Lecture 8:




Recall the assumptions in EOQ

e Known and constant demand rate
e Known and constant lead time

e Instantaneous receipt of material
e No quantity discounts

e No stock outs permitted

e No penalty costs (only order & holding costs)



These assumptions don’t fit in some problems




Let’s consider a totally different set of assumptions

e We plan for only a single period

e Demand is random

e Deliveries are made before the demand

e Stockouts are allowed

e No holding costs

e Penalty costs are proportional to the underage and
overage amounts

e No ordering costs: the cost of buying an item is
accounted for by the overage penalty



Let’s consider a totally different set of assumptions

e We plan for only a single period

e Demand is random

e Deliveries are made before the demand
e Stockouts are allowed

e No holding costs

e Penalty costs are proportional to the underage and
overage amounts

e No ordering costs: the cost of buying an item is
accounted for by the overage penalty

This set of assumptions is called the “Newsvendor” model



Newsvendor model

Notation

D = demand, a random variable
F(x) = cumulative distribution function of demand

C, = penalty cost per unit of inventory remaining
at the end of the period, “overage” cost

c, = penalty cost per unit of unsatisfied demand,
“underage” cost

G(Q, D) = total cost when @ units are ordered

and D is the demand



Overage

e We ordered too many!

e # of units of overage is Q — D if Q is bigger than D,
otherwise zero.

Q—D forQ>D

0 for Q < D
=max{Q — D, 0}
=(Q-D)".

# of units, overage =



Underage

e We ordered too few!

e # of units of overage is D — Q if D is bigger than Q,
otherwise zero.

D—-Q@ forD>Q

0 for D < @
=max{D — Q,0}
=(D-Q)".

# of units, underage =



Put this together to get the cost

G(Q, D) = c,(units of overage) + ¢,(units of underage)
= (@ — D)t + cu(D — Q)

Note: Because D is random, G(Q, D) is random
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@ = 10 gives an average total cost of 6.014
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@ = 1 gives an average total cost of 6.95
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@ = b5 gives an average total cost of 2.952
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We’'ll minimize the expected cost

We don't know D when we choose Q, so we can't choose
Q to minimize G(Q, D).
Instead, we'll choose @ to minimize E[G(Q, D)]

The expected cost is:

E[G(Q,D)] = E[co(Q — D) + cu(D = Q)]

We will again find the optimum @ by setting derivative
equal to zero, %E[G(Q, D)] = 0, and solving for Q.



What is -5E[G(Q, D)]?

Let's rewrite E[G(Q, D)]. The random variable D can be
discrete or continuous.

Recall from ENGRD 2700:

e If X is a discrete random variable with probability mass
function P(X = i) = p; for i =0,1,2,..., then

Eg(X) = Zg(/)P,-.

e If X is a continuous random variable with probability
density function f(x), then



What is -5E[G(Q, D)]?

If D is discrete then

E[G(Q, D)] = E[co(Q — D) + cu(D — Q)]

Z(CO(Q - ’.)Jr - Gl — Q)+)Pi

o

co(Q —i)pi + Z cu(i — Q)p;.

i=QJ+1

I
=
24

o

1=

So, @ is not an integer, the derivative is

Q] )
%E[G(Qv D)] = Z CoPi — Z CupPi
i=0 i=|Q|+1

= c.P(D < Q) — c,P(D > Q)



What is -5E[G(Q, D)]?

In general,

JEIG(Q, D) = E[{56(Q, D)]
=E[j5(co(Q = D) + cu(D = Q)F)]
=E[j5(Q - D)" + JGau(D - Q)]
= E[5¢(Q — D)+ E[j5cu(D — Q)*],

where the first equality assumes that D is discrete and @ is
not an integer, or D is a continuous random variable (ensuring

G(Q, D) is differentiable at Q).



What is -5E[G(Q, D)]?

£c(Q— D) =

—co when Q > D, 0 when Q < D, undefined when Q@ = D
0 when Q@ > D, —c, when Q < D, undefined when Q@ = D
¢o when @ > D, 0 when @ < D, undefined when Q = D
0 when @ > D, ¢, when Q < D, undefined when Q = D
0

&> W =



What is -5E[G(Q, D)]?

£c(Q— D) =

—co when Q > D, 0 when Q < D, undefined when Q@ = D
0 when Q@ > D, —c, when Q < D, undefined when Q@ = D
co when @ > D, 0 when Q < D, undefined when Q = D
0 when @ > D, ¢, when Q < D, undefined when Q = D

0

&> W =



What is -5E[G(Q, D)]?

LD - Q) =

—c, when Q@ > D, 0 when Q < D, undefined when Q@ = D
0 when Q@ > D, —c, when Q < D, undefined when Q@ = D
c, when @ > D, 0 when Q < D, undefined when Q = D
0 when @ > D, ¢, when @ < D, undefined when Q@ = D
0

&> W =



What is -5E[G(Q, D)]?

LD - Q) =

—c, when Q@ > D, 0 when Q < D, undefined when Q@ = D

0 when Q > D, —c, when Q < D, undefined when Q = D
c, when @ > D, 0 when Q < D, undefined when Q@ = D

0 when @ > D, ¢, when @ < D, undefined when Q@ = D

0

&> W =



What is -5E[G(Q, D)]?

LE[G(Q. D)] = E[5c.(Q — D)1+ E[cu(D — Q)]
= E[co1@>py] + E[-cul{o<n}]
= GE[l{g>py] — cuE[1{g<p3]

Note: 1;g-p; means “1 when ® > D, and 0 otherwise” .



What is E[]I{Q>D}]?

P(Q < D)
P(Q > D)
E[Q]

E[Q — D]

None of the above

o> N =

Note: 1{g-p; means “1 when ® > D, and 0 otherwise” .



What is -5E[G(Q, D)]?

In general,

$oEIG(Q, D)] = c.E[L(g>p)] — cuE[L{o<p)]



What is -5E[G(Q, D)]?

In general,

$oEIG(Q, D)] = c.E[L(g>p)] — cuE[L{o<p)]
= cP(Q > D) — ¢,P(Q < D)



What is -5E[G(Q, D)]?

In general,

%E[G(Q7 D)] - CoE[]l{Q>D}] - CuE[]l{Q<D}]
= cP(Q > D) — ¢,P(Q < D)
=c,P(D < Q)—c,(1-P(D<Q))
=c,P(D<Q)—c,(l-P(D<Q))
= —c,+(cu + )P(D < Q)
where the penultimate inequality assumes D is a continuous

random variable or D is a discrete random variable taking
integer values and @ is not an integer.



Setting dQE[G(Q D)]=0

HE[G(Q,D)] = —c, + (cu + 6)P(D < Q) =0

means we want Q" so that




Setting dQE[G(Q D)]=0

HE[G(Q,D)] = —c, + (cu + 6)P(D < Q) =0

means we want Q" so that

Cy

P(D< Q)= ——.

Does this Q* give us minimum cost?



Setting dQE[G(Q D)]=0

For Q@ < Q*:

ZE[G(Q,D)] = —cu+ (cu + &)P(D < Q)

<—c+t(a+)P(D<QR)=0

So costs are decreasing in @ until Q!



Setting dQE[G(Q D)]=0

For @ > Q*:

ZE[G(Q,D)] = —cu+ (cu + &)P(D < Q)

>—c,+(a+)P(D<QR)=0

So costs are increasing in Q after Q!



Pictorially

12 14 16

10

1.0

] =
o (=1
(0 =>aMd

12 14 16

10

-
=

=)
-

G ©® ~ © n < ™

3500 |e30) 3beIaAY

a



How to find Q*?

Cu

P(DSQ*):C + 6o

In words: We want @ so that the probability that the demand
is Q@ or less is

Cut G

If F(-) is cdf of D, then in terms of cdf:

Cu
Cy, + Co

FQY) =



How to find Q*?

If F£(-) has an inverse F~*(-) then

Cu
Cy + Co

Q* _ F—l(

).



How to find Q*?

If F£(-) has an inverse F~*(-) then

Cu
Cy + GCo

Q* _ F—l( )

Continuous random variables have cdfs that are invertible!



F~'(-) and quantiles

e F1(q) is called the “g-quantile” (of the random variable
that has cdf F(+))

e Excel, Python, and R implement the inverse cumulative
distribution function for many common distributions

e Here are some useful functions in Excel:

e NORMAL.INV(probability, m, v)
e LOGNORM.INV(probability, m, s)
e GAMMA.INV(probability, alpha, beta)



How to find Q" without an inverse?

Cu
Gy = @

P(D < Q) =
You can use bisection search to find Q* (upto some ¢):

e Set L =0 and find an integer U large enough that

P(D<U)<
G F G




How to find Q" without an inverse?

* CU
P(DSQ):C +c

You can use bisection search to find Q" (upto some ¢):

e Set L =0 and find an integer U large enough that

P(D<U)< —2 .
c,+ ¢,

To do this, guess U = 1, check P(D < U), and keep
Cu

doubling U until P(D < U) > .
cu+ G




How to find Q" without an inverse?

Cu
Gy = @

P(D < Q) =
You can use bisection search to find Q* (upto some ¢):

e Set L =0 and find an integer U large enough that

P(D < U) < Cui“Co.
e While U—-L > ¢:
° Choosel\/l:#.
,set U=M

o IfP(D < M) >

Cu T Co

o IFP(D < M) < i Jset L= M.

CuT Co




Example

e Lowe's sells holiday lights for the winter holiday season.
During the holiday season, the lights sell for $2.00 each.

e Since the product is seasonal, the store decides to sell all
unsold lights during the January clearance for $0.50 each.

e Each string of lights costs the store $1.

e Past demand has followed a log-normal(7,3) distribution,
which means that the natural log of demand is normal
with mean 7 and standard deviation 3.

e Find the optimal order quantity for the season.



Example

We see that if Lowe's orders too many, the cost is $0.50 each.
If they order too few, each lost sale represents $1 of unrealized
profit. Thus, ¢, = $0.50, and ¢, = $1. Hence we want Q@ so

that:
Cy

c, + G 1 + .50
where F is the cdf of the log-normal(7,3) distribution.

= 0.6667

F(Q) =



Example

e Excel's LOGNORM. INV function tells us:

fx =LOGNORM.INV(0.66666,7,3)

D S N

3992.316399]

e The syntax of LOGNORM. INV is:

[=LOGNORMLINV(|

LOGNORM.INV(probability, mean, standard_dev)

e So, we should stock 3992 holiday lights



Newsvendor with the Normal Distribution

If you have a computer:

e Suppose demand is D ~Normal(s, o?)
e The optimal order quantity Q* is F~*(c,/(cu + o))

e In Excel, we can calculate this via NORM. INV



Newsvendor with the Normal Distribution

If you don't have a computer:

We'll now show you how to compute Q* and the expected
cost E[G(Q, D)] when D ~ Normal(y, o) without a
computer using pencil /paper and normal distribution tables.



Normal Distribution Tables
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Computing Q*

cu/(cu+co) =P(D < Q)
P(u+o0Z < Q) where Z ~ N(0,1)
P(Z <(Q" = p)/o)

e Step 1: Find z* such that ¢,/(c, + ¢,) = P(Z < z*) from
the normal distribution tables
Step2: Q" =pu+oz*



Computing the expected cost if D is normal

E[G(Q,D)] = E[co(Q — D)™ + cu(D — Q)]

= ¢ /_:(Q—x)f(x)dx+cu/ (x — Q)F(x)dx.

Q

Q
Let's try and calculate / (Q — x)f(x)dx.



Computing the expected cost if D is normal

Transform to standard normal: y = (x — p) /o

Q (Q—p)/o
/_ (Q — x)f(x)dx = / (@ = (2= )

o0 —0o0

(Q—p)/o (Q—p)/o
= / (Q — wp(y)dy —0/ ye(y)dy.

o —0o0
/

~\~

(Q-u)P(D<Q)



Computing the expected cost if D is normal

t

e What about/ xp(x)dx?
1 >
o —x*%/2

o p(x)= e

o(x) Wt
e Here is a weird little fact:

d x2/2 __

agp(x) = —x\/%_ﬂe_ = —xp(x)!

So: /t xp(x)dx = —/t (L o(x)) dx

o0 o0



Computing the expected cost if D is normal

Q (Q-n)/o
[ @=xrtade= [ (@ (ox+ m))ex)ds

o0

(Q-n)/o (Q—p)/o
= / (Q — p)p(x)dx —a/ xp(x)dx .

oo —0o0
. > .

(Q-w)B(D<Q) —o((Q=1)/)




Computing the expected cost if D is normal

Q
| (@=0)fx)de = (@ = wB(D < @) + 5((@ - 1))

(zP(D < Q) + »(2))
(20(2) + #(2))

o
g

where z = (Q — u)/o.



Computing the expected cost if D is normal

Q 00
E[G(Q, D)] = co/_ (@ — i cu/Q e — @)

= ¢,0(z®(2) + ¢(2)) + ¢, /QOO(X — Q)f(x)dx.

What about /Oo(x — Q)f(x)dx?
Q



Computing the expected cost if D is normal

Let D = —D, a normally distributed random variable with
mean fi = —u and variance ¢2.
Now

0o -Q
/ (x— Q)f(x)dx = [ (—x — Q)F(x)dx

Q —

Can use previous result:

Q
/ (6 — x)F(x)dx = o(£6(2) + ¢(2)).

o0



Computing the expected cost if D is normal

where z = (Q — p)/o and 2 = (Q — ji)/o.



Computing the expected cost if D is normal




Computing the expected cost if D is normal

where z = (Q — u)/o.



Computing the expected cost if D is normal

E[G(Q, D)] = c,o(z®(z) + ¢(2)) + cuo(ZP(Z) + ¢(2))

where z = (Q — u)/o.

Finally note that ¢(Z) = ¢(—z) = p(z) because ¢ is
symmetric about 0.



Computing the expected cost if D is normal

E[G(Q, D)] = coo(z®(2) + ¢(2)) + cuo(—zP(—2z) + p(—2))
= o0 (2%(2) + p(2)) — cuo(z2®(=2) — »(2))

where z = (Q — u)/o.



