ORIE 3120

Lecture 4. SQL #3 [GROUP BY]

GROUP BY

Suppose | want to know how much
was paid for each order

e Orders doesn't have m m
information on how |odem ———= OrderD W
much customers paid lemmeyees Floming

e OrderDetail does e s
(UnitPrice, Quantity, g::%g;doate “
Discount), but there is | |Freight
a record for each Bt
product in an order, :::gggion
not for the whole order | shiprostaicode

ShipCountr'y

Here’s a good start

SELECT OrderlD,

UnitPrice*Quantity*(1-Discount) AS Revenue

FROM OrderDetails
ORDER BY OrderiID

Records with the same
order|D are next to each
other because of the
ORDER BY.

For each block of records
with the same orderlD in
this query result, | want to
sum up the revenue.

OrderID Revenue
$440 —1 10248 168
$1863.4 2\‘ 10248 98
$1552.6 10248 174
$654.06 \ \4 10249 167.4
10249 1696
10250 77
10250 1261.3999999999999
8 10250 214.2
9 10251 95.76
10 10251 | 222.29999999999998
1 10251 336
12 10252 2462.4

1iNDEN

N7 e

© 0O N O O b WN =

K N [P N [
N = O

SQL can aggregate records by

OrderID and sum them

SELECT OrderlD,
SUM(UnitPrice*Quantity*(1-Discount)) AS Revenue
FROM OrderDetails
GROUP BY OrderlID

OrderlID

10248
10249
10250
10251

10252
10253
10254
10255
10256
10257
10258
10259

Revenue
440 - $440
1863.4 - $1863.4
1552.6 $1552.6
654.06 — $654.06
3597.9

1444.8000000000002
556.6199999999999
2490.5

517.8

1119.9

1614.88

100.8

Result from query on the previous slide

OrderlD Revenue
1 10248 168
210248 98
10248 174
4 10249 167.4
10249 1696
6 10250 77
10250 1261.3999999999999
8 10250 214.2
9 10251 95.76
10 10251 222.29999999999998
1 10251 336
12 10252 2462.4

1iNDNEN

N7 e

How to use GROUP BY

Syntax:
SELECTA, SUM(B) FROM T GROUP BY A

For each value of A in the table, GROUP BY:
Finds all records with that value of A
Compute the sum of field B for those records

Table T

Example

What records does this query produce?

A B SELECT A, SUM(B) FROM T GROUP BY A

(@)

_ = W

OO A WN =
W N A A

SUM(B) (b) A sum@B) @ @) a SUM(B)
1 1 6 8 8
2 2 1
3 3 1
1
1
(c) SUM(B) | (e) A SUM(B)

1 1 8
2

__\CD>

3

GROUP BY can do things beyond SUM

SQLite supports these aggregation functions:

SUM: sum of the aggregated records

COUNT: number of aggregated records

AVG: average of the aggregated records

MAX: maximum of the aggregated records

MIN: minimum of the aggregated records
GROUP_CONCAT: concatenates all aggregated records
together, separated by a “,”

TOTAL: like SUM, but returns O instead of NULL when all

aggregated records are NULL

For details see chapter 2 of the reading or
httos://www.salite.ora/lana aaafunc.html

https://www.sqlite.org/lang_aggfunc.html

Example

SELECT A,
SUM(B),
COUNT(B), - Table T
AVG(B), A B
MAX(B),

MIN(B),
GROUP_CONCAT(B)

FROM T
GROUP BY A

A SUM(B) COUNT(B) AVG(B) MAX(B) MIN(B) GROUP_CONCAT(B)
116 3 2 3 1 1,2,3
2 Z | il 1 1 1 1 1
3|1 1 1 1 1 1

_ = W

OO A WON -
W N A A

Here are some more details

The difference between SUM(X) and TOTAL(X) is this:
If all records are NULL, SUM returns NULL,
while TOTAL returns O.

AVG, MIN, MAX, SUM, GROUP_CONCAT all return NULL if all
aggregated records are NULL

COUNT(X) counts the records where X is not NULL
COUNT(*) counts all records

GROUP_CONCAT(X,Y) returns records concatenated with the

[Tl

separator in Y instead of “,

See the reading or https://www.sqlite.org/lang_aggfunc.html

https://www.sqlite.org/lang_aggfunc.html

Examples: GROUP BY details

e compare COUNT field
SELECT CustomerID, COUNT(ShippedDate) AS Count

FROM Orders
GROUP BY CustomerID ORDER BY Count DESC

® vs COUNT *
SELECT CustomerID, COUNT(*) AS Count

FROM Orders
GROUP BY CustomerID ORDER BY Count DESC

Examples: GROUP BY details

® compare TOTAL
SELECT Id, TOTAL(ShippedDate) AS Count

FROM Orders
GROUP BY Id ORDER BY Count ASC

e vsSUM
SELECT Id, SUM(ShippedDate) AS Count

FROM Orders
GROUP BY Id ORDER BY Count ASC

You can group by more than one field

SELECTA, B, SUM(C) FROM T GROUP BY A, B

For each unique value of A in the table:
For each unique value of B in the table:
Finds all records with these values for Aand B
Compute the sum of field C for those records

You can also group by 3 fields, 4 fields, 5 fields, ...

Example

SELECT SupplierID, CategorylD, COUNT(*) AS NumProducts,
SUM(UnitsInStock) AS UnitsInStock
FROM Products

GROUP BY SupplierlD, CategoryID
SupplierID CategorylD NumProducts UnitsinStock

© 00N O O b WON -

= | ==
N = O

OO0 0 hs, A PA,OWOWWON=—-=

1

0O NN PO NONDNDNDDN

2

56
13
133
126
15
29
4
31
108
39
35
24

You can group by calculated fields

These queries all produce the same records

SELECT A+B, SUM(C) FROM T GROUP BY A+B
SELECT A+B AS AB, SUM(C) FROM T GROUP BY AB
SELECT A+B, SUM(C) FROM T GROUP BY 1

Table T Query Result

A|B|C A+B SUM(C)
e 1| 1| 11
2l 1.1 2|15 il - L
313 6 2 3 13
4 2| 1|-2 314 o)
5131 3

Which of these queries could have
produced the screenshot below?

(a) SELECT A+B, SUM(C) FROM T GROUP BY A+B
(b) SELECT A+B AS AB, SUM(C) FROM T GROUP BY AB
(c) SELECT A+B, SUM(C) FROM T GROUP BY 1

(d) (a)or (b)

(e) (a)or(c)

Query Result
A+B SUM(C)

il 2
2|3
3 4

You can filter records in a GROUP BY
with HAVING

SELECT OrderlD,
SUM(UnitPrice*Quantity*(1-Discount)) AS Revenue,
COUNT(*) AS NumProducts

FROM OrderDetail

GROUP BY OrderlD

HAVING COUNT(*)>5

OrderID Revenue NumProducts
1110657 |4371.6 6
2 10847 4931.92 6
3 10979 | 4813.5 6
4 11077 1255.7205000000001 25

This is the same as creating a view and
then filtering the view with WHERE

1. Create a view Q01 with the query:

SELECT OrderlD,
SUM(UnitPrice*Quantity*(1-Discount)) AS Revenue,
COUNT(*) AS NumProducts

FROM OrderDetail

GROUP BY OrderID

2. Run this query:
SELECT * FROM Q01 WHERE NumProducts>5

GROUP BY does not guarantee the
order in which results are returned

In our example above, the results happened to
be returned in order of OrderlID.

That was just luck.

(More precisely, SQLite decided it was faster to return it that way, because of how the data is stored internally)

If you need a particular order, add an ORDER BY:
SELECT OrderlD,
SUM(UnitPrice*Quantity*(1-Discount)) AS
Revenue
FROM OrderDetail
GROUP BY OrderID
ORDER BY OrderID

SELECT statements without an
ORDER BY do not guarantee the
order in which results are returned

If you need a particular order, add an ORDER BY

Next lecture:
JOIN

