Bounding Duality Gap for Problems with Separable Objective

Madeleine Udell and Stephen Boyd

October 15, 2014

Abstract

We consider the problem of minimizing a sum of non-convex functions over a compact domain, subject to linear inequality and equality constraints. Approximate solutions can be found by solving a convexified version of the problem, in which each function in the objective is replaced by its convex envelope. We propose a randomized algorithm to solve the convexified problem which finds an ϵ-suboptimal solution to the original problem. With probability one, ϵ is bounded by a term proportional to the number of constraints in the problem. The bound does not depend on the number of variables in the problem or the number of terms in the objective. In contrast to previous related work, our proof is constructive, self-contained, and gives a bound that is tight.

1 Problem and results

The problem. We consider the optimization problem

\[
\begin{align*}
\text{minimize} & \quad f(x) = \sum_{i=1}^{n} f_i(x_i) \\
\text{subject to} & \quad Ax \leq b \\
& \quad Gx = h,
\end{align*}
\]

with variable $x = (x_1, \ldots, x_n) \in \mathbb{R}^N$, where $x_i \in \mathbb{R}^{n_i}$, with $\sum_{i=1}^{n} n_i = N$. There are m_1 linear inequality constraints, so $A \in \mathbb{R}^{m_1 \times N}$, and m_2 linear equality constraints, so $G \in \mathbb{R}^{m_2 \times N}$. The optimal value of \mathcal{P} is denoted p^*. The objective function terms are lower semi-continuous on their domains:
$f_i : S_i \to \mathbb{R}$, where $S_i \subset \mathbb{R}^{n_i}$ is a compact set. We say that a point x is feasible (for P) if $Ax \leq b$, $Gx = h$, and $x_i \in S_i$, $i = 1, \ldots, n$. We say that P is feasible if there is at least one feasible point. In what follows, we assume that P is feasible.

Linear inequality or equality constraints that pertain only to a single block of variables x_i can be expressed implicitly by modifying S_i, so that $x_i \not\in S_i$ when the constraint is violated. Without loss of generality, we assume that this transformation has been carried out, so that each of the remaining linear equality or inequality constraints involves at least two blocks of variables. This reduces the total number of constraints $m = m_1 + m_2$; we will see later why this is advantageous. Since each of the linear equality or inequality constraints involves at least two blocks of variables, they are called complicating constraints. Thus m represents the number of complicating constraints, and can be interpreted as a measure of difficulty for the problem.

We make no assumptions about the convexity of the functions f_i or the convexity of their domains S_i, so that in general the problem is hard to solve (and even NP-hard to approximate [UB13]).

Convex envelope. For each f_i, we let \hat{f}_i denote its convex envelope. The convex envelope $\hat{f}_i : \text{conv}(S_i) \to \mathbb{R}$ is the largest closed convex function majorized by f_i, i.e., $f_i(x) \geq \hat{f}_i(x)$ for all x [Roc97, Theorem 17.2]. In §5, we give a number of examples in which we compute \hat{f}_i explicitly.

Nonconvexity of a function. Define the nonconvexity $\rho(f)$ of a function $f : S \to \mathbb{R}$ to be

$$\rho(f) = \sup_x (f(x) - \hat{f}(x)),$$

where for convenience we define a function to be infinite outside of its domain and interpret $\infty - \infty$ as 0. Evidently $\rho(f) \geq 0$, and $\rho(f) = 0$ if and only if f is convex and closed. The nonconvexity ρ is finite if f is bounded and lower semi-continuous and S is compact and convex. For convenience, we assume that the functions f_i are sorted in order of decreasing nonconvexity, so $\rho(f_1) \geq \cdots \geq \rho(f_n)$.
Convexified problem. Now, consider replacing each \(f_i \) by \(\hat{f}_i \) to form a convex problem,

\[
\begin{align*}
\text{minimize} & \quad \hat{f}(x) = \sum_{i=1}^{n} \hat{f}_i(x_i) \\
\text{subject to} & \quad Ax \leq b \\
& \quad Gx = h,
\end{align*}
\]

with optimal value \(\hat{p} \). This problem is convex; if we can efficiently evaluate \(\hat{f} \) and a subgradient (or derivative, if \(\hat{f} \) is differentiable), then the problem is easily solved using standard methods for nonlinear convex optimization. Furthermore, \(\hat{P} \) is feasible as long as \(P \) is feasible. Evidently \(\hat{p} \leq p^* \); that is, the optimal value of the convexified problem is a lower bound on the optimal value of the original problem. We would like to know when a solution to \(\hat{P} \) approximately solves \(P \).

Our main result is the following.

Theorem 1. Let \(m \) be the number of (equality and inequality) constraints in problem \(\hat{P} \). There exists a solution \(\hat{x} \) of \(\hat{P} \) such that

\[
f(\hat{x}) \leq \hat{p} + \sum_{i=1}^{\min(m,n)} \rho(f_i).
\]

Since \(p^* \leq f(\hat{x}) \) and \(\hat{p} \leq p^* \), Theorem 1 implies that

\[
p^* \leq f(\hat{x}) \leq p^* + \sum_{i=1}^{\min(m,n)} \rho(f_i).
\]

In other words, there is a solution of the convexified problem that is \(\epsilon \)-suboptimal for the original problem, with \(\epsilon = \sum_{i=1}^{\min(m,n)} \rho(f_i) \). It is not true (as we show in §2) that all solutions of the convexified problem are \(\epsilon \)-suboptimal.

Theorem 1 shows that if the objective function terms are not too non-convex, and the number of constraints is not too large, then the convexified problem has a solution that is not too suboptimal for the original problem. This theorem is similar to a number of results previously in the literature; for example, it can be derived from the well-known Shapley-Folkman theorem [Sta69]. A slightly looser version of this theorem may be obtained from the bound on the duality gap given in [AE76].
Theorem 1 also implies a bound on the duality gap for problems with separable objectives. Define the dual problem to \mathcal{P},

$$
\begin{align*}
\text{maximize} & \quad \inf_{x} \mathcal{L}(x, \lambda) = \left(\sum_{i=1}^{n} f_i(x_i) + \lambda^T (Ax - b) + \mu^T (Gx - h) \right) \\
\text{subject to} & \quad \lambda \geq 0,
\end{align*}
$$

with optimal value g^*. The convexified problem $\hat{\mathcal{P}}$ is the dual of $\hat{\mathcal{D}}$. Since $\hat{\mathcal{P}}$ is convex and feasible, with only linear constraints, strong duality holds by Slater’s constraint qualification, and the maximum of the dual problem is attained, i.e., $g^* = \hat{p}$ and $\inf_x \mathcal{L}(x, \lambda^*) = g^*$ for some $\lambda^* > 0$ [BV04]. The bound from Theorem 1 thus implies

$$p^* - g^* \leq \min(m, n) \sum_{i=1}^{\min(m, n)} \rho(f_i).$$

What is not clear in other related work is how to construct a feasible solution that satisfies this bound. This observation leads us to the main contribution of this paper.

Theorem 2. Let $w \in \mathbb{R}^N$ be a random variable with uniform distribution on the unit sphere, and let (x^*, λ^*) denote any primal-dual optimal pair for the convexified problem $\hat{\mathcal{P}}$. Now consider the feasible convex problem

$$
\begin{align*}
\text{minimize} & \quad w^T x \\
\text{subject to} & \quad Ax = Ax^*, \\
& \quad Gx = h, \\
& \quad \hat{f}(x) + \lambda^T Ax \leq \hat{f}(x^*) + \lambda^T Ax^*.
\end{align*}
$$

Then with probability one, \mathcal{R} has a unique solution \hat{x} which satisfies the inequality of Theorem 1,

$$f(\hat{x}) \leq \hat{p} + \min_{i=1}^{\min(m, n)} \rho(f_i),$$

i.e., \hat{x} is ϵ-suboptimal for the original problem.

The randomized problem \mathcal{R} has a simple interpretation. Any feasible point x for \mathcal{R} is optimal for $\hat{\mathcal{P}}$, and the constraint $\hat{f}(x) \leq \hat{p}$ is satisfied with equality. In problem \mathcal{R} we minimize a random linear function over the optimal set of $\hat{\mathcal{P}}$. Theorem 2 tells us that this construction yields (almost surely) an ϵ-suboptimal solution of \mathcal{P}.

We give a self-contained proof of both of these theorems in §6.2.
2 Discussion

In this section we show that the bound in Theorem 1 is tight, and that randomization is essential to achieving the bound.

The bound is tight. Consider the problem

\[
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{n} g(x_i) \\
\text{subject to} & \quad \sum_{i=1}^{n} x_i \leq B,
\end{align*}
\]

with \(g : [0, 1] \to \mathbb{R} \) defined as

\[
g(x) = \begin{cases}
1 & 0 \leq x < 1 \\
0 & x = 1.
\end{cases}
\]

The convex envelope \(\hat{g} : [0, 1] \to \mathbb{R} \) of \(g \) is given by \(\hat{g}(x) = 1 - x \), with \(\rho(g) = 1 \). The convexified problem \(\hat{P} \) corresponding to (1) is

\[
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{n} \hat{g}(x_i) \\
\text{subject to} & \quad \sum_{i=1}^{n} x_i \leq B \\
& \quad 0 \leq x.
\end{align*}
\]

Any \(\hat{x} \) satisfying \(0 \leq \hat{x} \leq 1 \) and \(\sum_{i=1}^{n} \hat{x}_i = B \) is optimal for the convexified problem (2), with value \(\hat{p} = n - B \). If \(B < 1 \), then the optimal value of (1) is \(p^* = n \). Since (1) has only one constraint, the bound from Theorem 1 applied to this problem gives

\[
n = p^* \leq n - B + 1.
\]

Letting \(B \to 1 \), we see that the bound cannot be improved.

Find the extreme points. Not all solutions to the convexified problem satisfy the bound from Theorem 1. As we show in §6, the value of the convex envelope at the extreme points of the optimal set for the convexified problem will be provably close to the value of the original function, whereas the difference between these values on the interior of the optimal set may be arbitrarily large.
For example, suppose $n - 1 < B < n$ in the problem defined above. As before, the optimal set for the convexified problem (2) is

$$M = \{ x : \sum_{i=1}^{n} x_i = B, x_i \geq 0, i = 1, \ldots, n \}. $$

Consider $\tilde{x} \in M$ with $\tilde{x}_i = B/n$, $i = 1, \ldots, n$, which is optimal for the convexified problem (2). This \tilde{x} does not obey the bound in Theorem 1; indeed, the suboptimality of \tilde{x} grows linearly with n. With this \tilde{x}, the left hand side of the inequality in Theorem 1 is $\sum_{i=1}^{n} g(\tilde{x}_i) = n$, while the right hand side $\hat{p} + \rho(g) = n - B + 1 < 2$ is much smaller.

On the other hand, $\hat{x} \in M$ defined by

$$\hat{x}_i = \begin{cases} 1 & i = 1, \ldots, n-1 \\ B - (n-1) & i = n, \end{cases}$$

which is an extreme point of the optimal set for the convexified problem, is optimal for the original problem as well. That is, \hat{x} is an extreme point of M that Theorem 1 with equality.

For an even simpler example, consider the following univariate problem with no constraints. Let $S = \{0\} \cup \{1\}$ with $f(x) = 0$ for $x \in S$. Then $\hat{f} : [0, 1] \to \{0\}$, so the optimal set for the convexified problem consists of the entire interval $[0, 1]$. But $\hat{x} = 1/2 \in M$ is not feasible for the original problem; its value according to the original objective is thus infinitely worse than the value guaranteed by Theorem 1. On the other hand, $x = 0$ and $x = 1$, the extreme points of the optimal set for the convexified problem, are indeed optimal for the original problem.

3 Related work

Our proof is very closely related to the Shapley-Folkman theorem [Sta69], which states, roughly, that the nonconvexity of the average of a number of nonconvex sets decreases with the number of sets. In optimization, the analogous statement is that optimizing the average of a number of functions is not too different from optimizing the average of the convex envelopes of those functions, and the difference decreases with the number of functions. However, we note that using the Shapley-Folkman theorem directly, rather than its optimization analogue, results in a bound that is slightly worse. For example, the Shapley-Folkman theorem has previously been used by Aubin
and Ekeland in [AE76] to prove a bound on the duality gap. The bound they present,
\[p^* - d^* \leq \min(m + 1, n) \rho(f_1), \]
is not tight; our bound is smaller by a factor of \((m + 1)/m\).

The Shapley-Folkman theorem has found uses in a number of applications within optimization. For example, Bertsekas et al [BLNP83] used the theorem to solve a unit commitment problem in electrical power system scheduling, in which case the terms in the objective are univariate. The Shapley-Folkman theorem and its relation to a bound on the duality gap also have found applications in integer programming [VEG+14]. While we restrict ourselves here only to nonconvex objectives, many authors [LR01, Ber82, Ber99] have studied convexifications of separable constraints as well.

The use of randomization to find approximate solutions to nonconvex problems is widespread, and often startlingly successful [Mot95, GW95]. The usual approach is to solve a convex problem to find an optimal probability distribution over possible solutions; sampling from the distribution and rounding yields the desired result. By contrast, our approach uses randomization only to explore the geometry of the optimal set [SB10]. We rely on the insight that extremal points of the epigraph of the convex envelope are likely to be closer in value to the original function, and use randomization simply to reach these points. Randomization allows us to find “simplex-style” corner points of the optimal set as solutions, rather than accepting interior points of the set.

4 Constructing the convex envelope

In general, the convex envelope of a function can be hard to compute. But in many special cases, we can efficiently construct the convex envelope or a tight approximation to it. In this section, we give a few examples illustrating how to construct the convex envelope for a number of interesting functions and types of functions.

Sigmoidal functions. A continuous function \(f : [l, u] \to \mathbb{R} \) is defined to be sigmoidal if it is either convex, concave, or convex for \(x \leq z \in [l, u] \) and concave for \(x \geq z \). For a sigmoidal function, the convex envelope is
particularly easy to calculate [UB13]. We can write \hat{f} of f piecewise as

$$\hat{f}(x) = \begin{cases} f(x) & l \leq x \leq w \\ f(w) + \frac{f(u)-f(w)}{u-w}(x-w) & w \leq x \leq u \end{cases}$$

for some appropriate $w \leq z$. If f is differentiable, then $f'(w) = \frac{f(u)-f(w)}{u-w}$; in general, $\frac{f(u)-f(w)}{u-w}$ is a subgradient of f at w. The point w can easily be found by bisection: if $x > w$, then the line from $(x, f(x))$ to $(u, f(u))$ crosses the graph of f at x; if $x < w$, it crosses in the opposite direction.

Univariate functions. If the inflection points of the univariate function are known, then the convex envelope may be calculated by iterating the construction given above for the case of sigmoidal functions.

Analytically. Occasionally the convex envelope may be calculated analytically. For example, convex envelopes of multilinear functions on the unit cube are polyhedral (piecewise linear), and can be calculated using an analytical formula given in [Rik97]. A few examples of analytically tractable convex envelopes are presented in Table 4. In the table, $\hat{f} : \text{conv } S \rightarrow \mathbb{R}$ is the convex envelope of $f : S \rightarrow \mathbb{R}$, and $\rho(f)$ gives the nonconvexity of f. We employ the following standard notation: $\text{card}(x)$ denotes the cardinality (number of nonzeros) of the vector x; the spectral norm (maximum singular value) is written as $\|M\|$, and its dual, the nuclear norm (sum of singular values) is written as $\|M\|_*$.

Via differential equations. The convex envelope of a function can also be written as the solution to a certain nonlinear partial differential equation [Obe07], and hence may be calculated numerically using the standard machinery of numerical partial differential equations [Obe08].

5 Examples

Resource allocation. An agent wishes to allocate resources to a collection of projects $i = 1, \ldots, n$. For example, the agent might be bidding on a number of different auctions, or allocating human and capital resources to a number of risky projects. There are m different resources to be allocated to the projects, with each project i receiving a non-negative quantity x_{ij} of
Table 1: Examples of convex envelopes.

<table>
<thead>
<tr>
<th>S</th>
<th>$f(x)$</th>
<th>$\hat{f}(x)$</th>
<th>$\rho(f)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[0, 1]^2$</td>
<td>$\min(x, y)$</td>
<td>$(x + y - 1)_+$</td>
<td>$1/2$</td>
</tr>
<tr>
<td>$[0, 1]^2$</td>
<td>xy</td>
<td>$(x + y - 1)_+$</td>
<td>$1/4$</td>
</tr>
<tr>
<td>$[0, 1]^n$</td>
<td>$\min(x)$</td>
<td>$(\sum_{i=1}^n x_i - (n - 1))_+$</td>
<td>$\frac{n-1}{n}$</td>
</tr>
<tr>
<td>$[0, 1]^n$</td>
<td>$\prod_{i=1}^n x_i$</td>
<td>$(\sum_{i=1}^n x_i - (n - 1))_+$</td>
<td>$\frac{n}{n} (\frac{n-1}{n})^n$</td>
</tr>
<tr>
<td>$[-1, 1]^n$</td>
<td>$\text{card}(x)$</td>
<td>$|x|_1$</td>
<td>n</td>
</tr>
<tr>
<td>${ M \in \mathbb{R}^{k \times n} : |M| \leq 1 }$</td>
<td>Rank(M)</td>
<td>$|M|_*$</td>
<td>n</td>
</tr>
</tbody>
</table>

resource j. The probability that project i will succeed is modeled as $f_i(x_i)$, and its value to the agent, if the project is successful, is given by v_i. The agent has access to a quantity c_j of resource j, $j = 1, \ldots, m$. An allocation is feasible if $\sum_{i=1}^n x_{ij} \leq c_j$, $j = 1, \ldots, m$. The agent seeks to maximize the expected value of the successful projects by solving

$$\begin{align*}
\text{maximize} & \quad \sum_{i=1}^n v_i f_i(x_i) \\
\text{subject to} & \quad \sum_{i=1}^n x_{ij} \leq c_j, \quad j = 1, \ldots, m \\
& \quad x \geq 0.
\end{align*}$$

To conform to our notation in the rest of this paper, we write this as a minimization problem,

$$\begin{align*}
\text{minimize} & \quad \sum_{i=1}^n -v_i \hat{f}_i(x_i) \\
\text{subject to} & \quad \sum_{i=1}^n x_{ij} \leq c_j, \quad j = 1, \ldots, m \\
& \quad x \geq 0.
\end{align*}$$

Here, there are m complicating constraint connecting the variables. Hence the bound from Theorem 1 guarantees that $|\hat{p} - p^*| \leq \sum_{i=1}^{\min(m, n)} \rho(f_i)$. If $p_i : \mathbb{R} \rightarrow [0, 1]$ is a probability, then $\rho(-v_i p_i) \leq v_i$. For example, if there is only one resource ($m = 1$), the bound tells us that we can find a solution x by solving the convex problem \mathcal{R} whose value differs from the true optimum p^* by no more than $\max_i v_i$, regardless of the number of projects n.

Flow and admission control. A set of flows pass through a network over given paths of links or edges; the goal is to maximize the total utility while respecting the capacity of the links. Let x_i denote the level of each flow $i = 1, \ldots, n$ and $u_i(x_i)$ the utility derived from that flow. Each link j, $j = 1, \ldots, m$, is shared by the flows $i \in S_j$, and can accommodate up to a
total of c_j units of flow. The flow routes are defined by a matrix $A \in \mathbb{R}^{m \times n}$ mapping flows onto links, with entries a_{ji}, $i = 1, \ldots, n$, $j = 1, \ldots, m$. When flows are not split, i.e., they follow simple paths, we have $a_{ij} = 1$ when flow i pass over link j, and $a_{ij} = 0$ otherwise. But it is also possible to split a flow across multiple edges, in which case the entries a_{ij} can take other values. The goal is to maximize the total utility of the flows, subject to the resource constraint,

$$\begin{align*}
\text{maximize} & \quad \sum_{i=1}^{n} u_i(x_i) \\
\text{subject to} & \quad Ax \leq c \\
& \quad x \geq 0.
\end{align*}$$

(3)

The utility function is often modelled by a bounded function, such as a sigmoidal function [UB13, FC05]. As an extreme case, we can consider utilities of the form

$$u(x) = \begin{cases}
0 & x < 1 \\
1 & x \geq 1.
\end{cases}$$

Thus each flow has value 1 when its level is at least 1, and no value otherwise. In this case, the problem is to determine choose the subset of flows, of maximum cardinality, that the network can handle. (This problem is also called admission control, since we are deciding which flows to admit to the network.)

We can replace this problem with an equivalent minimization problem to facilitate the use of Theorem 1. Let $f_i(x) = -u_i(x)$. Then we minimize the negative utility of the flows by solving

$$\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{n} u_i(x_i) \\
\text{subject to} & \quad Ax \leq c \\
& \quad x \geq 0.
\end{align*}$$

Suppose f_i is bounded for every i, so that $\max_i \rho(f_i) \leq R$. Then the bound from Theorem 1 guarantees that we can quickly find a solution $p^* - \hat{p} \leq mR$. In a situation with many flows but only a modest number of links, the solution given by solving \mathcal{R} may be very close to optimal.

6 Proofs

In this section, we suppose without loss of generality that the problem has only inequality constraints; the mathematical argument with equality con-
straints is exactly the same. We let $A = [A_1 \cdots A_n]$ with $A_i \in \mathbb{R}^{m \times n_i}$, so $Ax = \sum_i A_i x_i$. As before, $N = \sum_{i=1}^n n_i$.

6.1 Definitions

First, we review some basic definitions from convex analysis (see [Roc97, LR01] for more details). The **epigraph** of a function f is the set of points lying above the graph of f,

$$\text{epi}(f) = \{ (x, t) : t \geq f(x) \}.$$

The **convex hull** of a set C is the set of points that can be written as a convex combination of other points in the set,

$$\text{conv } S = \left\{ \sum_j \theta_j x_j : \theta_j \geq 0, \ x_j \in S, \ \sum_j \theta_j = 1 \right\}.$$

An **extreme point** of a set is a point that cannot be written as a convex combination of other points in the set. A **face** of a set is a set of points optimizing a linear functional over that set. It is easy to see that a zero-dimensional face of a set is an extreme point, and that any extreme point defines a zero-dimensional face of a set [Roc97].

6.2 Main lemmas

Our analysis relies on two main lemmas. Lemma 1 tells us that at the extreme points of a face of $\text{epi}(\hat{f})$, the values of f and \hat{f} are the same. Lemma 2 tells us that (with probability one) we can find a point that is extreme in $\text{epi}(\hat{f}_i)$ for most i, and feasible, by solving a randomized convex program. We then combine these two lemmas to prove Theorem 2 and, as a consequence, Theorem 1.

We use two other technical lemmas as ingredients in the proofs of the two main lemmas. Lemma 3 gives conditions under which the convex hull of the epigraph of a function is closed, and Corollary 1 states that the maximum of a random linear functional over a compact set is unique with probability one. Their statements and proofs can be found in appendix B and appendix A respectively.

We begin by finding a set of points where f and \hat{f} agree.
Lemma 1. Let \(S \subset \mathbb{R}^n \) be a compact set, and let \(f : S \to \mathbb{R} \) be lower semi-continuous on \(S \), with convex envelope \(\hat{f} : \text{conv } S \to \mathbb{R} \). Let \(c \in \mathbb{R}^n \) be a given vector. If \(x \) is extreme in \(\text{argmin}(\hat{f}(x) + c^T x) \), then \(x \in S \) and \(f(x) = \hat{f}(x) \).

Proof. The vector \(c \) defines a face \(\{ (y, \hat{f}(y)) \mid y \in \text{argmin}(\hat{f}(x) + c^T x) \} \) of \(\text{epi}(\hat{f}) \). If \(x \) is extreme in \(\text{argmin}(\hat{f}(x) + c^T x) \), then \((x, \hat{f}(x)) \) is extreme in \(\text{epi}(f) \) [Roc97, p. 163]. But \(\text{epi}(\hat{f}) = \text{cl}(\text{conv}(\text{epi}(f))) = \text{conv}(\text{epi}(f)) \), where the first equality follows from the definition of the convex envelope, and the second from the requirement that \(f \) be lower semi-continuous, and that \(S \) is compact, using Lemma 3. Thus every extreme point of \(\text{epi}(\hat{f}) \) is a point in \(\text{epi}(f) \) [Roc97, cor. 18.3.1]. But \(\hat{f} \) is the convex envelope of \(f \), so \(\hat{f}(x) \leq f(x) \). Thus \(\hat{f}(x) = f(x) \).

Now we show that a solution to a randomized convex program finds a point that is extreme for most subvectors \(x_i \) of \(x \).

Lemma 2. Let \(M_i \in \mathbb{R}^{n_i} \), \(i = 1, \ldots, n \), be given convex sets, and let \(A \in \mathbb{R}^{m \times N} \) with \(N = \sum_{i=1}^n n_i \). Choose \(w \in \mathbb{R}^N \) uniformly at random on the unit sphere. Let \(x^* \) be a solution to the convex program

\[
\begin{align*}
\text{minimize} & \quad w^T x \\
\text{subject to} & \quad Ax = b \\
& \quad x_i \in M_i, \quad i = 1, \ldots, n.
\end{align*}
\]

(4)

Then almost surely, the solution \(x^* \) is unique, and for all but \(m \) indices \(i \), \(x_i^* \) is an extreme point of \(M_i \).

To prove the main theorems of this paper, we’ll use an optimal Lagrange multiplier vector \(\lambda^* \) to define \(M \). We will pick \(M = \prod_i M_i \), where

\[
M_i = \text{argmin}(\hat{f}_i(x_i) + \lambda^{*T} Ax).
\]

Then \(\lambda^* \) defines a face of \(\text{epi}(\hat{f}_i) \) for \(i = 1, \ldots, n \), which allows us to use Lemma 1. This choice also makes it easy to solve Problem (4). For example, if each \(f_i \) is univariate, \(M_i \) is simply an interval, so Problem (4) is a linear program.
Proof. By Corollary 1, the maximum of a random linear functional over a compact set is unique with probability one. Hence we may suppose Problem (4) has a unique solution, which we call \(x \), with probability one. Let \(B(x) \) be the intersection of an open ball around \(x \) with the set of supporting hyperplanes to \(M \) at \(x \). Equivalently, \(B(x) \) is a \(d \)-dimensional open ball around \(x \) contained in \(M \), of maximal dimension \(d \). If \(x \) is on the boundary of \(M \), the dimension of \(B \) will be the dimension of the lowest-dimensional face of \(M \) containing \(x \), and \(d < N \).

Now, every \(y \in B(x) \cap \text{nullspace}(A) \) is feasible for Problem (4). The random vector \(w \) must be orthogonal to \(y - x \) for every \(y \in B(x) \cap \text{nullspace}(A) \), for otherwise the solution to Problem (4) could not occur at the center \(x \) of a feasible ball, but would have to occur on the boundary. On the other hand, if \(w \) is orthogonal to this feasible subspace, then any point \(y \in B(x) \cap \text{nullspace}(A) \) is a solution to Problem (4). But the solution \(x \) is unique, so it must be that \(S(x) \cap \text{nullspace}(A) = \emptyset \). Recalling a few simple identities from linear algebra, we see that \(\dim(\text{range}(A)) + \dim(\text{nullspace}(A)) = N \) and \(\dim(B(x)) + \dim(\text{nullspace}(A)) \leq N \), so \(\dim(B(x)) \leq m \).

Furthermore, the dimension of \(B(x) \) bounds the number of subvectors \(x_l \) of \(x \) that are not extreme in \(M_l \). If \(x_l \) is not extreme, it lies on a face of \(M_l \) with dimension at least 1, so \(B(x) \) contains a vector \(y_l \) that differs from \(x \) only on the \(l \)th coordinate block. This is true for any subvector of \(x \) that is not extreme. For \(l \neq l' \), \(y_l - x \) is orthogonal to \(y_{l'} - x \), so \(\dim(B(x)) \) is at least as large as the number of subvectors that are not extreme. But we have already bounded \(\dim(B(x)) \leq m \), and so can similarly bound the number of subvectors that are not extreme.

Thus almost surely, the solution to Problem (4) is unique, and no more than \(m \) subvectors \(x_l \) of the solution \(x \) are not at extreme points. \(\square \)

6.3 Main theorems

We are now ready to prove the main theorems, using the previous lemmas.

Proof of Theorem 2. Suppose \((x^*, \lambda^*)\) form an optimal primal-dual pair for \(\hat{P} \). Any such pair satisfies the KKT conditions:

1. The point \(x^* \) minimizes the Lagrangian at \(\lambda^* \).

\[
x^* \in \arg\min_x \left(\sum_{i=1}^n \hat{f}_i(x_i) + \lambda^T (Ax - b) \right).
\]
2. Primal feasibility. \(Ax^* \leq b. \)

3. Dual feasibility. \(\lambda^* \geq 0. \)

4. Complementary slackness. \(\lambda^*_i(Ax^* - b)_i = 0. \)

Any other \(x \) satisfying the same conditions is also a solution to \(\hat{P} \).

Define \(M = \arg\min \mathcal{L}(x, \lambda^*), \) i.e.,
\[
M = \arg\min_x \left(\sum_{i=1}^n \hat{f}_i(x_i) + \lambda^*^T (Ax - b) \right).
\]
The set \(M \) is bounded, since the domain \(S_i \) of \(f_i \) (and hence \(\text{conv} S_i \), the domain of \(\hat{f}_i \)) is bounded, \(i = 1, \ldots, n \). Furthermore, the function defining the set \(M \) is separable. Hence \(M = M_1 \times \cdots \times M_n \), where
\[
M_i = \arg\min_{x_i} \left(\hat{f}_i(x_i) + \lambda^*^T A_i x_i \right).
\]
In other words, each \(M_i \) is a face of \(\text{epi}(\hat{f}) \) with normal vector \(A_i^T \lambda^* \). Note that \(M_i \) is convex, since it is a sublevel set of the convex function \(\hat{f}_i(x_i) + \lambda^*^T A_i x_i \), and it is bounded, since \(M \) is bounded.

Then using the KKT conditions, we see \(x \) is optimal for \(\hat{P} \) if \(x \in M \), \(Ax \leq b \), and \(\lambda^*_i(Ax - b)_i = 0. \) Writing these conditions in terms of the previous primal solution \(x^* \), we see \(x \) is optimal for \(\hat{P} \) if \(x_i \in M_i \), \(i = 1, \ldots, n \), and \(Ax = Ax^* \). (Here, the condition \(x_i \in M_i \), \(i = 1, \ldots, m \), guarantees that \(x \) minimizes the Lagrangian, while \(Ax^* = Ax \) guarantees that \(x \) preserves primal feasibility and complementary slackness.) We can find a random \(\hat{x} \) satisfying these conditions by solving Problem \(\mathcal{R} \).

By Lemma 2, the solution \(\hat{x}_i \) to Problem \(\mathcal{R} \) lies at an extreme point of \(M_i \) for all but (at most) \(m \) of the coordinate blocks \(i \) (with probability one). By Lemma 1, extreme points \(x_i \) of the face \(M_i \) satisfy \(f_i(x_i) = \hat{f}_i(x_i) \), so \(f_i(\hat{x}_i) > \hat{f}_i(\hat{x}_i) \) for no more than \(m \) of the coordinate blocks \(i \). On those blocks \(i \) where \(\hat{x}_i \) is not extreme, it is still true that \(f_i(\hat{x}_i) - \hat{f}_i(\hat{x}_i) \leq \rho(f_i) \).
Hence
\[
0 \leq \sum_{i=1}^n f_i(\hat{x}_i) - p^* = \sum_{i=1}^n \left(f_i(\hat{x}_i) - \hat{f}_i(\hat{x}_i) \right) \leq \sum_{i=1}^{\min(m,n)} \rho(f_i).
\]

\(\square \)

Proof of Theorem 1. Since a point satisfying the bound in Theorem 1 can be found almost surely by minimizing a random linear function over \(M \), it follows that such a point exists.
\(\square \)
7 Numerical experiments

We now present a numerical experiment to demonstrate the performance of the algorithm implied by the proof; namely, of finding an extreme point of the convexified problem to serve as an approximate solution to the original problem. This numerical problem is not large, and is easy to solve using many methods. Our purpose in presenting the example is merely to give some intuition for the utility of finding an extreme point of the solution set of the convexified problem, rather than an arbitrary solution.

Investment problem. Consider the following investment problem. Each variable $x_i \in \mathbb{R}$ represents the allocation of capital to project i. The probability that a project will fail is given by $f(x_i)$.

A sector of the economy j is given by the nonzero entries a_{ij} in the matrix $A \in \mathbb{R}^{m \times n}$, and the budget for projects in each sector is given by the vector $b \in \mathbb{R}^m$. The constraint $Ax \leq b$ then prevents overexposure to any given sector.

The problem of minimizing the expected number of failed projects subject to these constraints can be written as

$$
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{n} f(x_i) \\
\text{subject to} & \quad Ax \leq b \\
& \quad 0 \leq x.
\end{align*}
$$

(5)

The results of our numerical experiments are presented in Table 2. We let

$$
\begin{align*}
f(x) &= \begin{cases}
1 & 0 \leq x < 1 \\
0 & x \geq 1
\end{cases}
\end{align*}
$$

Random instances of the investment problem are generated with $n = 50$, $m = 10$. Random sector constraints are generated by choosing entries of A to be 0 or 1 uniformly at random with probability one/2, and let $b = 1/2A1$, where 1 is the vector of all ones, in order to ensure the constraints are binding.

In the table, \hat{x} is the solution to the problem

$$
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{n} \hat{f}(x_i) \\
\text{subject to} & \quad Ax \leq b \\
& \quad 0 \leq x
\end{align*}
$$

(6)

returned by an interior point solver, whereas \tilde{x} is the minimizer of a random linear functional over the solution set of (6). Improvement is calculated as
\(f(\hat{x}) - f(\tilde{x}) \). Solving the random LP usually gives a substantial improvement in the value of the solution of the convexified problem according to the original objective. The observed difference between \(f(\tilde{x}) \) and \(p^\star \) is always substantially smaller than the theoretical bound of \(m\rho(f) = 10 \).

<table>
<thead>
<tr>
<th>(f(\hat{x}))</th>
<th>(f(\tilde{x}))</th>
<th>(p^\star)</th>
<th>(\hat{p})</th>
<th>% improved</th>
</tr>
</thead>
<tbody>
<tr>
<td>43.01</td>
<td>23.01</td>
<td>22.00</td>
<td>20.25</td>
<td>0.95</td>
</tr>
<tr>
<td>29.02</td>
<td>26.00</td>
<td>22.00</td>
<td>20.36</td>
<td>0.43</td>
</tr>
<tr>
<td>30.09</td>
<td>24.00</td>
<td>21.00</td>
<td>19.92</td>
<td>0.67</td>
</tr>
<tr>
<td>26.32</td>
<td>25.00</td>
<td>22.00</td>
<td>20.27</td>
<td>0.31</td>
</tr>
<tr>
<td>24.68</td>
<td>24.00</td>
<td>22.00</td>
<td>20.33</td>
<td>0.25</td>
</tr>
<tr>
<td>26.01</td>
<td>25.00</td>
<td>21.00</td>
<td>19.26</td>
<td>0.20</td>
</tr>
<tr>
<td>26.46</td>
<td>24.00</td>
<td>20.00</td>
<td>19.40</td>
<td>0.38</td>
</tr>
<tr>
<td>28.24</td>
<td>25.00</td>
<td>23.00</td>
<td>20.65</td>
<td>0.62</td>
</tr>
<tr>
<td>29.04</td>
<td>24.00</td>
<td>21.00</td>
<td>20.21</td>
<td>0.63</td>
</tr>
<tr>
<td>27.01</td>
<td>23.01</td>
<td>21.00</td>
<td>19.70</td>
<td>0.67</td>
</tr>
</tbody>
</table>

7.1 Solution via ADMM

Here we demonstrate how to use ADMM, a framework for distributed optimization, to find \(\hat{x} \) satisfying the bound on the duality gap. This shows that a solution satisfying the bound may be found even for very large scale problems, so long as the proximal operators of the functions \(f_i \) can be evaluated efficiently.

ADMM. The Alternating Directions Method of Multipliers (ADMM) was first introduced in 1975 by Glowinski and Marocco [GM75] and Gabay and Mercier [GM76], and is closely related to a number of classical operator-splitting methods such as Douglas-Rachford and Peaceman-Rachford [Gab83, PR55, LM79, Glo14]. ADMM has recently received renewed interest as a method for solving distributed optimization problems due both to its ease of implementation and its robust convergence in practice and in theory on convex problems [Gab83, EB92, HL12, HY12]. For an introduction to ADMM, we refer the reader to the survey [BPC+11, and references therein], and to the many papers exploring some of the important properties of the method [FG83b, Gab83, FG83a, GT87, Tse91, Fuk92, EF93, CT94].
ADMM is not guaranteed to converge to the global solution when applied to a nonconvex problem [Zha10, MWF14]. However, its computational advantages still make ADMM a popular method for nonconvex optimization [MWF14, DBEY13, CW13, Cha12, BTP13, GZ13, KT12] even in the absence of convergence guarantees. In contrast to this previous work, here we use ADMM to find a feasible point for the nonconvex problem which obeys the global error bound of Theorem 1.

ADMM for the convexified problem. A generalized consensus ADMM iteration can be used to solve the convexified problem (see [BPC+11] for details). We rewrite the problem as

\[
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{n} \hat{f}_i(x_i) + 1_{Ax \leq b, Gx = h}(z) \\
\text{subject to} & \quad x = z,
\end{align*}
\]

where \(1_C\) denotes the indicator function of the set \(C\). An ADMM iteration solving the above problem is given by

\[
\begin{align*}
x_i^k &= \arg\min_x \hat{f}_i(x) + \rho/2\|x - z_i^{k-1} + y_i^{k-1}\|^2_2 \\
z^k &= \Pi_{Ax \leq b, Gx = h}(x^k) \\
y_i^k &= y_i^{k-1} + 1/\rho(x_i^k - z_i^k).
\end{align*}
\]

Here, \(\Pi_C\) denotes projection onto the set \(C\). Under some mild conditions [HL12], the iterates \(z^k\) and \(x^k\) both converge linearly to a primal optimal solution \(x^*\) for the convexified problem; \(y^k\) converges to a dual optimal solution \(\lambda^*\) for the convexified problem.

This iteration requires very little communication between nodes in a distributed system. This property may be very useful if it is expensive to compute or to optimize the convex envelopes \(\hat{f}_i\). Each processor in the distributed architecture may perform the \(x\) update for one block \(i\) in parallel, with no need to communicate with other processors. The only centralized computation is the projection of \(x^k\) onto the constraints.

However, we have already seen in §2 that projecting a solution to the dual problem onto the constraint set can work very poorly for nonconvex separable problems. To understand this phenomenon better, consider a symmetric problem, which has the same \(f_i\) for every \(i = 1, \ldots, n\), and constraint matrices \(A\) and \(G\) whose columns are identical. ADMM will not break the symmetry between different coordinate blocks, since the iteration above is completely
symmetric, resulting in a symmetric solution to the convexified problem. But we have seen in §2 that a symmetric solution is the worst sort of solution; it can have an error that grows linearly with \(n \).

ADMM for the randomized problem. We want a solution at an extreme point of the optimal set for the convexified problem. Fortunately, it is also easy to compute the solution to the randomized problem \(\mathcal{R} \) using distributed optimization, which allows us to find a point \(\hat{x} \) satisfying the bound in Theorem 1.

Taking the primal and dual optimal pair \((x^*, \lambda^*)\) for (7) computed by the first round of ADMM iterations, we can rewrite \(\mathcal{R} \) in ADMM consensus form. Let
\[
M = \left\{ x : \hat{f}(x) + \lambda^T Ax \leq \hat{f}(x^*) + \lambda^T A x^* \right\}.
\]

We will see in §6 that \(M \) is separable, and can be written as \(M = M_1 \times \cdots \times M_n \). Hence we can rewrite \(\mathcal{R} \) as
\[
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{n} (w_i^T x_i + 1_{M_i}(x_i)) + 1_{Ax=A^*_x, Gx=h}(z) \\
\text{subject to} & \quad x = z,
\end{align*}
\]
which gives rise to the ADMM consensus iteration
\[
\begin{align*}
x_i^k &= \arg\min_{x \in M_i} w_i^T x + \rho/2 \|x - z_i^{k-1} + y_i^{k-1}\|^2 \\
z_i^k &= \Pi_{Ax \leq b, Gx = h}(x_i^k) \\
y_i^k &= y_i^{k-1} + 1/\rho(x_i^k - z_i^k).
\end{align*}
\]
The solution \(z \) produced by this distributed iteration will satisfy Theorem 1.

Acknowledgements

The authors thank Haitham Hindi, Ernest Ryu and two anonymous reviewers for their very careful readings of and comments on early drafts of this paper, and Jon Borwein and Julian Revalski for their generous assistance on the technical results in the appendix.
A Well-posedness

The following theorem characterizes the set of vectors in the dual space for which linear optimization over a compact set \(S \) is well-posed.

Theorem 3 (Well-posedness of linear optimization). Suppose \(S \) is a compact set in \(\mathbb{R}^n \). Then the set of \(w \in \mathbb{R}^n \) for which the maximizer of \(w^T x \) over \(S \) is not unique has (Lebesgue) measure zero.

This result is well-known; for example, it follows from [BDL11, §2], taking into account that if \(S \subseteq \mathbb{R}^n \) is compact, then so is its convex hull \(K = \text{conv}(S) \) and the set of extreme points of \(S \) and \(K \) coincide. In fact, one can derive much stronger results using, for example, Alexandrov’s theorem for convex functions to show quadratic decay, or finite identifiability in the case of semialgebraic functions. However, our purpose here is more modest; we merely prove the weaker result stated as Theorem 3 so that this paper may be self-contained.

Before proceeding to a proof, however, let us make sense of the statement of the theorem. By definition, the maximizer of a linear functional over a set \(S \) is a face \(R \) of \(S \). The maximizer is unique if and only if \(R \) is a zero-dimensional face (i.e., an extreme point). Only an outward normal to a face will be maximized on that face.

It is easy to see that the theorem is true for polyhedral sets \(S \). For each face of the polyhedron that is not extreme, the set of vectors maximized by that face (the set of outward normals to the face, i.e., the normal cone) will have dimension smaller than \(n \). A polyhedron has only a bounded number of faces, so the union of these sets still has measure zero.

On the opposite extreme, consider the unit sphere. A sphere has an infinite number of faces. But every face is extreme, and every vector \(w \) has a unique maximizer.

The difficulty comes when we consider cylindrical sets: those constructed as the Cartesian product of a sphere and a cube. Here, every outward normal to the “sides” of the cylinder is a vector whose maximum over the set is not extreme. That is, we find an uncountably infinite number of faces (parametrized by the boundary of the sphere) that are not extreme points.

Proof. Let \(I_S : \mathbb{R}^n \to \mathbb{R} \) be the indicator function of \(S \). \(S \) is compact, so the convex conjugate \(I_S^*(y) = \sup_x y^T x - I_S(x) \) of \(I_S \) is finite for every \(y \in \mathbb{R}^n \). Rachemacher’s Theorem [BV10, Theorem 2.5.1] states that a convex function
The function \(g : \mathbb{R}^n \to \mathbb{R} \) is differentiable almost everywhere with respect to Lebesgue measure on \(\mathbb{R}^n \). Furthermore, if \(I_S^* \) is differentiable at \(y \) with \(\nabla I_S^*(y) = x \), then \(y^T x - I_S(x) \) attains a strong maximum at \(x \) [BV10, Theorem 5.2.3]; that is, there is a unique maximizer of \(y^T x \) over \(S \).

Clearly, the statement also holds for the minimizers, rather than maximizers, of \(w^T x \).

The following corollary will be used in the proof of the main theorem of this paper.

Corollary 1. Suppose \(S \) is a compact set in \(\mathbb{R}^n \), and \(w \) is a uniform random variable on the unit sphere in \(\mathbb{R}^n \). Then with probability one, there is a unique minimizer of \(w^T x \) over \(S \).

Proof. The property of having a unique minimizer exhibits a symmetry along radial lines: there is a unique minimizer of \(w^T x \) over \(S \) if and only if there is a unique minimizer of \((w/\|w\|_2)^T x \) over \(S \). A uniform random vector on the unit sphere may be generated by taking a uniform random vector on the unit ball, and normalizing it to lie on the unit sphere. Since the set of directions whose maximizers are not unique has Lebesgue measure zero, the vectors on the unit sphere generated in this manner have maximizers that are unique with probability one.

We give one last corollary, which may be of mathematical interest, but is not used elsewhere in this paper.

Corollary 2. Suppose \(S \) is a compact set in \(\mathbb{R}^n \). The union of the normal cones \(N(x) \) of all points \(x \in S \) that are not extreme has measure zero.

Proof. A point \(x \) minimizes \(y^T x \) over \(S \) if and only if \(y \in N(x) \). A point \(x \) is the only minimizer of \(y^T x \) over \(S \) if and only if \(x \) is exposed, and hence extreme. Hence no \(y \) with a unique minimizer over \(S \) lies in the normal cone of a point that is not extreme. Thus the union of the normal cones \(N(x) \) of all points \(x \in S \) that are not extreme is a subset of the vectors which do not have a unique maximizer over \(S \), and hence has measure zero.
B Closure

The following lemma technical lemma will be useful in the main body of the paper.

Lemma 3. Let \(S \subset \mathbb{R}^n \) be a nonempty compact set, and let \(f : S \to \mathbb{R} \) be lower semi-continuous on \(S \). Then \(\text{conv}(\text{epi} \ f) \) is closed.

This result follows from [BHU96, Thm. 4.6], since every function defined on a compact set is in particular 1-coercive. The earliest proof known to the authors can be found in [Val70, p. 69]; for a simpler exposition, see [HUL96, Ch. X, \$1.5]. Here, we provide a self-contained elementary proof for the curious reader.

Proof. Every point \((x,t) \in \text{cl}(\text{conv}(\text{epi} \ f))\) is a limit of points \((x^k, t^k)\) in \(\text{conv}(\text{epi} \ f) \). These points can be written as

\[
(x^k, t^k) = \sum_{i=1}^{n+2} \lambda_i^k(a_i^k, b_i^k)
\]

with \(\sum_{i=1}^{n+2} \lambda_i^k = 1, 0 \leq \lambda_i^k \leq 1, \) and \((a_i^k, b_i^k) \in \text{epi}(f)\). Since \([0,1]\) and \(S \) are compact, we can find a subsequence along which each sequence \(a_i^k \) converges to a limit \(a_i \in S \), and each sequence \(\lambda_i^k \) converges to a limit \(\lambda_i \in [0,1] \).

Let \(P = \{i : \lambda_i > 0\} \). Note that \(P \) is not empty, since \(\sum_{i=1}^{n+2} \lambda_i^k = 1 \) for every \(k \). If \(l \in P \), then because the limit \(t \) exists, \(\limsup_k b_i^k \) is bounded above. Recall that a lower semi-continuous function is bounded below on a compact domain, so \(b_i^k \) is also bounded below. This shows that for \(i \in P \), every subsequence of \(b_i^k \) has a subsequence that converges to a limit \(b_i \). In particular, we can pick a subsequence \(k_j \) such that simultaneously, for \(i = 1, \ldots, n+2, a_i^{k_j}, b_i^{k_j}, \) and \(\lambda_i^{k_j} \) converge along the subsequence \(k_j \) to \(a_i, b_i, \) and \(\lambda_i \), respectively.

Define \(S_P = \sum_{i \in P} \lambda_i b_i \). Then along the subsequence \(k_j \), \(\lim_{j \to \infty} \sum_{i \notin P} \lambda_i^{k_j} b_i^{k_j} = t - S_P \) also exists. Since \(f \) is bounded below, \(b_i^k \) are all bounded below, and for \(i \notin P, \lambda_i^k \to 0, \) so \(t - S_P \geq 0 \). Therefore \((x,t)\) can be written as \(\sum_{i \in P} \lambda_i(a_i, b_i) + (0, t - S_P) \).

Recall that a function is lower semi-continuous if and only if its epigraph is closed. Hence \((a_i, b_i) \in \text{epi} \ f \) for \(i \in P \). Without loss of generality, suppose \(1 \in P \), and note that \((a_1, b_1 + t - S_P) \in \text{epi} \ f \), since \(t - S_P \) is non-negative.
Armed with these facts, we see we can write \((x,t)\) as a convex combination of points in \(\text{epi } f\),

\[
(x,t) = \lambda_1 (a_1, b_1 + t - S_P) + \sum_{i \in S, i \neq 1} \lambda_i (a_i, b_i).
\]

Thus every \((x,t) \in \text{cl}(\text{conv}(\text{epi } f))\) can be written as a convex combination of points in \(\text{epi } f\), so \(\text{conv}(\text{epi } f)\) is closed. \(\square\)

Corollary 3. Let \(S \subset \mathbb{R}^n\) be a compact set, and let \(f : S \to \mathbb{R}\) be lower semi-continuous on \(S\). Then \(\text{epi}(\hat{f}) = \text{cl}(\text{conv}(\text{epi } f)) = \text{conv}(\text{epi } f)\).

References

[MWF14] S. Magnusson, P. C. Weeraddana, and C. Fischione. A distributed approach for the optimal power flow problem based on

