
ORIE 3120

Lecture 3: SQL #2
[Basic queries (SELECT, WHERE, ORDER BY, …),

schema design, DDL, DML]
1

2

Questions from Piazza
● Format for hw?

○ SQL command + screenshot

● Where to find recitation, hw, data files, ...?
○ On the website under “Resources” tab

● When are TA office hours?
○ On the website under “Calendar” tab

● iClicker?
○ Ok to use clicker or phone app; recommend buying a clicker (wifi issues!)
○ We’ll begin counting iClicker participation after add deadline

3

Install SQLiteStudio 3.2.1
for recitation & homework

• Download from http://sqlitestudio.pl
• Has versions for Windows, Linux, and Mac OSX.

• The Mac and Windows versions are a bit different.

• The recitations use screenshots from the Windows version.
If you want to use the Mac version that is mostly ok, but you
may need to be patient while we help you work through
issues from time to time.

4

http://sqlitestudio.pl

5

We’ll use this example database.
It’s called the “Northwind” database.
Download it from the course website.

6

Queries

Queries
• A query is a statement describing a data request.

• There are a small set of keywords

• By convention, we capitalize them (SELECT, AS, WHERE, etc.)

• There is a prescribed syntax

7

Here’s a query

SELECT * FROM Products

8

Note: the Northwind database slide I showed you has plural table names, “Products”,
but the demo database has singular names, “Product”.
I’ll write these queries using the singular names.

Here’s that query’s result

• It looks like a table, and can be stored as one.

• When we store a query’s result, we call it a “view”
9

How did we get this?
SELECT * FROM Products

• “*” means “all of the fields”

• “FROM Product” means “get it from the table Product”

• We got all of the records.

• We can be selective and only get some of them.

10

We can choose which fields to get

SELECT ProductName, UnitPrice, QuantityPerUnit
FROM Product

• Here we only look at 3 fields from the table Products

• We look at all the rows

11

12

Here’s that query’s result

WHERE

13

WHERE selects some of the rows
SELECT ProductName, UnitPrice, QuantityPerUnit, SupplierId
FROM Products
WHERE SupplierId=1

• We selected the same 3 columns from the table Products,
plus the column SupplierId

• We got only the products from Supplier #1

14

15

SELECT ProductName, UnitPrice, QuantityPerUnit, UnitsInStock
FROM Products
WHERE UnitPrice > 100

• Here we only see products that cost more than $100 per unit

16

WHERE selects some of the rows

17

SELECT ProductName, UnitPrice, QuantityPerUnit, UnitsInStock
FROM Product
WHERE UnitPrice > 100
AND UnitsInStock = 0

• Here we only at products that cost more than $100 per unit
and that have no units in stock

18

AND lets you filter on multiple conditions

19

What WHERE clause could have
generated this result?

20

The query is:
SELECT A,B FROM T WHERE ….

(a) WHERE A>3 AND B<5
(b) WHERE A>3
(c) WHERE B>5
(d) WHERE A>3 AND B>5
(e) two or more of the above

What WHERE clause could have
generated this result?

21

The query is:
SELECT A,B FROM T WHERE ….

(a) WHERE A>3 AND B<5
(b) WHERE A>3
(c) WHERE A<3
(d) WHERE (A>3 AND B<5) OR A<3
(e) two or more of the above

Calculated columns

22

SELECT ProductName,
UnitPrice,
UnitsInStock,
UnitPrice*UnitsInStock,
ROUND(UnitPrice,1),
ABS(UnitPrice-5)

FROM Products

23

You can do some math with your fields

24

But not very much math

25

https://www.sqlite.org/lang_corefunc.html

SQLite supports these math functions: abs, max, min, random, round.
We’ll talk about other functions in a bit.

Other variants
of SQL let you
do more math

26

SELECT QuantityPerUnit,

LTRIM(QuantityPerUnit,'0123456789'),

SUBSTR(QuantityPerUnit,2,8),

SUBSTR(QuantityPerUnit,-2,2),

LENGTH(QuantityPerUnit),

UPPER(QuantityPerUnit)

FROM Products

27

SQLite lets you manipulate strings

28

What command generated the
“Col” column?

29

(a) SUBSTR(ProductName,5,2)
(b) SUBSTR(ProductName,1,5)
(c) LTRIM(ProductName,’abc’)
(d) SUBSTR(ProductName,5,-2)
(e) SUBSTR(ProductName,2,5)

Concatenation

● The double-pipe operator || concatenates two strings

SELECT CompanyName || ' Ltd.' FROM Shippers

● Results:

30

Descriptions of these string commands are available in the
SQLite documentation

31

https://www.sqlite.org/lang_corefunc.html

SELECT ProductName,
UnitPrice,
UnitsInStock,
UnitPrice*UnitsInStock AS InventoryValue,
ROUND(UnitPrice,1) AS RoundedUnitPrice,
ABS(UnitPrice-5)

FROM Products

32

You can rename your fields using AS

33

34

You can’t refer to a renamed field within
another field, only in the things that come

after FROM

SELECT ProductName,
UnitPrice,
UnitsInStock,
UnitPrice*UnitsInStock AS InventoryValue,
InventoryValue*0.88 As InventoryValueInEuros

FROM Products

(This won’t work)

SELECT ProductName, SupplierID,
UnitsInStock,UnitsOnOrder,ReorderLevel,
CASE WHEN ReorderLevel>UnitsInStock+UnitsOnOrder
 THEN ReorderLevel-UnitsInStock-UnitsOnOrder
 ELSE 0
END AS SuggestedOrder
FROM Products

35

You can use CASE statements

36

You can refer to renamed fields
in WHERE clauses

SELECT ProductName, SupplierID,

UnitsInStock,UnitsOnOrder,ReorderLevel,

CASE WHEN ReorderLevel>UnitsInStock+UnitsOnOrder

THEN ReorderLevel-UnitsInStock-UnitsOnOrder

ELSE 0

END AS SuggestedOrder

FROM Products

WHERE SuggestedOrder > 0
37

38

You can look up NULL values

SELECT *

FROM Orders

WHERE ShippedDate IS NULL

39

You can return NULL as a value

SELECT ProductName, SupplierID,

UnitsInStock,UnitsOnOrder,

CASE WHEN UnitsInStock>0

THEN UnitsOnOrder / UnitsInStock

ELSE NULL

END AS OnOrderRatio

FROM Products

40

41

ORDER BY

42

You can order your results
SELECT ProductID, ProductName, UnitPrice, UnitsInStock

FROM Products

ORDER BY UnitPrice DESC

• Here we look at all fields and records
• But, they are now sorted
• DESC sorts in descending order, ASC sorts in ascending order

43

44

You can order by calculated columns
SELECT ProductID, ProductName, UnitPrice, UnitsInStock,

UnitsInStock*UnitPrice

FROM Products

ORDER BY UnitsInStock*UnitPrice DESC

45

46

SELECT ProductID, ProductName, UnitPrice, UnitsInStock,

UnitsInStock*UnitPrice

FROM Products

ORDER BY 5 DESC

47

• UnitsInStock*UnitPrice is the 5th column

You can refer to columns
by their column number

(for when you don’t want to type out the full calculation again)

SELECT ProductID, ProductName, UnitPrice, UnitsInStock,

UnitsInStock*UnitPrice AS InventoryValue

FROM Products

ORDER BY InventoryValue DESC

48

You can also give the column a name
with AS and refer to that

• The results will be the same as before.

49

SELECT STATE, ROUND(Murder,0) AS N
FROM CrimeRatesByState2005
ORDER BY 2,1

You can sort by 2 or more columns

Sorts by this
column first
(ascending
order is the
default)

Then it sorts by
this column
(again, in
ascending
order)

You can specify different sort orders
for the columns

SELECT STATE, ROUND(Murder,0) AS N

FROM CrimeRatesByState2005

ORDER BY 2 ASC,1 DESC

50

51

Views

Views are saved queries

52

Create them by
clicking this button

You can refer to them
in other queries or
views

53

54

Schema Design

From first lecture: A database schema is a
collection of tables related by keys

55

Primary Key

56

A primary key is a field (or collection of fields) in a table.

It must satisfy these properties:

1. Each record has a unique value
2. No record has a NULL value

It helps the database identify a record uniquely.

If you try to add two records with the same value for a primary key,
the database will give you an error.

If we just say “key”, we usually mean “primary key”

In our diagrams, we indicate
primary keys with boldface

57

Primary key

Primary key

Definition: Foreign Key

• A foreign key is a field (or collection of fields) in
one table that references another field (or
collection of fields).

• Values in the referenced field(s) must be unique.

• The referenced field(s) is/are usually in a
different table, but can be in the same table.

•

59

Foreign Key Example

Foreign key

Field identified
with foreign key

Foreign Key
Example

60

OrderID ... ShippedDate ShipVia ...

1 1/24/2019 4

2 1/24/2019 1

3 1/25/2019 2

4 1/26/2019 4

...

Field identified
with foreign key

Foreign key

ShipperID CompanyName Phone

1 UPS 888-123-4567

2 FedEx 888-314-1592

3 USPS 888-271-8281

4 DHL 888-141-4213

• The ShipVia field is a foreign key for the
Orders table.

• This foreign key references the ShipperID field
in the Shippers table.

• The foreign key ensures that for
every ShipVia in the Orders
table, there is a corresponding
ShipperID in the Shippers table.

Foreign Key
• The table referencing is called the “child”

• The table being referenced is called the “parent”

• A foreign key indicates a one-to-many
relationship:
– A record in the parent table may be referenced by

many records in the child table

– A record in the child table references at most one
parent

63

In our diagrams, we indicate foreign
keys with a line labeled by ∞

Foreign key,
in child table

Field identified
with foreign key
in parent table

• For a value to be inserted for ShipVia in the
child table, a value for ShipperID in the parent
table must exist.

• For a value to be removed for ShipperId in the
parent table, all corresponding values for
ShipVia must be removed from the child table.

• This is called “referential integrity”

65

• You can also have NULL values for a foreign key.

• This means that record in the child table does not
refer to the parent table.

66

Here are some more foreign keys

Which of these are legal
(foreign key, referenced field) pairs?

 T1 T2 (a) T1.A references T2.C
(b) T1.A references T2.D
(c) T2.C references T1.A
(d) T2.D references T1.A
(e) None of the above

*do not include keys that reference themselves;
only include keys that are a single field

Which of these are legal
(foreign key, referenced field) pairs?

 T1 T2 (a) T1.B references T2.C
(b) T1.B references T2.D
(c) T2.C references T1.B
(d) T2.D references T1.B
(e) None of the above

*do not include keys that reference themselves;
only include keys that are a single field

How many legal
(foreign key, referenced field) pairs can

you identify in these two tables*?
T1 T2 (a) 0

(b) 1
(c) 2
(d) 3
(e) 4

*do not include keys that reference themselves;
only include keys that are a single field

Let’s do an exercise
in schema design

70

• Suppose our orders can go out in multiple shipments
• How should we change our schema?

71

72

How can we change our schema to handle multiple shipments per order?

73

Creating, Altering, and
Deleting Tables & Views

SQL commands for creating, altering,
and deleting table and view schema
• Data Definition Language (DDL) is the part of SQL that enables a

database user to create and restructure database objects, such as
the creation or deletion of a table

• Commands:

– CREATE [creates a new table or view]

– ALTER [alters an existing table or view]

– DROP [gets rid of a table or view]

• In this class we’ll use SQLiteStudio’s GUI instead of these
commands, so their syntax won’t be on HW or exams. 74

To give you a flavor for how they work, here is a table and
the corresponding CREATE TABLE command

CREATE TABLE TestTable (

Column1 INTEGER PRIMARY KEY,

Column2 VARCHAR (50) NOT NULL,

Column3 DATE) 75

DROP TABLE TestTable

76

Inserting, Updating, and
Deleting Data

SQL commands for
altering data in tables

• Data Manipulation Language (DML) is the part of SQL used to
manipulate the data within objects of a database

• Commands:

– INSERT

– UPDATE

– DELETE

• For changing just a few rows, you can use SQLite Studio’s GUI

• For changing lots of rows, either with SQL only or by calling
SQL commands from R or Python, the commands are useful 77

INSERT
• The basic syntax is:

INSERT INTO Tablename

VALUES (‘value1’,’value2’,’value3’)

• Note the single quotes!

• We put single quotes around most data types, but not around
numeric data

Example
• Let’s create a table Clothing with the structure

ProductId VARCHAR(10)

ProductDescrip VARCHAR(25)

Cost NUMBER(6,2)

…we would use
CREATE TABLE Clothing (

ProductID INTEGER PRIMARY KEY,

ProductDescrip VARCHAR (25),

Cost NUMBER(6,2))

INTEGER

Example
• Now to insert values into the table Clothing with the structure

ProductId VARCHAR(10)

ProductDescrip VARCHAR(25)

Cost NUMBER(6,2)

…we would use

INSERT INTO Clothing VALUES('725' , 'Sunglasses' , 24.99);

INSERT INTO Clothing VALUES('726' , 'Hat' , 14.99)

● Notice: separate queries with semicolon ;

INTEGER

Here’s Clothing after this INSERT

81

Fancier INSERT
INSERT INTO Clothing

SELECT ProductId+1000,

'Fancy ' || ProductDescrip,

Cost+100

FROM Clothing

There are 2 new rows in Clothing

83

UPDATE
• The simplest use of UPDATE is to update the value of a single

column for a single record in a table

• The syntax is

UPDATE TableName

SET ColumnName = ‘value’

WHERE condition

Example
• If we want to lower the price for our fancy hat:

UPDATE Clothing

SET Cost = 57.95

WHERE ProductId = 1726

Now the fancy hat is $57.95

86

Another Example
• If we wanted to raise prices by 5%:

UPDATE Clothing

SET Cost = ROUND(Cost*1.05,2)

• This affects all of the rows in the table, and would take a long
time to do manually on a table with a 10,000 records

• You could add a WHERE clause if you only wanted to raise the
prices for some products

88

Now prices are 5% higher

DELETE
• Be careful with this command, you do not want to delete

useful data by mistake!

• It removes an entire row of data from the table.

• It could be incorrect data, duplicate data, or a discontinued
product, for example.

DELETE
The syntax is:

DELETE FROM TableName

WHERE condition

This is much better than the GUI if you have a lot of data to
delete

Example
● Delete that cheap hat
DELETE FROM Clothing

WHERE ProductId = 726

● The following command deletes all the data in the table!

DELETE FROM Clothing

● That’s different from deleting the table itself:

DROP TABLE Clothing

92

93

Result of first command

94

Next lecture:
GROUP BY

