
ORIE 3120

Lecture 6: SQL #5 [Advanced JOINS]

1



Announcements
● To get credit for recitations, either

○ Submit answers on Gradescope by 11:59pm Tuesday night
■ Consider using answer sheet 

○ Attend recitation, write your netID on the board, and submit answers on Gradescope
■ Answers need not be complete and correct to get full credit, but you do need to try

● To format homework
○ Copy-paste queries into Word or Tex document
○ Add screenshots of output 
○ Submit as PDF
○ Screenshots of queries are less likely to get partial credit (b/c they’re harder to run)



SQL questions from Piazza
Where should calculated columns go?

● They can be treated like any other column
● They can appear anywhere it is valid for a field name to appear

○ Eg, after a SELECT, after a GROUP BY, after an ORDER BY, ...



Recall: INNER JOIN
SELECT Suppliers.SupplierID, ProductName, CompanyName

FROM Products INNER JOIN Suppliers

ON Products.SupplierID = Suppliers.SupplierID

For each record in Products:

1. Find all records in Suppliers that match
Products.SupplierID = Suppliers.SupplierID

2. Return a joined record for every match



5

LEFT JOIN



LEFT JOIN
SELECT Products.SupplierID, ProductName, CompanyName

FROM Products LEFT JOIN Suppliers

ON Products.SupplierID = Suppliers.SupplierID

For each record in Products:

1. Find all records in Suppliers that match
Products.SupplierID = Suppliers.SupplierID

2. Return a joined record for every match
3. If there are no matches, return a record 

where the columns from Suppliers are NULL



Example: LEFT JOIN

SELECT Products.SupplierID, 
ProductName, CompanyName

FROM Products
LEFT JOIN Suppliers

ON Products.SupplierID = 
Suppliers.SupplierIDSuppliers

Products



Example: LEFT JOIN

SELECT Products.SupplierID, 
ProductName, CompanyName

FROM Suppliers
LEFT JOIN Products

ON Products.SupplierID = 
Suppliers.SupplierIDSuppliers

Products



9

RIGHT JOIN



RIGHT JOIN
SELECT Products.SupplierID, ProductName, CompanyName

FROM Products RIGHT JOIN Suppliers

ON Products.SupplierID = Suppliers.SupplierID

For each record in Suppliers (Suppliers is the table on the right):

1. Find all records in Products that match
Products.SupplierID = Suppliers.SupplierID

2. Return a joined record for every match
3. If there are no matches, return a record 

where the columns from Products are NULL



RIGHT JOIN
- RIGHT JOIN is like left join, except that the role of the tables to 

the right and left of the “JOIN” keyword are swapped.

- SQLite doesn’t support RIGHT JOIN

- We can achieve the same functionality using LEFT JOIN and 
swapping the two tables



You can get RIGHT JOIN’s functionality in SQLite 
using a LEFT JOIN

If you want this...

SELECT Products.SupplierID, ProductName, CompanyName

FROM Products RIGHT JOIN Suppliers

ON Products.SupplierID = Suppliers.SupplierID

Do this instead…
SELECT Products.SupplierID, ProductName, CompanyName

FROM Suppliers LEFT JOIN Products

ON Products.SupplierID = Suppliers.SupplierID



Let’s practice (Q3)
SELECT T1.id, T1.a, T2.b

FROM T1

LEFT JOIN T2

ON T1.id = T2.id

T1 T2
How many records are 
returned?

(a) 3
(b) 4
(c) 5
(d) 6
(e) 7



Let’s practice (Q4)
SELECT T1.id, T1.a, T2.b

FROM T2

LEFT JOIN T1

ON T1.id = T2.id

T1 T2
How many records are 
returned?

(a) 3
(b) 4
(c) 5
(d) 6
(e) 7



15

FULL OUTER JOIN



SELECT Suppliers.SupplierID, ProductName, CompanyName

FROM Products FULL OUTER JOIN Suppliers

ON Products.SupplierID = Suppliers.SupplierID

1. For each record in Products:

Find all records in Suppliers that match
Products.SupplierID = Suppliers.SupplierID;

return a joined record for every match

2. For each unmatched record in Products, 

return a record where the columns from Suppliers are NULL

3. For each unmatched record in Suppliers:

return a record where the columns from Products are NULL



Example: OUTER JOIN
SELECT Products.SupplierID, 
ProductName, CompanyName

FROM Products
FULL OUTER JOIN Suppliers

ON Products.SupplierID = 
Suppliers.SupplierID

Suppliers

Products



Here’s a way to understand INNER, 
LEFT, RIGHT, and FULL OUTER JOINS

T1 T2

Suppose we run this query:
SELECT * FROM T1
INNER JOIN T2
ON T1.id = T2.id

We get records 
with ids in this set



Here’s a way to understand INNER, 
LEFT, RIGHT, and FULL OUTER JOINS

T1 T2

Suppose we run this query:
SELECT * FROM T1
LEFT JOIN T2
ON T1.id = T2.id

We get records 
with ids in this set



Here’s a way to understand INNER, 
LEFT, RIGHT, and FULL OUTER JOINS

T2

Suppose we run this query:
SELECT * FROM T1
RIGHT JOIN T2
ON T1.id = T2.id

We get records 
with ids in this set

T1



Here’s a way to understand INNER, 
LEFT, RIGHT, and FULL OUTER JOINS

T2

Suppose we run this query:
SELECT * FROM T1
FULL OUTER JOIN T2
ON T1.id = T2.id

We get records 
with ids in this set

T1



FULL OUTER JOIN is not 
implemented in SQLite

That code I just showed you will work in other 
SQL implementations (MySQL, SQL Server, …), 
but not in SQLite

But… we can create the same functionality 
using the UNION keyword



UNION combines the results from 
two SELECT statements

SELECT A,B FROM T

UNION

SELECT C,D FROM S

produces a record set with all of the records 
from the first query, + all of the records from 
the second, with duplicate records removed.



UNION combines the results from 
two SELECT statements

SELECT A,B FROM T

UNION ALL

SELECT C,D FROM S

produces a record set with all of the records 
from the first query, + all of the records from 
the second, without removing duplicates.



Here’s how to reproduce a
FULL OUTER JOIN in SQLite

We want this:

SELECT ProductName, CompanyName

FROM Products
FULL OUTER JOIN Suppliers

ON Products.SupplierID = Suppliers.SupplierID



Write this query instead

SELECT ProductName, CompanyName

FROM Suppliers

LEFT JOIN Products

ON Products.SupplierID = Suppliers.SupplierID

UNION ALL

SELECT ProductName, CompanyName

FROM Products

LEFT JOIN Suppliers

ON Products.SupplierID = Suppliers.SupplierID

WHERE Suppliers.SupplierID IS NULL

Suppliers Products

ProductsSuppliers



Let’s practice (Q5)
SELECT T1.id, T1.a, T2.b

FROM T2

FULL OUTER JOIN T1

ON T1.id = T2.id

T1 T2
How many records are 
returned?

(a) 3
(b) 4
(c) 5
(d) 6
(e) 7



Let’s practice (Q5)
SELECT T1.id, T1.a, T2.b

FROM T2

FULL OUTER JOIN T1

ON T1.id = T2.id

T1 T2
How many records are 
returned?

(a) 3
(b) 4
(c) 5
(d) 6
(e) 7



Let’s practice (Q6)
SELECT T1.id, T1.a, T2.b

FROM T2

FULL OUTER JOIN T1

ON T1.id = T2.id

T1 T2
How many records are 
returned?

(a) 8
(b) 9
(c) 10
(d) 11
(e) 12



Let’s practice (Q6)
SELECT T1.id, T1.a, T2.b

FROM T2

FULL OUTER JOIN T1

ON T1.id = T2.id

T1 T2
How many records are 
returned?

(a) 8
(b) 9
(c) 10
(d) 11
(e) 12



31

NULLs in comparisons



Keep in mind for WHERE/ON/CASE statements:
NULL has tricky behavior in comparisons

• NULL = NULL is false
• NULL <> NULL is false (!= is the same as <>)

• To check whether something is 
NULL or not, use IS NULL and NOT 
IS NULL



This has implications for JOINs on fields with NULLs

SELECT ProductName, CompanyName

FROM Suppliers

LEFT JOIN Products

ON Products.SupplierID = Suppliers.SupplierID

UNION ALL

SELECT ProductName, CompanyName

FROM Products

LEFT JOIN Suppliers

ON Products.SupplierID = Suppliers.SupplierID

WHERE Suppliers.SupplierID IS NULL

Since NULL = NULL 
evaluates to false, the 
records that match this ON 
clause will never be NULL

As a consequence, we 
won’t duplicate records here



Let’s practice (Q7)
SELECT * FROM T4

INNER JOIN T5

ON T4.a = T5.b

T4 T5
How many records are 
returned?

(a) 3
(b) 4
(c) 5
(d) 6
(e) 7



Let’s practice (Q7)
SELECT * FROM T4

INNER JOIN T5

ON T4.a = T5.b

T4 T5
How many records are 
returned?

(a) 3
(b) 4
(c) 5
(d) 6
(e) 7



36

JOINS on multiple tables



We can join multiple tables

Approach 1: Do it in a sequence of views

Approach 2: Do it in one query



T3T2T1

Approach #1:

CREATE VIEW Q1 AS 
SELECT T1.id, T1.a, T2.b
FROM T1
INNER JOIN T2
ON T1.id = T2.id

SELECT Q1.id, Q1.a, Q1.b, 
T3.c
FROM Q1
INNER JOIN T3
ON Q1.id = T3.id



T3T2T1

Approach #2:

SELECT T1.id, T1.a, T2.b, T3.c
FROM T1
INNER JOIN T2
ON T1.id = T2.id
INNER JOIN T3
ON T1.id = T3.id



T3T2T1

Approach #2, alternate syntax:

SELECT T1.id, T1.a, T2.b, T3.c
FROM T1, T2, T3
WHERE T1.id = T2.id 
AND T1.id = T3.id



41

Self JOINS



You can join a table against itself
SELECT M1.Name, M1.MarathonTime,

M2.MarathonTime AS EqualOrBetterTime

FROM Marathoners AS M1

INNER JOIN Marathoners AS M2

ON M1.MarathonTime >= M2.MarathonTime

Marathoners



You’ll use this trick in the 
homework to create rankings

Marathoners



44

LIMIT



Use the LIMIT keyword to get only 
the first few results from a query

SELECT * FROM Products

ORDER BY UnitsInStock + UnitsOnOrder DESC

LIMIT 5



Warning: if the query you LIMIT 
doesn’t use ORDER BY, the records you 

get are out of your control 

SELECT * FROM Products

ORDER BY UnitsInStock + UnitsOnOrder DESC

LIMIT 5



47

CAST



Use the CAST keyword to change 
the datatype of a field

SELECT UnitPrice,
UnitPrice/10,
CAST(UnitPrice AS Double)/10,
UnitPrice/10.0,
1.0*UnitPrice/10

FROM Product



49

Square Brackets



If you have a field or table whose 
name is the same as a keyword, 

enclose it in brackets



51

That’s it for SQL


