Lecture 8: Inventory \#1 Introduction and EOQ . February 11th, 2020; updated slides

How should you buy plastic resin for your plastics

 factory?

80,000 pounds at $\$ 0.68$ per pound

1,000 pounds at $\$ 0.88$ per pound

How should you buy garments to stock in your store?

Why hold inventory?

- Uncertainties in external demand
- Production smoothing
- Speculation
- Inventory in transit, or in shipping/receiving
- Volume discounts from suppliers

Goal: keeping costs low

We usually consider 3 kinds of costs when managing inventory:

- Holding costs
- Order costs
- Penalty costs

Holding Costs

- All costs incurred to keep items in inventory
- Warehouse rent, taxes, insurance, climate control, lost interest on tied-up capital, etc.
- Usually written using the notation " h " which is the holding cost to store one item in inventory over one time unit
- Units are often $\$ /$ units inventory-unit time

Order Costs

Usually has a fixed component and a variable component:

$$
C(x)=K+c x
$$

- $K=$ fixed costs per order
- $c=$ variable order cost
- $x=$ number of units in order

Fixed costs can include bookkeeping, order generation, receiving \& handling

Penalty Cost

Cost of not having sufficient stock on hand

- Backorder costs

Bookkeeping, discount price, extra shipping costs, loss of customer goodwill

- Lost sales costs

Lost profit, as potential customer went elsewhere
$p=$ cost per unit backordered
We won't consider the length of the backorder

Three theoretical approaches to managing inventory in this course

- Economic Order Quantity (EOQ)
- Newsvendor
- Continuous Review

Each makes different assumptions, and is a good choice when those assumptions are approximately met

Three theoretical approaches to managing inventory in this course

- Economic Order Quantity (EOQ)
- Newsvendor
- Continuous Review

Each makes different assumptions, and is a good choice when those assumptions are approximately met

We'll also talk about using data + simulation to apply these approaches

Economic Order Quantity (EOQ)

Assumptions

- Known and constant demand rate
- Known and constant lead time
- Instantaneous receipt of material
- No quantity discounts
- No stock outs permitted
- No penalty costs (only order \& holding costs)

Inventory Level
(\# of units in inventory)

Inventory level decreases linearly because the demand rate is constant
$Q=$ order size (and inventory level at time zero)
$T=$ time elapsed between two consecutive orders
The demand rate is $\lambda=Q / T$

When should we order more?

- We need to plan ahead. There is a lead time between when we place the order and when we receive it
- Re-order point: when the inventory hits that level, we should place an order (we call this a "replenishment order")
- A good time to place the order is when we are one "lead time" away from zero inventory

Inventory Level

The average inventory level is $Q / 2$

The average inventory level is $Q / 2$

The average inventory level is $Q / 2$

Knowing the average inventory level tells us the average holding cost

- Average inventory level per unit time $=Q / 2$
- Therefore average holding cost per unit time

Knowing the average inventory level tells us the average holding cost

- Average inventory level per unit time $=Q / 2$
- Therefore average holding cost per unit time $=h Q / 2$

We can also calculate after how many units of time we need to order

Order size is Q
Demand rate is λ items per unit time
Therefore we need to order every $T=$

We can also calculate after how many units of time we need to order

Order size is Q
Demand rate is λ items per unit time
Therefore we need to order every $T=Q / \lambda$ time units.

Cost per unit time

Holding cost: h dollars per unit of inventory per unit time
Average inventory level per unit time $=Q / 2$
Average holding cost per unit time:

Cost per unit time

Holding cost: h dollars per unit of inventory per unit time
Average inventory level per unit time $=Q / 2$
Average holding cost per unit time: $h Q / 2$

Cost per unit time

Holding cost: h dollars per unit of inventory per unit time
Average inventory level per unit time $=Q / 2$
Average holding cost per unit time: $h Q / 2$
Ordering cost: fixed cost K, variable cost c (per item)
Ordering cost per unit time:

Cost per unit time

Holding cost: h dollars per unit of inventory per unit time
Average inventory level per unit time $=Q / 2$
Average holding cost per unit time: $h Q / 2$
Ordering cost: fixed cost K, variable cost c (per item)
Ordering cost per unit time: $(K+c Q) / T$

Cost per unit time

Holding cost: h dollars per unit of inventory per unit time
Average inventory level per unit time $=Q / 2$
Average holding cost per unit time: $h Q / 2$
Ordering cost: fixed cost K, variable cost c (per item)
Ordering cost per unit time: $(K+c Q) / T$
$=(K+c Q) /(Q / \lambda)=\lambda K / Q+c \lambda$

Cost per unit time

Holding cost: h dollars per unit of inventory per unit time
Average inventory level per unit time $=Q / 2$
Average holding cost per unit time: $h Q / 2$
Ordering cost: fixed cost K, variable cost c (per item)
Ordering cost per unit time: $(K+c Q) / T$
$=(K+c Q) /(Q / \lambda)=\lambda K / Q+c \lambda$
So (average) total cost per unit time:
$G=h Q / 2+\lambda K / Q+c \lambda$.

Cost per unit time

Holding cost: h dollars per unit of inventory per unit time
Average inventory level per unit time $=Q / 2$
Average holding cost per unit time: $h Q / 2$
Ordering cost: fixed cost K, variable cost c (per item)
Ordering cost per unit time: $(K+c Q) / T$
$=(K+c Q) /(Q / \lambda)=\lambda K / Q+c \lambda$
So (average) total cost per unit time:
$G=h Q / 2+\lambda K / Q+c \lambda$. This is what we want to minimize

Recall from Calculus

$$
G(Q)=h Q / 2+\lambda K / Q+c \lambda .
$$

We have a continuous function in one variable (h, λ, K and c are parameters that are given to us).

To find optimum:

Recall from Calculus

$$
G(Q)=h Q / 2+\lambda K / Q+c \lambda .
$$

We have a continuous function in one variable (h, λ, K and c are parameters that are given to us).

To find optimum:
Find critical points. Check critical points (and boundary) to see which is minimizer.

Recall from Calculus

$$
G(Q)=h Q / 2+\lambda K / Q+c \lambda .
$$

We have a continuous function in one variable (h, λ, K and c are parameters that are given to us).

To find optimum:
Find critical points. Check critical points (and boundary) to see which is minimizer.

Critical points are where derivative is zero.

Economic Order Quantity Q^{*}

$$
G(Q)=h Q / 2+\lambda K / Q+c \lambda .
$$

Critical points: point where Q is so that $\frac{d}{d Q} G(Q)=0$.

Economic Order Quantity Q^{*}

$$
G(Q)=h Q / 2+\lambda K / Q+c \lambda .
$$

Critical points: point where Q is so that $\frac{d}{d Q} G(Q)=0$. What is $\frac{d}{d Q} G(Q)$?

Economic Order Quantity Q^{*}

$$
\frac{d}{d Q} G(Q)=h / 2-\lambda K / Q^{2}
$$

So critical point (solve for Q):

$$
\begin{gathered}
h / 2-\lambda K / Q^{2}=0 \\
Q^{2}=2 \lambda K / h \\
Q^{*}=\sqrt{2 \lambda K / h}
\end{gathered}
$$

(because we can only order nonnegative amounts.)

Economic Order Quantity Q^{*}

$$
\begin{gathered}
G(Q)=h Q / 2+\lambda K / Q+c \lambda . \\
Q^{*}=\sqrt{2 \lambda K / h}
\end{gathered}
$$

Is this really minimizer?

Economic Order Quantity Q^{*}

$$
\begin{gathered}
G(Q)=h Q / 2+\lambda K / Q+c \lambda . \\
Q^{*}=\sqrt{2 \lambda K / h}
\end{gathered}
$$

Is this really minimizer?
Yes! $\lim _{Q \rightarrow 0} G(Q)=\infty$, and $\lim _{Q \rightarrow \infty} G(Q)=\infty$. (Could also check 2nd derivative.)

There's a tradeoff between order frequency \& inventory level

- If we order large amounts infrequently, we'll have a high average inventory level.
- Our order costs per year will be low, but our holding costs will be high
- Once we turn cash into inventory, we'll have to sell it to turn it into cash again

Large inventories are risky

Risks:

- Product is a fad, and stops being popular
- Product becomes obsolete, and stops selling
- A recession hits, and consumers stop spending
- The product doesn't sell as well as predicted

Long lead times

Be careful of long lead times, then you might have to place a replenishment order well ahead, as shown:

Cost is not too sensitive to Q

Average total cost per time unit

- The curve for G is shallow, so even if your lot size or order quantity is off from the optimal, you won't do too badly
- There are many reasons you might want to place a non-optimal order (maybe the product comes in boxes of 24 units...)

Cost is not too sensitive to Q

Let's see if we can make this precise, by finding a nice upper bound for $G(Q) / G\left(Q^{*}\right)$.

Reinterpreting Q^{*}

$$
G(Q)=h Q / 2+\lambda K / Q+c \lambda .
$$

Q^{*} is so that

$$
h / 2-\lambda K / Q^{2}=0 .
$$

Reinterpreting Q^{*}

$$
G(Q)=h Q / 2+\lambda K / Q+c \lambda .
$$

Q^{*} is so that

$$
h / 2-\lambda K / Q^{2}=0 .
$$

Let's reinterpret that. Multiply Q :

$$
h Q / 2-\lambda K / Q=0 .
$$

What does this say?

Reinterpreting Q^{*}

Q^{*} is so that

$$
h Q / 2=\lambda K / Q
$$

Q^{*} is so that the holding cost per unit time and the fixed ordering costs are equal!

Total Cost of Non-Optimal Q

$$
\begin{gathered}
G(Q)=h Q / 2+\lambda K / Q+c \lambda \\
G\left(Q^{*}\right)=h Q^{*} / 2+\lambda K / Q^{*}+c \lambda=h Q^{*}+c \lambda=2 \lambda K / Q^{*}+c \lambda
\end{gathered}
$$

When $c=0$, the ratio $G(Q) / G^{*}(Q)$:

$$
\begin{aligned}
\frac{G(Q)}{G\left(Q^{*}\right)} & =\frac{h Q / 2+\lambda K / Q}{G\left(Q^{*}\right)} \\
& =\frac{h Q / 2}{G\left(Q^{*}\right)}+\frac{\lambda K / Q}{G\left(Q^{*}\right)} \\
& =\frac{h Q / 2}{h Q^{*}}+\frac{\lambda K / Q}{2 \lambda K / Q^{*}} \\
& \leq \frac{1}{2} \frac{Q}{Q^{*}}+\frac{1}{2} \frac{Q^{*}}{Q}
\end{aligned}
$$

Total Cost of Non-Optimal Q

Now note that $(a+t) /(b+t)$ is nonincreasing in t if $a \geq b$ (you can check this by taking a derivative; intuitively it makes sense because $(a+t) /(b+t) \rightarrow 1$ as $t \rightarrow \infty$ and $a / b \geq 1)$.

We therefore have

$$
\frac{G(Q)}{G(Q *)} \leq \frac{\tilde{G}(Q)}{\tilde{G}\left(Q^{*}\right)}=\frac{1}{2} \frac{Q}{Q^{*}}+\frac{1}{2} \frac{Q^{*}}{Q} .
$$

Ordering intervals

$$
\text { Also } T^{*}=Q^{*} / \lambda \text { and } T=Q / \lambda \text {. }
$$

Therefore

$$
\frac{T}{T^{*}}=\frac{Q}{Q^{*}} .
$$

Ordering intervals

Also $T^{*}=Q^{*} / \lambda$ and $T=Q / \lambda$.
Therefore

$$
\frac{T}{T^{*}}=\frac{Q}{Q^{*}} .
$$

So

$$
\begin{aligned}
\frac{G(Q)}{G\left(Q^{*}\right)} & \leq \frac{1}{2} \frac{Q}{Q^{*}}+\frac{1}{2} \frac{Q^{*}}{Q} \\
& =\frac{1}{2} \frac{T}{T^{*}}+\frac{1}{2} \frac{T^{*}}{T} .
\end{aligned}
$$

Power of Two Ordering

If we have to place orders every week, or every other week, or every fourth week, then our choices are

- Weekly $=2^{0}$
- Bi-weekly $=2^{1}$
- Every four weeks $=2^{2}$.

Power of Two Ordering

Average total cost per time unit

The worst isn't that bad

Suppose we evaluate the cost for $T=2^{m}$ for all m, and select the best one.

How bad can our total cost per time unit be, compare to the cost of Q^{*} ?

The worst isn't that bad

Suppose we evaluate the cost for $T=2^{m}$ for all m, and select the best one.

How bad can our total cost per time unit be, compare to the cost of Q^{*} ?

Can we give a simple (constant, independent of T^{*}) upper bound on

$$
\frac{G(Q)}{G\left(Q^{*}\right)} \leq \min _{i}\left\{\frac{1}{2} \frac{2^{i}}{T^{*}}+\frac{1}{2} \frac{T^{*}}{2^{i}}\right\}
$$

for any T^{*} ?

The worst isn't that bad

Average total cost per time unit

The worst isn't that bad

Let t be so that $2^{t} \leq T^{*} \leq 2^{t+1}$.
Then

$$
\frac{G(Q)}{G\left(Q^{*}\right)} \leq \min \left\{\frac{1}{2} \frac{2^{t}}{T^{*}}+\frac{1}{2} \frac{T^{*}}{2^{t}}, \frac{1}{2} \frac{2^{t+1}}{T^{*}}+\frac{1}{2} \frac{T^{*}}{2^{t+1}}\right\}
$$

Now want to find worst possible T^{*} to find upper bound.

The worst isn't that bad

$$
\begin{aligned}
\frac{d}{d T^{*}}\left[\frac{2^{t}}{T^{*}}+\frac{T^{*}}{2^{t}}\right] & =-\frac{2^{t}}{\left(T^{*}\right)^{2}}+\frac{1}{2^{t}}>0 \text { for } T^{*}>2^{t} \\
\frac{d}{d T^{*}}\left[\frac{2^{t+1}}{T^{*}}+\frac{T^{*}}{2^{t+1}}\right] & =-\frac{2^{t+1}}{\left(T^{*}\right)^{2}}+\frac{1}{2^{t+1}}<0 \text { for } T^{*}<2^{t+1}
\end{aligned}
$$

So worst possible T^{*} is where these are equal:

$$
-\frac{2^{t}}{\left(T^{*}\right)^{2}}+\frac{1}{2^{t}}=-\frac{2^{t+1}}{\left(T^{*}\right)^{2}}+\frac{1}{2^{t+1}} .
$$

The worst isn't that bad

$$
\begin{aligned}
\frac{d}{d T^{*}}\left[\frac{2^{t}}{T^{*}}+\frac{T^{*}}{2^{t}}\right] & =-\frac{2^{t}}{\left(T^{*}\right)^{2}}+\frac{1}{2^{t}}>0 \text { for } T^{*}>2^{t} \\
\frac{d}{d T^{*}}\left[\frac{2^{t+1}}{T^{*}}+\frac{T^{*}}{2^{t+1}}\right] & =-\frac{2^{t+1}}{\left(T^{*}\right)^{2}}+\frac{1}{2^{t+1}}<0 \text { for } T^{*}<2^{t+1}
\end{aligned}
$$

So worst possible T^{*} is where these are equal:

$$
-\frac{2^{t}}{\left(T^{*}\right)^{2}}+\frac{1}{2^{t}}=-\frac{2^{t+1}}{\left(T^{*}\right)^{2}}+\frac{1}{2^{t+1}} .
$$

This gives

$$
T^{*}=2^{t+\frac{1}{2}} .
$$

The worst isn't that bad

$$
\begin{aligned}
\frac{G(Q)}{G\left(Q^{*}\right)} & \leq \frac{1}{2} \frac{2^{t}}{2^{t+\frac{1}{2}}}+\frac{1}{2} \frac{2^{t+\frac{1}{2}}}{2^{t}} \\
& =\frac{1}{2} \frac{1}{2^{\frac{1}{2}}}+\frac{1}{2} 2^{\frac{1}{2}} \\
& =\frac{1}{2} \frac{1}{\sqrt{2}}+\frac{1}{2} \sqrt{2} \\
& <1.061 .
\end{aligned}
$$

The worst isn't that bad

Conclusion

Power of two ordering is never more than 6.1% more expensive than if we could order any moment in time.

