Practical Tools for QR, ML and DS

Lecture 8: Finventory \& Newsvendor February 13th, 2020

Recall the assumptions in EOQ

- Known and constant demand rate
- Known and constant lead time
- Instantaneous receipt of material
- No quantity discounts
- No stock outs permitted
- No penalty costs (only order \& holding costs)

These assumptions don't fit in some problems

Let's consider a totally different set of assumptions

- We plan for only a single period
- Demand is random
- Deliveries are made before the demand
- Stockouts are allowed
- No holding costs
- Penalty costs are proportional to the underage and overage amounts
- No ordering costs: the cost of buying an item is accounted for by the overage penalty

Let's consider a totally different set of assumptions

- We plan for only a single period
- Demand is random
- Deliveries are made before the demand
- Stockouts are allowed
- No holding costs
- Penalty costs are proportional to the underage and overage amounts
- No ordering costs: the cost of buying an item is accounted for by the overage penalty

This set of assumptions is called the "Newsvendor" model

Newsvendor model

Notation
$D=$ demand, a random variable
$F(x)=$ cumulative distribution function of demand
$c_{o}=$ penalty cost per unit of inventory remaining at the end of the period, "overage" cost
$c_{u}=$ penalty cost per unit of unsatisfied demand, "underage" cost
$G(Q, D)=$ total cost when Q units are ordered and D is the demand

Overage

- We ordered too many!
- \# of units of overage is $Q-D$ if Q is bigger than D, otherwise zero.

$$
\begin{aligned}
\text { \# of units, overage } & = \begin{cases}Q-D & \text { for } Q \geq D \\
0 & \text { for } Q<D\end{cases} \\
& =\max \{Q-D, 0\} \\
& =(Q-D)^{+} .
\end{aligned}
$$

Underage

- We ordered too few!
- \# of units of overage is $D-Q$ if D is bigger than Q, otherwise zero.

$$
\begin{aligned}
\text { \# of units, underage } & = \begin{cases}D-Q & \text { for } D \geq Q \\
0 & \text { for } D<Q\end{cases} \\
& =\max \{D-Q, 0\} \\
& =(D-Q)^{+}
\end{aligned}
$$

Put this together to get the cost

$$
\begin{aligned}
G(Q, D) & =c_{o}(\text { units of overage })+c_{u}(\text { units of underage }) \\
& =c_{o}(Q-D)^{+}+c_{u}(D-Q)^{+}
\end{aligned}
$$

Note: Because D is random, $G(Q, D)$ is random

Example

$Q=10$ gives an average total cost of 6.014

$Q=1$ gives an average total cost of 6.95

$Q=5$ gives an average total cost of 2.952

Average total cost vs. Q

We'll minimize the expected cost

- We don't know D when we choose Q, so we can't choose Q to minimize $G(Q, D)$.
- Instead, we'll choose Q to minimize $\mathbb{E}[G(Q, D)]$
- The expected cost is:

$$
\mathbb{E}[G(Q, D)]=\mathbb{E}\left[c_{o}(Q-D)^{+}+c_{u}(D-Q)^{+}\right]
$$

- We will again find the optimum Q by setting derivative equal to zero, $\frac{d}{d Q} \mathbb{E}[G(Q, D)]=0$, and solving for Q.

What is $\frac{d}{d Q} \mathbb{E}[G(Q, D)]$?

Let's rewrite $\mathbb{E}[G(Q, D)]$. The random variable D can be discrete or continuous.

Recall from ENGRD 2700:

- If X is a discrete random variable with probability mass function $\mathbb{P}(X=i)=p_{i}$ for $i=0,1,2, \ldots$, then

$$
\mathbb{E} g(X)=\sum_{i=0}^{\infty} g(i) p_{i}
$$

- If X is a continuous random variable with probability density function $f(x)$, then

$$
\mathbb{E} g(X)=\int_{-\infty}^{\infty} g(x) f(x) d x
$$

What is $\frac{d}{d Q} \mathbb{E}[G(Q, D)]$?

If D is discrete then

$$
\begin{aligned}
\mathbb{E}[G(Q, D)] & =\mathbb{E}\left[c_{o}(Q-D)^{+}+c_{u}(D-Q)^{+}\right] \\
& =\sum_{i=0}^{\infty}\left(c_{o}(Q-i)^{+}+c_{u}(i-Q)^{+}\right) p_{i} \\
& =\sum_{i=0}^{\lfloor Q\rfloor} c_{o}(Q-i) p_{i}+\sum_{i=\lfloor Q\rfloor+1}^{\infty} c_{u}(i-Q) p_{i} .
\end{aligned}
$$

So, Q is not an integer, the derivative is

$$
\begin{aligned}
\frac{d}{d Q} \mathbb{E}[G(Q, D)] & =\sum_{i=0}^{\lfloor Q\rfloor} c_{o} p_{i}-\sum_{i=\lfloor Q\rfloor+1}^{\infty} c_{u} p_{i} \\
& =c_{o} \mathbb{P}(D<Q)-c_{u} \mathbb{P}(D>Q)
\end{aligned}
$$

What is $\frac{d}{d Q} \mathbb{E}[G(Q, D)]$?

In general,

$$
\begin{aligned}
\frac{d}{d Q} \mathbb{E}[G(Q, D)] & =\mathbb{E}\left[\frac{d}{d Q} G(Q, D)\right] \\
& =\mathbb{E}\left[\frac{d}{d Q}\left(c_{o}(Q-D)^{+}+c_{u}(D-Q)^{+}\right)\right] \\
& =\mathbb{E}\left[\frac{d}{d Q} c_{o}(Q-D)^{+}+\frac{d}{d Q} c_{u}(D-Q)^{+}\right] \\
& =\mathbb{E}\left[\frac{d}{d Q} c_{o}(Q-D)^{+}\right]+\mathbb{E}\left[\frac{d}{d Q} c_{u}(D-Q)^{+}\right]
\end{aligned}
$$

where the first equality assumes that D is discrete and Q is not an integer, or D is a continuous random variable (ensuring $G(Q, D)$ is differentiable at $Q)$.

What is $\frac{d}{d Q} \mathbb{E}[G(Q, D)]$?

$\frac{d}{d Q} c_{o}(Q-D)^{+}=?$

1. $-c_{o}$ when $Q>D, 0$ when $Q<D$, undefined when $Q=D$
2. 0 when $Q>D,-c_{o}$ when $Q<D$, undefined when $Q=D$
3. co when $Q>D, 0$ when $Q<D$, undefined when $Q=D$
4. 0 when $Q>D, c_{0}$ when $Q<D$, undefined when $Q=D$
5. 0

What is $\frac{d}{d Q} \mathbb{E}[G(Q, D)]$?

$\frac{d}{d Q} c_{o}(Q-D)^{+}=?$

1. $-c_{o}$ when $Q>D, 0$ when $Q<D$, undefined when $Q=D$
2. 0 when $Q>D,-c_{o}$ when $Q<D$, undefined when $Q=D$
3. c_{o} when $Q>D, 0$ when $Q<D$, undefined when $Q=D$
4. 0 when $Q>D, c_{0}$ when $Q<D$, undefined when $Q=D$
5. 0

What is $\frac{d}{d Q} \mathbb{E}[G(Q, D)]$?

$\frac{d}{d Q} c_{u}(D-Q)^{+}=$?

1. $-c_{u}$ when $Q>D, 0$ when $Q<D$, undefined when $Q=D$
2. 0 when $Q>D,-c_{u}$ when $Q<D$, undefined when $Q=D$
3. c_{u} when $Q>D, 0$ when $Q<D$, undefined when $Q=D$
4. 0 when $Q>D, c_{u}$ when $Q<D$, undefined when $Q=D$
5. 0

What is $\frac{d}{d Q} \mathbb{E}[G(Q, D)]$?

$\frac{d}{d Q} c_{u}(D-Q)^{+}=$?

1. $-c_{u}$ when $Q>D, 0$ when $Q<D$, undefined when $Q=D$
2. 0 when $Q>D,-c_{u}$ when $Q<D$, undefined when $Q=D$
3. c_{u} when $Q>D, 0$ when $Q<D$, undefined when $Q=D$
4. 0 when $Q>D, c_{u}$ when $Q<D$, undefined when $Q=D$
5. 0

What is $\frac{d}{d Q} \mathbb{E}[G(Q, D)]$?

$$
\begin{aligned}
\frac{d}{d Q} \mathbb{E}[G(Q, D)] & =\mathbb{E}\left[\frac{d}{d Q} c_{o}(Q-D)^{+}\right]+\mathbb{E}\left[\frac{d}{d Q} c_{u}(D-Q)^{+}\right] \\
& =\mathbb{E}\left[c_{o} \mathbb{1}_{\{Q>D\}}\right]+\mathbb{E}\left[-c_{u} \mathbb{1}_{\{Q<D\}}\right] \\
& =c_{o} \mathbb{E}\left[\mathbb{1}_{\{Q>D\}}\right]-c_{u} \mathbb{E}\left[\mathbb{1}_{\{Q<D\}}\right]
\end{aligned}
$$

Note: $\mathbb{1}_{\{Q>D\}}$ means " 1 when $Q>D$, and 0 otherwise".

What is $\mathbb{E}\left[\mathbb{1}_{\{Q>D\}}\right]$?

1. $\mathbb{P}(Q<D)$
2. $\mathbb{P}(Q>D)$
3. $\mathbb{E}[Q]$
4. $\mathbb{E}[Q-D]$
5. None of the above

Note: $\mathbb{1}_{\{Q>D\}}$ means " 1 when $Q>D$, and 0 otherwise".

What is $\frac{d}{d Q} \mathbb{E}[G(Q, D)]$?

In general,

$$
\frac{d}{d Q} \mathbb{E}[G(Q, D)]=c_{o} \mathbb{E}\left[\mathbb{1}_{\{Q>D\}}\right]-c_{u} \mathbb{E}\left[\mathbb{1}_{\{Q<D\}}\right]
$$

What is $\frac{d}{d Q} \mathbb{E}[G(Q, D)]$?

In general,

$$
\begin{aligned}
\frac{d}{d Q} \mathbb{E}[G(Q, D)] & =c_{o} \mathbb{E}\left[\mathbb{1}_{\{Q>D\}}\right]-c_{u} \mathbb{E}\left[\mathbb{1}_{\{Q<D\}}\right] \\
& =c_{o} \mathbb{P}(Q>D)-c_{u} \mathbb{P}(Q<D)
\end{aligned}
$$

What is $\frac{d}{d Q} \mathbb{E}[G(Q, D)]$?

In general,

$$
\begin{aligned}
\frac{d}{d Q} \mathbb{E}[G(Q, D)] & =c_{o} \mathbb{E}\left[\mathbb{1}_{\{Q>D\}}\right]-c_{u} \mathbb{E}\left[\mathbb{1}_{\{Q<D\}}\right] \\
& =c_{o} \mathbb{P}(Q>D)-c_{u} \mathbb{P}(Q<D) \\
& =c_{o} \mathbb{P}(D<Q)-c_{u}(1-\mathbb{P}(D \leq Q)) \\
& =c_{o} \mathbb{P}(D \leq Q)-c_{u}(1-\mathbb{P}(D \leq Q)) \\
& =-c_{u}+\left(c_{u}+c_{o}\right) \mathbb{P}(D \leq Q)
\end{aligned}
$$

where the penultimate inequality assumes D is a continuous random variable or D is a discrete random variable taking integer values and Q is not an integer.

Setting $\frac{d}{d Q} \mathbb{E}[G(Q, D)]=0$

$$
\frac{d}{d Q} \mathbb{E}[G(Q, D)]=-c_{u}+\left(c_{u}+c_{o}\right) \mathbb{P}(D \leq Q)=0
$$

means we want Q^{*} so that

$$
\mathbb{P}\left(D \leq Q^{*}\right)=\frac{c_{u}}{c_{u}+c_{o}} .
$$

Setting $\frac{d}{d Q} \mathbb{E}[G(Q, D)]=0$

$$
\frac{d}{d Q} \mathbb{E}[G(Q, D)]=-c_{u}+\left(c_{u}+c_{o}\right) \mathbb{P}(D \leq Q)=0
$$

means we want Q^{*} so that

$$
\mathbb{P}\left(D \leq Q^{*}\right)=\frac{c_{u}}{c_{u}+c_{o}} .
$$

Does this Q^{*} give us minimum cost?

Setting $\frac{d}{d Q} \mathbb{E}[G(Q, D)]=0$

For $Q<Q^{*}$:

$$
\begin{aligned}
\frac{d}{d Q} \mathbb{E}[G(Q, D)] & =-c_{u}+\left(c_{u}+c_{o}\right) \mathbb{P}(D \leq Q) \\
& <-c_{u}+\left(c_{u}+c_{o}\right) \mathbb{P}\left(D \leq Q^{*}\right)=0
\end{aligned}
$$

So costs are decreasing in Q until Q^{*} !

Setting $\frac{d}{d Q} \mathbb{E}[G(Q, D)]=0$

For $Q>Q^{*}$:

$$
\begin{aligned}
\frac{d}{d Q} \mathbb{E}[G(Q, D)] & =-c_{u}+\left(c_{u}+c_{o}\right) \mathbb{P}(D \leq Q) \\
& >-c_{u}+\left(c_{u}+c_{o}\right) \mathbb{P}\left(D \leq Q^{*}\right)=0
\end{aligned}
$$

So costs are increasing in Q after Q^{*} !

Pictorially

How to find Q^{*} ?

$$
\mathbb{P}\left(D \leq Q^{*}\right)=\frac{c_{u}}{c_{u}+c_{o}}
$$

In words: We want Q^{*} so that the probability that the demand is Q^{*} or less is $\frac{c_{u}}{c_{u}+c_{o}}$.

If $F(\cdot)$ is cdf of D, then in terms of cdf:

$$
F\left(Q^{*}\right)=\frac{c_{u}}{c_{u}+c_{o}} .
$$

How to find Q^{*} ?

If $F(\cdot)$ has an inverse $F^{-1}(\cdot)$ then

$$
Q^{*}=F^{-1}\left(\frac{c_{u}}{c_{u}+c_{o}}\right) .
$$

How to find Q^{*} ?

If $F(\cdot)$ has an inverse $F^{-1}(\cdot)$ then

$$
Q^{*}=F^{-1}\left(\frac{c_{u}}{c_{u}+c_{o}}\right) .
$$

Continuous random variables have cdfs that are invertible!

$F^{-1}(\cdot)$ and quantiles

- $F^{-1}(q)$ is called the " q-quantile" (of the random variable that has cdf $F(\cdot)$)
- Excel, Python, and R implement the inverse cumulative distribution function for many common distributions
- Here are some useful functions in Excel:
- NORMAL.INV(probability, m, v)
- LOGNORM.INV (probability, m, s)
- GAMMA.INV(probability, alpha, beta)

How to find Q^{*} without an inverse?

$$
\mathbb{P}\left(D \leq Q^{*}\right)=\frac{c_{u}}{c_{u}+c_{o}}
$$

You can use bisection search to find Q^{*} (upto some ε):

- Set $L=0$ and find an integer U large enough that

$$
\mathbb{P}(D \leq U) \leq \frac{c_{u}}{c_{u}+c_{o}}
$$

How to find Q^{*} without an inverse?

$$
\mathbb{P}\left(D \leq Q^{*}\right)=\frac{c_{u}}{c_{u}+c_{o}} .
$$

You can use bisection search to find Q^{*} (upto some ε):

- Set $L=0$ and find an integer U large enough that

$$
\mathbb{P}(D \leq U) \leq \frac{c_{U}}{c_{u}+c_{0}} .
$$

To do this, guess $U=1$, check $\mathbb{P}(D \leq U)$, and keep doubling U until $\mathbb{P}(D \leq U) \geq \frac{c_{U}}{c_{U}+c_{o}}$.

How to find Q^{*} without an inverse?

$$
\mathbb{P}\left(D \leq Q^{*}\right)=\frac{c_{u}}{c_{u}+c_{o}}
$$

You can use bisection search to find Q^{*} (upto some ε):

- Set $L=0$ and find an integer U large enough that

$$
\mathbb{P}(D \leq U) \leq \frac{c_{u}}{c_{u}+c_{o}}
$$

- While $U-L>\varepsilon$:
- Choose $M=\frac{L+U}{2}$.
- If $\mathbb{P}(D \leq M) \geq \frac{c_{u}}{c_{u}+c_{o}}$, set $U=M$
- If $\mathbb{P}(D \leq M)<\frac{c_{u}}{c_{u}+c_{o}}$, set $L=M$.

Example

- Lowe's sells holiday lights for the winter holiday season. During the holiday season, the lights sell for $\$ 2.00$ each.
- Since the product is seasonal, the store decides to sell all unsold lights during the January clearance for \$0.50 each.
- Each string of lights costs the store $\$ 1$.
- Past demand has followed a log-normal(7,3) distribution, which means that the natural log of demand is normal with mean 7 and standard deviation 3.
- Find the optimal order quantity for the season.

Example

We see that if Lowe's orders too many, the cost is $\$ 0.50$ each. If they order too few, each lost sale represents $\$ 1$ of unrealized profit. Thus, $c_{o}=\$ 0.50$, and $c_{u}=\$ 1$. Hence we want Q so that:

$$
F(Q)=\frac{c_{u}}{c_{u}+c_{o}}=\frac{1}{1+.50}=0.6667
$$

where F is the cdf of the log-normal $(7,3)$ distribution.

Example

- Excel's LOGNORM. INV function tells us: $f x=$ LOGNORM.INV $(0.66666,7,3)$

D	E	F	
3992.316399			

- The syntax of LOGNORM. INV is:
=LOGNORM.INV(|
LOGNORM.INV(probability, mean, standard_dev)
- So, we should stock 3992 holiday lights

Newsvendor with the Normal Distribution

If you have a computer:

- Suppose demand is $D \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$
- The optimal order quantity Q^{*} is $F^{-1}\left(c_{u} /\left(c_{u}+c_{o}\right)\right)$
- In Excel, we can calculate this via NORM. INV

Newsvendor with the Normal Distribution

If you don't have a computer:
We'll now show you how to compute Q^{*} and the expected cost $\mathbb{E}[G(Q, D)]$ when $D \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$ without a computer using pencil/paper and normal distribution tables.

Normal Distribution Tables

Computing Q^{*}

- $Q^{*}=F^{-1}\left(c_{u} /\left(c_{u}+c_{o}\right)\right)$

$$
\begin{aligned}
c_{u} /\left(c_{u}+c_{o}\right) & =\mathbb{P}\left(D \leq Q^{*}\right) \\
& =\mathbb{P}\left(\mu+\sigma Z \leq Q^{*}\right) \text { where } Z \sim N(0,1) \\
& =\mathbb{P}\left(Z \leq\left(Q^{*}-\mu\right) / \sigma\right)
\end{aligned}
$$

- Step 1: Find z^{*} such that $c_{u} /\left(c_{u}+c_{o}\right)=\mathbb{P}\left(Z \leq z^{*}\right)$ from the normal distribution tables
Step 2: $Q^{*}=\mu+\sigma z^{*}$

Computing the expected cost if D is normal

$$
\begin{aligned}
& \begin{aligned}
\mathbb{E}[G(Q, D)] & =\mathbb{E}\left[c_{o}(Q-D)^{+}+c_{u}(D-Q)^{+}\right] \\
& =c_{o} \int_{-\infty}^{Q}(Q-x) f(x) d x+c_{u} \int_{Q}^{\infty}(x-Q) f(x) d x .
\end{aligned} \\
& \text { Let's try and calculate } \int_{-\infty}^{Q}(Q-x) f(x) d x .
\end{aligned}
$$

Computing the expected cost if D is normal

Transform to standard normal: $y=(x-\mu) / \sigma$

$$
\begin{aligned}
\int_{-\infty}^{Q} & (Q-x) f(x) d x=\int_{-\infty}^{(Q-\mu) / \sigma}(Q-(\sigma y+\mu)) \varphi(y) d y \\
& =\underbrace{\int_{-\infty}^{(Q-\mu) / \sigma}(Q-\mu) \varphi(y) d y}_{(Q-\mu) \mathbb{P}(D \leq Q)}-\sigma \int_{-\infty}^{(Q-\mu) / \sigma} y \varphi(y) d y .
\end{aligned}
$$

Computing the expected cost if D is normal

- What about $\int_{-\infty}^{t} x \varphi(x) d x$?
- $\varphi(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$
- Here is a weird little fact:

$$
\frac{d}{d x} \varphi(x)=-x \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}=-x \varphi(x)!
$$

$$
\text { So: } \begin{aligned}
\int_{-\infty}^{t} x \varphi(x) d x & =-\int_{-\infty}^{t}\left(\frac{d}{d x} \varphi(x)\right) d x \\
& =-(\varphi(t)-\varphi(-\infty))=-\varphi(t)!
\end{aligned}
$$

Computing the expected cost if D is normal

$$
\begin{aligned}
\int_{-\infty}^{Q} & (Q-x) f(x) d x=\int_{-\infty}^{(Q-\mu) / \sigma}(Q-(\sigma x+\mu)) \varphi(x) d x \\
& =\underbrace{\int_{-\infty}^{(Q-\mu) / \sigma}(Q-\mu) \varphi(x) d x}_{(Q-\mu) \mathbb{P}(D \leq Q)}-\sigma \underbrace{\int_{-\infty}^{(Q-\mu) / \sigma} x \varphi(x) d x}_{-\varphi((Q-\mu) / \sigma)}
\end{aligned}
$$

Computing the expected cost if D is normal

$$
\begin{aligned}
\int_{-\infty}^{Q}(Q-x) f(x) d x & =(Q-\mu) \mathbb{P}(D \leq Q)+\sigma \varphi((Q-\mu) / \sigma) \\
& =\sigma(z \mathbb{P}(D \leq Q)+\varphi(z)) \\
& =\sigma(z \Phi(z)+\varphi(z))
\end{aligned}
$$

where $z=(Q-\mu) / \sigma$.

Computing the expected cost if D is normal

$$
\begin{aligned}
\mathbb{E}[G(Q, D)] & =c_{o} \int_{-\infty}^{Q}(Q-x) f(x) d x+c_{u} \int_{Q}^{\infty}(x-Q) f(x) d x \\
& =c_{o} \sigma(z \Phi(z)+\varphi(z))+c_{u} \int_{Q}^{\infty}(x-Q) f(x) d x .
\end{aligned}
$$

What about $\int_{Q}^{\infty}(x-Q) f(x) d x$?

Computing the expected cost if D is normal

Let $\tilde{D}=-D$, a normally distributed random variable with mean $\tilde{\mu}=-\mu$ and variance σ^{2}.

Now

$$
\begin{aligned}
\int_{Q}^{\infty}(x-Q) f(x) d x & =\int_{-\infty}^{-Q}(-x-Q) \tilde{f}(x) d x \\
& =\int_{-\infty}^{\tilde{Q}}(\tilde{Q}-x) \tilde{f}(x)
\end{aligned}
$$

Can use previous result:

$$
\int_{-\infty}^{\tilde{Q}}(\tilde{Q}-x) \tilde{f}(x) d x=\sigma(\tilde{z} \Phi(\tilde{z})+\varphi(\tilde{z}))
$$

Computing the expected cost if D is normal

$$
\begin{aligned}
\mathbb{E}[G(Q, D)] & =c_{o} \int_{-\infty}^{Q}(Q-x) f(x) d x+c_{u} \int_{Q}^{\infty}(x-Q) f(x) d x \\
& =c_{o} \sigma(z \Phi(z)+\varphi(z))+c_{u} \sigma(\tilde{z} \Phi(\tilde{z})+\varphi(\tilde{z})) .
\end{aligned}
$$

where $z=(Q-\mu) / \sigma$ and $\tilde{z}=(\tilde{Q}-\tilde{\mu}) / \sigma$.

Computing the expected cost if D is normal

$$
\begin{aligned}
\mathbb{E}[G(Q, D)] & =c_{o} \int_{-\infty}^{Q}(Q-x) f(x) d x+c_{u} \int_{Q}^{\infty}(x-Q) f(x) d x \\
& =c_{o} \sigma(z \Phi(z)+\varphi(z))+c_{u} \sigma(\tilde{z} \Phi(\tilde{z})+\varphi(\tilde{z})) .
\end{aligned}
$$

where $z=(Q-\mu) / \sigma$ and $\tilde{z}=(\tilde{Q}-\tilde{\mu}) / \sigma$.
Note: $\tilde{z}=(\tilde{Q}-\tilde{\mu}) / \sigma=(-Q-(-\mu)) / \sigma=(\mu-Q) / \sigma=-z$.

Computing the expected cost if D is normal

$$
\begin{aligned}
\mathbb{E}[G(Q, D)] & =c_{o} \sigma(z \Phi(z)+\varphi(z))+c_{u} \sigma(\tilde{z} \Phi(\tilde{z})+\varphi(\tilde{z})) \\
& =c_{o} \sigma(z \Phi(z)+\varphi(z))+c_{u} \sigma(-z \Phi(-z)+\varphi(-z))
\end{aligned}
$$

where $z=(Q-\mu) / \sigma$.

Computing the expected cost if D is normal

$$
\begin{aligned}
\mathbb{E}[G(Q, D)] & =c_{o} \sigma(z \Phi(z)+\varphi(z))+c_{u} \sigma(\tilde{z} \Phi(\tilde{z})+\varphi(\tilde{z})) \\
& =c_{o} \sigma(z \Phi(z)+\varphi(z))+c_{u} \sigma(-z \Phi(-z)+\varphi(-z))
\end{aligned}
$$

where $z=(Q-\mu) / \sigma$.
Finally note that $\varphi(\tilde{z})=\varphi(-z)=\varphi(z)$ because φ is symmetric about 0 .

Computing the expected cost if D is normal

$$
\begin{aligned}
\mathbb{E}[G(Q, D)] & =c_{o} \sigma(z \Phi(z)+\varphi(z))+c_{u} \sigma(-z \Phi(-z)+\varphi(-z)) \\
& =c_{o} \sigma(z \Phi(z)+\varphi(z))-c_{u} \sigma(z \Phi(-z)-\varphi(z))
\end{aligned}
$$

where $z=(Q-\mu) / \sigma$.

