ORIE 3120: Industrial Data and Systems Analysis
Spring 2020
Homework #3
Due Date: 2/19/2020 (Wednesday) 2:30pm

1. SQL: Joins and Aggregations (20 points)
Download the database HW3Q1.sqlite. In that database, there are two tables: Dept and

Empl.

Table “Dept” has four records:
DeptlID DepartmentName
1 Engineering
2 Data Science
3 Product
4 Finance

Table “Empl” has six records:
EmployeelD DeptlD Name

1001 1 Qing
1002 1 Eugene
1003 2 JR

1004 2 Francisca
1005 3 AJ

1006 6 Arthur

In this question you will write four queries using joins and group bys to produce different
query results. For each of the four parts below, write a query that reproduces the same
set of records (you do not need to reproduce the order in which they are shown). There
are multiple queries that will produce the same records.

Required Submission for each part:
e In your pdf file:
o Your queries
o Screenshot of the query results verifying that you were able to reproduce
the required records
e In your text file:
o Your queries

(a) Write a query that produces the following result:

DepartmentName
Engineering
Engineering

Data Science
Data Science
Product

EmployeeName
Qing

Eugene

JR

Francisca

AJ

(b) Write a query that produces the following result:

DepartmentName EmployeeName

Engineering
Engineering
Data Science
Data Science
Product

Qing
Eugene
JR
Francisca
AJ

Arthur

(c) Write a query that produces the following result:
DepartmentName EmployeeName

Engineering
Engineering
Data Science
Data Science
Product
Finance

Eugene
Qing
Francisca
JR

AJ

(d) Write a query that produces the following result:
DepartmentName EmployeeName

Engineering
Engineering
Data Science
Data Science
Product

Finance

Qing
Eugene
JR
Francisca
AJ

Arthur

(e) Write a query that produces the following result:
DepartmentName NumEmployees

Data Science
Engineering
Finance
Product

2

2
0
1

2. SQL: Joins and Aggregations (20 points)
The example database used in class is called the "Northwind" database. It has the

following schema. Download this database here: HW3_Northwind.sqlite.

Customers i
% CustomerID z Orﬂcl:rs Order Details
COrderlD &
CompanyMame ‘___\m Custom Bl % OrderD
ContactMame 00 Employs % ProductiD
ContactTitle OrderD UnitPrice
Address Require|.3 Chuantity
City - = Discount
Region
PaostalCode
Country
E:;”E ShipAdt
ShipCi
ChiEDativ
Employees Shippers Products
¥ EmployeelD @ Shipperd % ProductD
LastMame CompanyM ProductMar g
FirsthName B SupplierD - Suppliers
Title CategorylD 7 SupplierlD &
TitleOfCourtesy QuantityPe CompanyNamnE|
BirthDate UnitPrice ContactMame
HireDate UnitsInStot ContactTitle
Address UnitsQOnQr Address
City Categories ReorderLey City
Region ¥ categoryD Discontinu
PostalCode CategoryMame
Country Description
HomePhone Picture
Extension
Photo
Motes
ReportsTo

As an inventory manager for the Northwind company, you are interested in knowing
what fraction of your inventory in each category is obsolete (discontinued). If you see a
category with a high fraction of obsolete inventory, then you would want to have a
meeting with the purchasing manager to discuss the problem. Let’s create a set of queries
that will compute this for you.

The Products table has most of the data you need. Your total inventory position in a
product should be considered the sum of UnitsInStock and UnitsOnOrder (the units on
order will arrive and become part of your inventory). It does not make sense to add units
of different products together (literally “apples” and “oranges’), so you should multiply
by UnitPrice first. That is, InventoryPositionValue equals
(UnitsInStock+UnitsOnOrder)*UnitPrice. You could then use a CASE clause based on
the Discontinued field to determine the value of your discontinued product. That is,
DiscontinuedInventoryPositionValue is equal to InventoryPositionValue if Discontinued
is true, and O if it is false.

You would then want to compute totals of these two numbers (InventoryPositionValue
and DiscontinuedInventoryPositionValue) grouped by CategoryID. From these two
totals, for each category, you could compute the fraction of discontinued value to total
value. You should avoid dividing by zero (another CASE clause: if the sum of

InventoryPositionValue within a category is strictly less than 0.01 then the fraction is
Z€ro.).

Finally, you could join the result with the categories table to get the category name for
each categoryID in the result. So, your final query result would include the following
fields: CategoryName, SumInventoryPositionValue,
SumDiscontinuedInventoryPositionValue, FractionDiscontinuedValue and it will have
exactly one row for each category represented in the Products table. You may use shorter
or different names if you like.

You may solve this problem with a different sequence of queries but at least one of your
queries must use an INNER JOIN.

Required Submission:
e In your pdf file:
o Your queries
o Screenshot of the final query result
e In your text file:
o Your queries

3. SQL: Cross Products and Aggregations (20 points)
The data for this problem are in the database called HW3_Pareto.sqlite, which gives a
table of production hours (number of hours spent producing the product) within a
single workcenter, for each product id:

| # | ProductlD ProductionHours
1|A406-030 4385
2| A406-040 8592
3| A500-015 785
4|B127-010 328
5|C120-010 124
6| ME20-010 2893
7| MB30-010 35
8| N900-010 57
9| R400-020 1136
10 | R400-025 1893
11 R400-030 43
12 | 5830-010 68
13 | 5830-040 23
14 | T103-080 13290
15| X999-000 2

Observe the wide variation in the number of production hours by product. I would
like to graph this by ranking the products according to production hours

(largest-producing product first) and then plotting the cumulative production hours by
production rank. It will look like this:

Pareto Analysis of Production Hours In Workcenter

35,&0::' —————8
3n.:mi

25,000 ,/r

20,000 /‘F/

15,000

10,000

5,000

Cumulative Production Hours in
Workcenter

i 2 3 4 5 B ? 4 k] 10 11 12 13 14 15
Products in Production Rank Order

This sort of cumulative plot is called a “Pareto Analysis.” It helps to dramatize the
fact that a small fraction of the products being produced account for most of the
production hours in the workcenter. Three of the products in particular (20% of the
product numbers) account for more than 25,000 hours (78% of the total). It

| ProductlD | ProductionHours | FroductionRank | CumulativeHours

1| A406-030 | 4385 3 26267
2| A406-040 | B592 2 21882
3| AS00-015 | 785 7 32974
4|B127-010 | 328 B 33302
5(/C120-010 | 124 9 33426
6| MB20-010 | 2893 4 29160
7| M830-010 |35 13 33629
8| N900-010 |57 11 33551
8| R400-020 | 1136] 32189
10| R400-025 | 1893 5 31053
11| R400-030 |43 12 33594
12 | 5830-010 |68 10 33494
13 | 5830-040 |23 14 33652
14| T103-080 | 13290 1 13290
15| X999-000 |2 15 313654 immediately raises

questions such as why the lower volume products are being produced at all. You will
want to use this type of chart in presentations to management.

Once you have the data to plot, creating the plot using plotting software (Excel, R,
python, etc.) is straightforward. However, you will need to prepare the data for
plotting first using SQL. This is a non-trivial task and requires a trick. I created the

data for the above plot using three queries. The results were as follows:

| ProductiD | ProductionHours | GreaterProductlD | GreaterProductionHours |

1|A406-030 (4385 A406-030 4385
2| A406-030 | 4385 A406-040 8592
3 | A406-030 | 4385 T103-080 13290
4| A406-040 | 8592 A406-040 8592
5| A406-040 | 8592 T103-080 13290
6| A500-015 | 785 A406-030 4385
7| A500-015 [785 A406-040 8592
8| A500-015 |785 A500-015 785

9| A500-015 |785 MB20-010 2893
10| A500-015 | 785 R400-020 1136
11| A500-015 | 785 R400-025 1893
12| A500-015 | 785 T103-080 13290
13| B127-010 | 328 A406-030 4385
14| B127-010 | 328 A406-040 8592
15| B127-010 |328 A500-015 785

16| B127-010 |328 B127-010 323

17| B127-010 |328 MB20-010 2893
18 | B127-010 |328 R400-020 1136
19| B127-010 |328 R400-025 1893

... (there were additional rows in the result of this first query)

| ProductionRank | CumulativeHours
a1 13290
2|2 21882
3|3 26267
414 29160
55 31053
6|6 32189
£ 7 32974
8|8 33302
8 O 33426
10|10 33404
11111 33551
12112 33504
13]13 33629
41 14 33652
g5 15 33654
Sketching my approach:

e [created the first query, saving it as a view, with two copies of the same table
(not joined: 1.e. all possible combinations) but restricted to combinations for

which production hours in one table were greater than or equal to production
hours in the other table. Note that you can use the AS keyword for tables in
the same way that you use it for columns.

e Then I performed an aggregation query over the results from this view,
grouping on fields from the first copy of the table, counting records from the
second copy of the table (to get ProductionRank), and summing production
hours in the second copy of the table (to get Cumulative Hours). I saved this
query as a second view.

e Finally, I wrote a query selecting only the ProductionRank and
CumulativeHours fields and sorting by ProductionRank, saving it as a third
view.

There are other ways to accomplish this same effect in SQL. If you prefer, you can
use a different approach than the one described above. However, it must result in a
correct answer to part (a) below.

(a) Write a query or a series of queries that results in two fields, ProductionRank and
CumulativeHours, sorted by ProductionRank, as shown in the last query result above.

(b) Copy or export the final query result to a spreadsheet program like Excel and print
out a chart with a format similar to the Pareto chart above. If you want to use
different plotting software (R, Python, gnuplot, etc.), that is fine.

Because the query result is short, using copy & paste is easiest (just select them, use
the “copy” keyboard shortcut to copy them to the clipboard, and then use paste in
Excel). If you prefer to export them, you can on the export icon,

5

Then select “Query results”. SQLiteStudio will then ask you to type in a query whose
results you want to save. You can either copy and paste the the query from the third
view you created, or you can type the query SELECT * FROM ViewName, where
you have substituted the name that you used for your third view. This will let you
save the view’s results as a csv, which you can then import to Excel or other plotting
software.

Required Submission:
e In your pdf file:
o Your queries
o Screenshots of the few few lines of the results from each query
o Screenshot of your plot
e In your text file:
o Your queries

4. Prerequisite Material on Normal Distributions From ENGRD 2700 (20 points)
We will soon be using material you learned in ENGRD 2700 or an equivalent class, in
units on inventory management and statistics. This question will help you remember and
review some of this material. If you find this question difficult, that is a sign that you
may need to budget extra time in the upcoming weeks to refresh other concepts from
ENGRD 2700.

X and Y are two independent normal random variables, each with mean 0 and variance 1.
Z=a*X + b*Y, where a and b are two real numbers. Probabilities may be computed using
these normal distribution tables, the NORM.DIST function in Excel, or any other method
you are comfortable with from ENGRD 2700 or equivalent. Provide answers to each of
the following calculations in your pdf file:

(a) Calculate E[Z]

(b) Calculate Var[Z]

(c) Calculate Cov[Z,X]

(d) Calculate P(X>1)

(e) Calculate P(X>1 and Y<O0)

https://support.office.com/en-us/article/norm-dist-function-edb1cc14-a21c-4e53-839d-8082074c9f8d

