Automating Machine Learning

Madeleine Udell

Operations Research and Information Engineering
Cornell University

Based on joint work with Chengrun Yang (Cornell)

WIDS workshop, March 2021
Outline

Why AutoML?

Techniques

Hyperparameter tuning
Pipeline selection
Ensembles and stacking
Metalearning

Systems

Challenges and conclusion
So many machine learning problems...
...so little time

classifiers = [
 KNeighborsClassifier(3),
 SVC(kernel="linear", C=0.025),
 SVC(gamma=2, C=1),
 GaussianProcessClassifier(1.0 * RBF(1.0)),
 DecisionTreeClassifier(max_depth=5),
 RandomForestClassifier(max_depth=5, n_estimators=10, max_features),
 MLPClassifier(alpha=1, max_iter=1000),
 AdaBoostClassifier(),
 GaussianNB(),
 QuadraticDiscriminantAnalysis())

source: https://scikit-learn.org
Different models perform differently

source: https://scikit-learn.org
Decisions, decisions...

a pipeline: a directed graph of learning components

so many choices to make:

▶ data imputer: fill in missing values by median? ...
▶ encoder: one-hot encode? ...
▶ standardizer: rescale each feature? ...
▶ dimensionality reducer: PCA, or select by variance? ...
▶ estimator: use decision tree or logistic regression? ...
▶ hyperparameters: depth of decision tree?
No Free Lunch

On 215 midsize OpenML classification datasets:

- The best-on-average pipeline (highest average ranking):
 - impute missing entries by mode
 - encode categorical as integer
 - 0 mean and unit variance for each feature
 - remove features with 0 variance
 - gradient boosting with learning rate 0.25 and maximum depth 3
 - Predictions

- The best estimator for each dataset:
 - gradient boosting - 38.60%
 - multilayer perceptron - 20.93%
 - kNN - 10.23%
 - adaboost - 8.84%
 - extra trees - 5.58%
 - logistic regression - 5.58%
 - decision tree - 3.72%
 - random forest - 3.26%
 - linear SVM - 1.86%
 - Gaussian naive Bayes - 1.40%

source: [Yang et al.(2020) Yang, Fan, Wu, and Udell]
No Free Lunch

On 215 midsize OpenML classification datasets:

- The best-on-average pipeline (highest average ranking):
 - impute missing entries by mode
 - encode categorical as integer
 - raw dataset
 - imputer
 - encoder
 - standardizer
 - dimensionality reducer
 - estimator
 - Predictions

- The best estimator for each dataset:

 - gradient boosting - 38.60%
 - multilayer perceptron - 20.93%
 - kNN - 10.23%
 - adaboost - 8.84%
 - extra trees - 5.58%
 - logistic regression - 5.58%
 - decision tree - 3.72%
 - random forest - 3.26%
 - linear SVM - 1.86%
 - Gaussian naive Bayes - 1.40%

source: [Yang et al.(2020)Yang, Fan, Wu, and Udell]

Theorem (No free lunch [Wolpert(1996)])

There is no one model that works best for every problem.
Problem solved!

```python
>>> import autosklearn.classification
>>> cls = autosklearn.classification.AutoSklearnClassifier()
>>> cls.fit(X_train, y_train)
>>> predictions = cls.predict(X_test)

from flaml import AutoML
automl = AutoML()
automl.fit(X_train, y_train, task="classification")

dlc = TabularDataLoaders.from_csv(path='adult.csv', pathy=y, names='salary',
cat_names=['workclass', 'education', 'marital-status', 'occupation',
'relationship', 'race'],
cont_names=['age', 'fnlwgt', 'education-num'],
procs=['Categorify', 'FillMissing', 'Normalize'])

learn = tabular_learner(dlc, metrics='accuracy')
learn.fit_one_cycle(1)

from autogluon.tabular import TabularDataset, TabularPredictor
train_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv')
test_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv')
predictor = TabularPredictor(label='class').fit(train_data, time_limit=60)  # Fit models for 60s
leaderboard = predictor.leaderboard(test_data)
```

Run AutoML for 28 base models (limited to 1 hour max runtime by default)
aml = H2OAutoML(max_models=28, seed=1)
aml.train(x=x, y=y, training_frame=train)
Definitions

automated machine learning (AutoML) chooses a ML model + hyperparameters so you don’t have to.

types of AutoML:
automated machine learning (AutoML) chooses a ML model + hyperparameters so you don’t have to.

types of AutoML:

▶ hyperparameter tuning chooses the best hyperparameters for the model
Definitions

automated machine learning (AutoML) chooses a ML model + hyperparameters so you don’t have to.

types of AutoML:

- **hyperparameter tuning** chooses the best hyperparameters for the model
- **combined algorithm and hyperparameter search (CASH)** chooses an estimator and hyperparameters

kinds of datasets:

- tabular
- timeseries
- image
- text
- video
- genomics

...
Definitions

automated machine learning (AutoML) chooses a ML model + hyperparameters so you don’t have to.

types of AutoML:

▶ hyperparameter tuning chooses the best hyperparameters for the model
▶ combined algorithm and hyperparameter search (CASH) chooses an estimator and hyperparameters
▶ neural architecture search (NAS) chooses a deep learning architecture
e.g., number of layers, type of layer, width, learning rate

datasets:

tabular, timeseries, image, text, video, genomics, . . .
Definitions

automated machine learning (AutoML) chooses a ML model + hyperparameters so you don’t have to.

types of AutoML:

- **hyperparameter tuning** chooses the best hyperparameters for the model
- **combined algorithm and hyperparameter search (CASH)** chooses an estimator and hyperparameters
- **neural architecture search (NAS)** chooses a deep learning architecture e.g., number of layers, type of layer, width, learning rate
- **metalearning**, or learning to learn, uses information gleaned from a corpus of datasets to choose a better model on a new dataset
Definitions

automated machine learning (AutoML) chooses a ML model + hyperparameters so you don’t have to.

types of AutoML:

- **hyperparameter tuning** chooses the best hyperparameters for the model
- **combined algorithm and hyperparameter search (CASH)** chooses an estimator and hyperparameters
- **neural architecture search (NAS)** chooses a deep learning architecture e.g., number of layers, type of layer, width, learning rate
- **metalearning**, or learning to learn, uses information gleaned from a corpus of datasets to choose a better model on a new dataset

kinds of datasets: tabular, timeseries, image, text, video, genomics, ...
Outline

Why AutoML?

Techniques
- Hyperparameter tuning
- Pipeline selection
- Ensembles and stacking
- Metalearning

Systems

Challenges and conclusion
Grid search vs random search

- grid search is more well-known
- random search samples more distinct values of each hyperparameter
- random search is more efficient when only some hyperparameters are important

source: Bergstra & Bengio 2012 [Bergstra and Bengio(2012)].
Bayesian optimization (BO)

source: Brochu et al, 2010
[Brochu et al.(2010)Brochu, Cora, and De Freitas]
Multi-armed bandit

How long to spend evaluating each pipeline?

- Budget: training examples or training time
- Estimate performance of each pipeline with small budget
- Allocate budget to promising pipelines
“Survival of the fittest”: Automatically explore numerous possible pipelines to find the best for the given dataset
Ensemble

Original Data

Bootstrapping

Aggregating

Bagging

source: By Sirakorn - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=85888768
Stacking

source: AutoGluon Tabular
[Erickson et al.(2020)Erickson, Mueller, Shirkov, Zhang, Larroy, Li, and Smola]
Metalearning

- learning splits datasets
- metalearning splits learning instances:
 - same model, different datasets ("sets of datasets")
 e.g., stock market data on different days
 - different models, same dataset
 e.g., performance of ridge regression at different λ’s

source: OBOE [Yang et al.(2019)Yang, Akimoto, Kim, and Udell]
OBOE: low rank autoML

given: m datasets, n machine learning models

source: OBOE [Yang et al.(2019)Yang, Akimoto, Kim, and Udell]
OBOE: low rank autoML

given: \(m \) datasets, \(n \) machine learning models
measure: error of each model on each dataset
OBOE: low rank autoML

given: m datasets, n machine learning models
measure: error of each model on each dataset
form: $m \times n$ data table A

\[
\begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times
\end{bmatrix}
\]

source: OBOE [Yang et al.(2019)Yang, Akimoto, Kim, and Udell]
OBOE: low rank autoML

given: m datasets, n machine learning models
measure: error of each model on each dataset
form: $m \times n$ data table A
find: $X \in \mathbb{R}^{m \times k}$, $Y \in \mathbb{R}^{k \times n}$ for which

$$A \approx XY$$

source: OBOE [Yang et al.(2019)Yang, Akimoto, Kim, and Udell]
OBOE: low rank autoML

given: m datasets, n machine learning models
measure: error of each model on each dataset
form: $m \times n$ data table A
find: $X \in \mathbb{R}^{m \times k}$, $Y \in \mathbb{R}^{k \times n}$ for which

$$A \approx XY$$
OBOE: low rank autoML

given: m datasets, n machine learning models
measure: error of each model on each dataset
form: $m \times n$ data table A
find: $X \in \mathbb{R}^{m \times k}$, $Y \in \mathbb{R}^{k \times n}$ for which

$$A \approx XY$$

source: OBOE [Yang et al. (2019) Yang, Akimoto, Kim, and Udell]
given: m datasets, n machine learning models
measure: error of each model on each dataset
form: $m \times n$ data table A
find: $X \in \mathbb{R}^{m \times k}$, $Y \in \mathbb{R}^{k \times n}$ for which

$$A \approx XY$$

source: OBOE [Yang et al.(2019)Yang, Akimoto, Kim, and Udell]
OBOE: low rank autoML

given: m datasets, n machine learning models
measure: error of each model on each dataset
form: $m \times n$ data table A
find: $X \in \mathbb{R}^{m \times k}, Y \in \mathbb{R}^{k \times n}$ for which

$$A \approx XY$$

datasets

\[
\begin{bmatrix}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\cdot & \times & \times & \cdot & \times & \times \\
\end{bmatrix}
\]

models

\[
\begin{bmatrix}
-x_1 & -x_{m-1} & \cdots & -x_{m+1} \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
y_1 & \cdots & y_n \\
\end{bmatrix}
\]
OBOE: low rank autoML

given: m datasets, n machine learning models
measure: error of each model on each dataset
form: $m \times n$ data table A
find: $X \in \mathbb{R}^{m \times k}$, $Y \in \mathbb{R}^{k \times n}$ for which

$$A \approx XY$$

datasets \{
\begin{bmatrix}
\times \times \times \times \times \\
\times \times \times \times \times \\
\times \times \times \times \times \\
\cdot \times \times \cdot \times \\
\end{bmatrix}
\approx
\begin{bmatrix}
-x_1 \\
\vdots \\
-x_m \\
-x_{m+1} \\
\end{bmatrix}
\begin{bmatrix}
| & | \\
y_1 & \cdots & y_n \\
| & | \\
\end{bmatrix}
\}

- rows $x_i \in \mathbb{R}^k$ of X are *dataset metafeatures*
- columns $y_j \in \mathbb{R}^k$ of Y are *model metafeatures*
- $x_i y_j \approx A_{ij}$ are *predicted model performance*

source: OBOE [Yang et al.(2019)Yang, Akimoto, Kim, and Udell]
Metalearning with NLP and GNNs

source: Real-time AutoML
[Drori et al.(2020)Drori, Liu, Ma, Deykin, Kates, and Udell]
Outline

Why AutoML?

Techniques

- Hyperparameter tuning
- Pipeline selection
- Ensembles and stacking
- Metalearning

Systems

Challenges and conclusion
AutoML systems

Optimizing over scikit-learn style models:

- **Auto-WEKA**
 [Thornton et al.(2013)Thornton, Hutter, Hoos, and Leyton-Brown]: BO on conditional search space

- **auto-sklearn**
 [Feurer et al.(2015)Feurer, Klein, Eggensperger, Springenberg, Blum, and Hutter]: meta-learning + BO

- **TPOT**

- **Hyperband**
 [Li et al.(2018)Li, Jamieson, DeSalvo, Rostamizadeh, and Talwalkar]: multi-armed bandit

- **PMF** [Fusi et al.(2018)Fusi, Sheth, and Elibol]: matrix factorization + BO

- **Oboe** [Yang et al.(2019)Yang, Akimoto, Kim, and Udell]: matrix factorization + experiment design

Commercial tools:

- Google AutoML Tabular
- Microsoft Azure AutoML
- Amazon AutoGluon on SageMaker
- H2O AutoML
Neural architecture search (NAS)

▶ **Google NAS** [Zoph and Le(2016)]: reinforcement learning

▶ **NASBOT**
 [Kandasamy et al.(2018)Kandasamy, Neiswanger, Schneider, Poczos]: BO + optimal transport

▶ **Auto-Keras** [Jin et al.(2019)Jin, Song, and Hu]: BO + network morphism

▶ **AutoML-Zero** [Real et al.(2020)Real, Liang, So, and Le]: genetic programming

▶ ...
Lots of good options!

(A) AutoML Benchmark (1h)

(B) Kaggle Benchmark (4h)

source: AutoGluon Tabular
[Erickson et al.(2020)Erickson, Mueller, Shirkov, Zhang, Larroy, Li, and Smola]
Fast and slow options

Binary classification datasets ordered by size counter clockwise, from smallest (blood-transfusion) to largest (riccardo). Metric: AUC.

Outline

Why AutoML?

Techniques

Hyperparameter tuning
Pipeline selection
Ensembles and stacking
Metalearning

Systems

Challenges and conclusion
Challenges

- Interpretability: can we find good, interpretable models?
- Feature engineering
- Overfitting

Cost: e.g., Google RL-based NAS [Zoph and Le (2016)]: 1k GPU days (>$70k on AWS)
Challenges

- interpretability: can we find good, interpretable models? when is interpretability necessary?
Challenges

▶ interpretability: can we find good, interpretable models? when is interpretability necessary?
▶ feature engineering
Challenges

- interpretability: can we find good, interpretable models? when is interpretability necessary?
- feature engineering
- overfitting
Challenges

▶ interpretability: can we find good, interpretable models? when is interpretability necessary?
▶ feature engineering
▶ overfitting
▶ cost:
 e.g., Google RL-based NAS [Zoph and Le(2016)]: 1k GPU days
 (> $70k on AWS)
Summary

- AutoML automatically picks a good ML pipeline for your problem
- lots of easy-to-use packages
- lots of interesting ideas
References I

J. Bergstra and Y. Bengio.
Random search for hyper-parameter optimization.

E. Brochu, V. M. Cora, and N. De Freitas.
A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning.

I. Drori, L. Liu, Q. Ma, J. Deykin, B. Kates, and M. Udell.
Real-time AutoML.
Submitted, 2020.

N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li, and A. Smola.
Autogluon-tabular: Robust and accurate automl for structured data.

Efficient and robust automated machine learning.

N. Fusi, R. Sheth, and M. Elibol.
Probabilistic matrix factorization for automated machine learning.
H. Jin, Q. Song, and X. Hu.
Auto-keras: An efficient neural architecture search system.
URL http://doi.acm.org/10.1145/3292500.3330648.

K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, and E. Xing.
Neural Architecture Search with Bayesian Optimisation and Optimal Transport.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar.
Hyperband: A novel bandit-based approach to hyperparameter optimization.

ISBN 978-3-319-31204-0.
doi: 10.1007/978-3-319-31204-0_9.
URL http://dx.doi.org/10.1007/978-3-319-31204-0_9.

E. Real, C. Liang, D. R. So, and Q. V. Le.
Automl-zero: Evolving machine learning algorithms from scratch.
Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms.

D. H. Wolpert.
The lack of a priori distinctions between learning algorithms.

C. Yang, Y. Akimoto, D. W. Kim, and M. Udell.
Oboe: Collaborative filtering for automl model selection.

AutoML pipeline selection: Efficiently navigating the combinatorial space.
In *ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)*, 2020.

B. Zoph and Q. V. Le.
Neural architecture search with reinforcement learning.