ORIE 3120: Industrial Data and Systems Analysis
 Spring 2020
 Homework \#4
 Due Date: 2/28/2020 (Friday) 2:30pm

Upload 1 file to gradescope: A pdf containing the answers to all questions and screenshots of the .xls or .xlsx file containing the spreadsheet created in question 4.

Question 1 (25 points). The Ithaca Science Center is ordering t-shirts to sell in their souvenir shop. Each t-shirt costs the Science Center $\$ 7.00$ to purchase. The holding cost per t-shirt is due solely to lost interest, and is $\$ 2.00$ per year. Each order costs $\$ 50$ to process and ship. Demand for the t-shirts is constant over time, and is 350 per year. Each t-shirt sells for $\$ 12.99$ each. The lead time is 3 weeks.
a) Find the optimal number of t-shirts that the Science Center should order in each batch.
b) Find the inventory level that would trigger a replenishment order.
c) Find the average inventory level under the optimal order quantity.
d) What is the smallest price that the Science Center can charge for their t-shirts and not lose money? Assume that they operate their system using the optimal order quantity from (a).
e) Suppose that the supplier requires t-shirts to be ordered in multiples of 10 shirts. What is the optimal order quantity that meets this requirement?

Question 2 (25 points)

In the analysis of EOQ in class, we assumed that the cost of placing an order for x units was $\mathrm{c}(\mathrm{x})$ $=K+c x$. What is the optimal order quantity if the cost is $c(x)=K+d^{2}$?

Question 3 (25 points)

In the analysis of EOQ in class, we assumed that the cost per unit time for holding x units was hx . What is the optimal order quantity if the cost per unit time for holding x units is hx^{2} ?

Question 4 (25 points)

Create an Excel spreadsheet that implements the algorithm on slide 37 Lecture 8 (the bisection algorithm). Given this mean m, and a number q strictly between 0 and 1, this spreadsheet should find an integer Q^{*} such that $P\left(D<=Q^{*}\right)>=q$ and $P\left(D<=Q^{*}-1\right)<q$.

Assume that D has the Poisson distribution. The Poisson distribution is a discrete probability distribution often used for modeling demand. The probability mass function for a Poisson with mean m is $P(D=k)=m^{k} \exp (-m) / m!$, for $k=0,1,2, \ldots$ The cumulative distribution function for D can be computed using Excel's POISSON.DIST function. Take a moment to read about

POISSON.DIST in Excel's online help to see how it works. For example, to compute $P(D<=13)$ when D has a mean of 10, use POISSON.DIST(13,10,TRUE).

Here is a screenshot of what your completed spreadsheet will look like, run using $\mathrm{q}=0.5$ and a Poisson distribution with mean 10.

-		A	B	C	D	E
1		10	<-Mean of Poisson			
2		0.5	<-q			
3						
4	L		U	Q	$\mathrm{P}(\mathrm{D}<=\mathrm{Q})$	Done?
5		0	100	50	1	No
6		0	50	25	0.99998232	No
7		0	25	13	0.86446442	No
8		0	13	7	0.22022065	No
9		7	13	10	0.58303975	No
10		7	10	9	0.45792971	No
11		9	10	10	0.58303975	Yes
12		9	10	10	0.58303975	Yes
13		9	10	10	0.58303975	Yes
14		9	10	10	0.58303975	Yes
15		9	10	10	0.58303975	Yes
16		9	10	10	0.58303975	Yes
17		9	10	10	0.58303975	Yes
18		9	10	10	0.58303975	Yes
19		9	10	10	0.58303975	Yes

This solution uses these Excel functions, which you can read about in the Excel help or online:

- POISSON.DIST
- ROUND
- IF

It starts with initial values for L and U in row 4 (the value of U must be chosen large enough that $P(D<=Q)$ is above $q)$, and with the mean of the Poisson and q in rows 1 and 2. In each row, columns C, D, and E are computed from the values to their left, and columns A and B are computed from values above. When the spreadsheet has "Yes" in the Done column, the solution is found in the U column.

Use your spreadsheet to find Q^{*} for a Poisson distribution with mean 10 for $q=0.7$. include a screenshot of your spreadsheet along with your calculated value for Q^{*} in your pdf submission.

