D-Q)^+], \end{split}$$

where the first equality assumes that D is discrete and Q is not an integer, or D is a continuous random variable (ensuring G(Q, D) is differentiable at Q).

$$\frac{d}{dQ}c_o(Q-D)^+ = ?$$

1. $-c_o$ when Q > D, 0 when Q < D, undefined when Q = D2. 0 when Q > D, $-c_o$ when Q < D, undefined when Q = D3. c_o when Q > D, 0 when Q < D, undefined when Q = D4. 0 when Q > D, c_o when Q < D, undefined when Q = D5. 0

$$\frac{d}{dQ}c_o(Q-D)^+ = ?$$

1. $-c_o$ when Q > D, 0 when Q < D, undefined when Q = D2. 0 when Q > D, $-c_o$ when Q < D, undefined when Q = D3. c_o when Q > D, 0 when Q < D, undefined when Q = D4. 0 when Q > D, c_o when Q < D, undefined when Q = D

5. 0

$$\frac{d}{dQ}c_u(D-Q)^+ = ?$$

1. $-c_u$ when Q > D, 0 when Q < D, undefined when Q = D2. 0 when Q > D, $-c_u$ when Q < D, undefined when Q = D3. c_u when Q > D, 0 when Q < D, undefined when Q = D4. 0 when Q > D, c_u when Q < D, undefined when Q = D5. 0

$$\frac{d}{dQ}c_u(D-Q)^+ = ?$$

1. $-c_u$ when Q > D, 0 when Q < D, undefined when Q = D

2. 0 when Q > D, $-c_u$ when Q < D, undefined when Q = D

3. c_u when Q > D, 0 when Q < D, undefined when Q = D

4. 0 when Q > D, c_u when Q < D, undefined when Q = D5. 0

$$\begin{split} \frac{d}{dQ} \mathbb{E}[G(Q,D)] &= \mathbb{E}[\frac{d}{dQ}c_o(Q-D)^+] + \mathbb{E}[\frac{d}{dQ}c_u(D-Q)^+] \\ &= \mathbb{E}[c_o\mathbb{1}_{\{Q>D\}}] + \mathbb{E}[-c_u\mathbb{1}_{\{QD\}}] - c_u\mathbb{E}[\mathbb{1}_{\{Q$$

Note: $\mathbb{1}_{\{Q>D\}}$ means "1 when Q > D, and 0 otherwise".

- 1. $\mathbb{P}(Q < D)$
- 2. $\mathbb{P}(Q > D)$
- 3. ℤ[*Q*]
- 4. $\mathbb{E}[Q D]$
- 5. None of the above

Note: $\mathbb{1}_{\{Q>D\}}$ means "1 when Q > D, and 0 otherwise".

$$\frac{d}{dQ}\mathbb{E}[G(Q,D)] = c_o\mathbb{E}[\mathbb{1}_{\{Q>D\}}] - c_u\mathbb{E}[\mathbb{1}_{\{Q$$

$$\begin{aligned} \frac{d}{dQ} \mathbb{E}[G(Q, D)] &= c_o \mathbb{E}[\mathbb{1}_{\{Q > D\}}] - c_u \mathbb{E}[\mathbb{1}_{\{Q < D\}}] \\ &= c_o \mathbb{P}(Q > D) - c_u \mathbb{P}(Q < D) \end{aligned}$$

$$egin{aligned} rac{d}{dQ} \mathbb{E}[G(Q,D)] &= c_o \mathbb{E}[\mathbbm{1}_{\{Q > D\}}] - c_u \mathbb{E}[\mathbbm{1}_{\{Q < D\}}] \ &= c_o \mathbb{P}(Q > D) - c_u \mathbb{P}(Q < D) \ &= c_o \mathbb{P}(D < Q) - c_u (1 - \mathbb{P}(D \le Q)) \ &= c_o \mathbb{P}(D \le Q) - c_u (1 - \mathbb{P}(D \le Q)) \ &= -c_u + (c_u + c_o) \mathbb{P}(D \le Q) \end{aligned}$$

where the penultimate inequality assumes D is a continuous random variable or D is a discrete random variable taking integer values and Q is not an integer.

$$rac{d}{dQ}\mathbb{E}[G(Q,D)]=-c_u+(c_u+c_o)\mathbb{P}(D\leq Q)=0$$

means we want Q^* so that

$$\mathbb{P}(D \leq Q^*) = \frac{c_u}{c_u + c_o}$$

$$rac{d}{dQ}\mathbb{E}[G(Q,D)]=-c_u+(c_u+c_o)\mathbb{P}(D\leq Q)=0$$

means we want Q^* so that

$$\mathbb{P}(D \leq Q^*) = \frac{c_u}{c_u + c_o}$$

Does this Q^* give us *minimum* cost?

For
$$Q < Q^*$$
:

$$egin{aligned} rac{d}{dQ}\mathbb{E}[G(Q,D)] &= -c_u + (c_u + c_o)\mathbb{P}(D \leq Q) \ &< -c_u + (c_u + c_o)\mathbb{P}(D \leq Q^*) = 0 \end{aligned}$$

So costs are decreasing in Q until Q^* !

For
$$Q > Q^*$$
:

$$egin{aligned} rac{d}{dQ} \mathbb{E}[G(Q,D)] &= -c_u + (c_u + c_o) \mathbb{P}(D \leq Q) \ &> -c_u + (c_u + c_o) \mathbb{P}(D \leq Q^*) = 0 \end{aligned}$$

So costs are increasing in Q after Q^* !

Pictorially

$$\mathbb{P}(D \leq Q^*) = \frac{c_u}{c_u + c_o}$$

In words: We want Q^* so that the probability that the demand is Q^* or less is $\frac{c_u}{c_u + c_o}$.

If $F(\cdot)$ is cdf of *D*, then in terms of cdf:

$$F(Q^*) = \frac{c_u}{c_u + c_o}$$

If
$$F(\cdot)$$
 has an *inverse* $F^{-1}(\cdot)$ then

$$Q^* = F^{-1}\left(\frac{c_u}{c_u + c_o}\right).$$

If
$$F(\cdot)$$
 has an *inverse* $F^{-1}(\cdot)$ then $Q^* = F^{-1}(rac{c_u}{c_u+c_o}).$

Continuous random variables have cdfs that are invertible!

- F⁻¹(q) is called the "q-quantile" (of the random variable that has cdf F(·))
- Excel, Python, and R implement the inverse cumulative distribution function for many common distributions
- Here are some useful functions in Excel:
 - NORMAL.INV(probability, m, v)
 - LOGNORM.INV(probability, m, s)
 - GAMMA.INV(probability, alpha, beta)

How to find Q^* without an inverse?

$$\mathbb{P}(D \leq Q^*) = \frac{c_u}{c_u + c_o}$$

You can use bisection search to find Q^* (upto some ε):

• Set L = 0 and find an integer U large enough that

$$\mathbb{P}(D \leq U) \leq \frac{c_u}{c_u + c_o}$$

How to find Q^* without an inverse?

$$\mathbb{P}(D \leq Q^*) = rac{c_u}{c_u + c_o}$$

You can use bisection search to find Q^* (upto some ε):

• Set L = 0 and find an integer U large enough that

$$\mathbb{P}(D \leq U) \leq \frac{c_u}{c_u + c_o}$$

To do this, guess U = 1, check $\mathbb{P}(D \leq U)$, and keep doubling U until $\mathbb{P}(D \leq U) \geq \frac{c_u}{c_u + c_o}$.

How to find Q^* without an inverse?

$$\mathbb{P}(D \leq Q^*) = rac{c_u}{c_u + c_o}$$

You can use bisection search to find Q^* (upto some ε):

• Set L = 0 and find an integer U large enough that

$$\mathbb{P}(D \leq U) \leq \frac{c_u}{c_u + c_o}$$

• While $U - L > \varepsilon$: • Choose $M = \frac{L + U}{2}$. • If $\mathbb{P}(D \le M) \ge \frac{c_u}{c_u + c_o}$, set U = M• If $\mathbb{P}(D \le M) < \frac{c_u}{c_u + c_o}$, set L = M.

- Lowe's sells holiday lights for the winter holiday season. During the holiday season, the lights sell for \$2.00 each.
- Since the product is seasonal, the store decides to sell all unsold lights during the January clearance for \$0.50 each.
- Each string of lights costs the store \$1.
- Past demand has followed a log-normal(7,3) distribution, which means that the natural log of demand is normal with mean 7 and standard deviation 3.
- Find the optimal order quantity for the season.

We see that if Lowe's orders too many, the cost is \$0.50 each. If they order too few, each lost sale represents \$1 of unrealized profit. Thus, $c_o =$ \$0.50, and $c_u =$ \$1. Hence we want Q so that:

$$F(Q) = \frac{c_u}{c_u + c_o} = \frac{1}{1 + .50} = 0.6667$$

where F is the cdf of the log-normal(7,3) distribution.

• The syntax of LOGNORM.INV is:

• So, we should stock 3992 holiday lights

If you have a computer:

- Suppose demand is $D \sim \text{Normal}(\mu, \sigma^2)$
- The optimal order quantity Q^* is $F^{-1}(c_u/(c_u+c_o))$
- In Excel, we can calculate this via NORM. INV

If you don't have a computer:

We'll now show you how to compute Q^* and the expected cost $\mathbb{E}[G(Q, D)]$ when $D \sim \text{Normal}(\mu, \sigma^2)$ without a computer using pencil/paper and normal distribution tables.

Normal Distribution Tables

Normal Distribution Tables 🔅 🖿 File Edit View Insert Format Data Tools Add-ons Help Last_edit.was.on_January.25												
ĸ	~ 8 7	100% - \$ %	.000_123~	Arial	• 10 •	в <i>I</i> Ş	A 🔶 🖽	88 - I E - 1	- H- 7-	cə 🖬 📥 🏹	-Σ-	
fx												
	A	в	с	D	E	F	G	н	1	J	к	
1	Table values are	able values are F(z)=P(Z<=z), where z is the value at left plus the value at top, e.g. P(Z<=3.99) = .99997										
2	z	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	
3	0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586	
- 4	0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535	
5	0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409	
6	0.3	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173	
7	0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793	
8	0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240	
9	0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490	
10	0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935	0.78230	0.78524	
11	0.8	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327	
12	0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891	
13	1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214	
14	1.1	0.86433	0.86650	0.86864	0.87076	0.87286	0.87493	0.87698	0.87900	0.88100	0.88298	
15	1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147	

Computing Q^*

•
$$Q^* = F^{-1}(c_u/(c_u + c_o))$$

$$egin{aligned} & c_u/(c_u+c_o) = \mathbb{P}(D \leq Q^*) \ & = \mathbb{P}(\mu+\sigma Z \leq Q^*) ext{ where } Z \sim \mathcal{N}(0,1) \ & = \mathbb{P}(Z \leq (Q^*-\mu)/\sigma) \end{aligned}$$

 Step 1: Find z* such that c_u/(c_u + c_o) = P(Z ≤ z*) from the normal distribution tables
 Step 2: Q* = μ + σz*

$$\mathbb{E}[G(Q,D)] = \mathbb{E}[c_o(Q-D)^+ + c_u(D-Q)^+]$$

= $c_o \int_{-\infty}^Q (Q-x)f(x)dx + c_u \int_Q^\infty (x-Q)f(x)dx.$

Let's try and calculate $\int_{-\infty}^{Q} (Q - x) f(x) dx$.

Transform to standard normal: $y = (x - \mu)/\sigma$

$$\int_{-\infty}^{Q} (Q-x)f(x)dx = \int_{-\infty}^{(Q-\mu)/\sigma} (Q-(\sigma y+\mu))\varphi(y)dy$$
$$= \underbrace{\int_{-\infty}^{(Q-\mu)/\sigma} (Q-\mu)\varphi(y)dy}_{(Q-\mu)\mathbb{P}(D\leq Q)} -\sigma \int_{-\infty}^{(Q-\mu)/\sigma} y\varphi(y)dy.$$

• What about
$$\int_{-\infty}^{t} x\varphi(x) dx$$
?

•
$$\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

• Here is a weird little fact: $\frac{d}{dx}\varphi(x) = -x\frac{1}{\sqrt{2\pi}}e^{-x^2/2} = -x\varphi(x)!$

So:
$$\int_{-\infty}^{t} x\varphi(x)dx = -\int_{-\infty}^{t} \left(\frac{d}{dx}\varphi(x)\right)dx$$
$$= -(\varphi(t) - \varphi(-\infty)) = -\varphi(t)!$$

$$\int_{-\infty}^{Q} (Q-x)f(x)dx = \int_{-\infty}^{(Q-\mu)/\sigma} (Q-(\sigma x+\mu))\varphi(x)dx$$
$$= \underbrace{\int_{-\infty}^{(Q-\mu)/\sigma} (Q-\mu)\varphi(x)dx}_{(Q-\mu)\mathbb{P}(D\leq Q)} -\sigma \underbrace{\int_{-\infty}^{(Q-\mu)/\sigma} x\varphi(x)dx}_{-\varphi((Q-\mu)/\sigma)}.$$

$$\int_{-\infty}^{Q} (Q - x) f(x) dx = (Q - \mu) \mathbb{P}(D \le Q) + \sigma \varphi((Q - \mu)/\sigma)$$
$$= \sigma(z \mathbb{P}(D \le Q) + \varphi(z))$$
$$= \sigma(z \Phi(z) + \varphi(z))$$

where $z = (Q - \mu)/\sigma$.

$$\mathbb{E}[G(Q,D)] = c_o \int_{-\infty}^{Q} (Q-x)f(x)dx + c_u \int_{Q}^{\infty} (x-Q)f(x)dx$$
$$= c_o \sigma(z\Phi(z) + \varphi(z)) + c_u \int_{Q}^{\infty} (x-Q)f(x)dx.$$

What about
$$\int_Q^\infty (x-Q)f(x)dx$$
?

Let $\tilde{D} = -D$, a normally distributed random variable with mean $\tilde{\mu} = -\mu$ and variance σ^2 .

Now

$$\int_{Q}^{\infty} (x-Q)f(x)dx = \int_{-\infty}^{-Q} (-x-Q)\tilde{f}(x)dx$$
$$= \int_{-\infty}^{\tilde{Q}} (\tilde{Q}-x)\tilde{f}(x).$$

Can use previous result:

$$\int_{-\infty}^{\tilde{Q}} (\tilde{Q} - x) \tilde{f}(x) dx = \sigma(\tilde{z}\Phi(\tilde{z}) + \varphi(\tilde{z})).$$

$$\mathbb{E}[G(Q,D)] = c_o \int_{-\infty}^{Q} (Q-x)f(x)dx + c_u \int_{Q}^{\infty} (x-Q)f(x)dx$$
$$= c_o \sigma(z\Phi(z) + \varphi(z)) + c_u \sigma(\tilde{z}\Phi(\tilde{z}) + \varphi(\tilde{z})).$$

where $z = (Q - \mu)/\sigma$ and $\tilde{z} = (\tilde{Q} - \tilde{\mu})/\sigma$.

$$\mathbb{E}[G(Q,D)] = c_o \int_{-\infty}^{Q} (Q-x)f(x)dx + c_u \int_{Q}^{\infty} (x-Q)f(x)dx$$
$$= c_o \sigma(z\Phi(z) + \varphi(z)) + c_u \sigma(\tilde{z}\Phi(\tilde{z}) + \varphi(\tilde{z})).$$

where $z = (Q - \mu)/\sigma$ and $\tilde{z} = (\tilde{Q} - \tilde{\mu})/\sigma$. Note: $\tilde{z} = (\tilde{Q} - \tilde{\mu})/\sigma = (-Q - (-\mu))/\sigma = (\mu - Q)/\sigma = -z$.

$$\mathbb{E}[G(Q,D)] = c_o \sigma(z\Phi(z) + \varphi(z)) + c_u \sigma(\tilde{z}\Phi(\tilde{z}) + \varphi(\tilde{z}))$$

= $c_o \sigma(z\Phi(z) + \varphi(z)) + c_u \sigma(-z\Phi(-z) + \varphi(-z)).$

where $z = (Q - \mu)/\sigma$.

$$\mathbb{E}[G(Q,D)] = c_o \sigma(z\Phi(z) + \varphi(z)) + c_u \sigma(\tilde{z}\Phi(\tilde{z}) + \varphi(\tilde{z}))$$

= $c_o \sigma(z\Phi(z) + \varphi(z)) + c_u \sigma(-z\Phi(-z) + \varphi(-z)).$

where $z = (Q - \mu)/\sigma$.

Finally note that $\varphi(\tilde{z}) = \varphi(-z) = \varphi(z)$ because φ is symmetric about 0.

$$\mathbb{E}[G(Q,D)] = c_o \sigma(z\Phi(z) + \varphi(z)) + c_u \sigma(-z\Phi(-z) + \varphi(-z))$$
$$= c_o \sigma(z\Phi(z) + \varphi(z)) - c_u \sigma(z\Phi(-z) - \varphi(z))$$

where $z = (Q - \mu)/\sigma$.