Generalized Low Rank Models

Madeleine Udell

Center for the Mathematics of Information
Caltech

Based on joint work with Stephen Boyd, Corinne Horn, Reza Zadeh, and Nathan Kallus

INFORMS, 11/2/2015
Data table

<table>
<thead>
<tr>
<th>age</th>
<th>gender</th>
<th>state</th>
<th>income</th>
<th>education</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>F</td>
<td>CT</td>
<td>$53,000</td>
<td>college</td>
</tr>
<tr>
<td>57</td>
<td>?</td>
<td>NY</td>
<td>$19,000</td>
<td>high school</td>
</tr>
<tr>
<td>?</td>
<td>M</td>
<td>CA</td>
<td>$102,000</td>
<td>masters</td>
</tr>
<tr>
<td>41</td>
<td>F</td>
<td>NV</td>
<td>$23,000</td>
<td>?</td>
</tr>
</tbody>
</table>

- detect demographic groups?
- find typical responses?
- identify similar states?
- impute missing entries?
Data table

m examples (patients, respondents, households, assets)

n features (tests, questions, sensors, times)

\[
\begin{bmatrix}
A \\
\end{bmatrix} = \begin{bmatrix}
A_{11} & \cdots & A_{1n} \\
\vdots & \ddots & \vdots \\
A_{m1} & \cdots & A_{mn}
\end{bmatrix}
\]

- ith row of A is feature vector for ith example
- jth column of A gives values for jth feature across all examples
Low rank model

given: \(A \in \mathbb{R}^{m \times n}, \ k \ll m, n \)

find: \(X \in \mathbb{R}^{m \times k}, \ Y \in \mathbb{R}^{k \times n} \) for which

\[
\begin{bmatrix}
X \\
Y
\end{bmatrix} \approx \begin{bmatrix}
A
\end{bmatrix}
\]

i.e., \(x_i y_j \approx A_{ij} \), where

\[
\begin{bmatrix}
X
\end{bmatrix} = \begin{bmatrix}
x_1 \\
\vdots \\
x_m
\end{bmatrix} \quad \begin{bmatrix}
Y
\end{bmatrix} = \begin{bmatrix}
y_1 & \cdots & y_n
\end{bmatrix}
\]

interpretation:

- \(X \) and \(Y \) are (compressed) representation of \(A \)
- \(x_i^T \in \mathbb{R}^k \) is a point associated with example \(i \)
- \(y_j \in \mathbb{R}^k \) is a point associated with feature \(j \)
- inner product \(x_i y_j \) approximates \(A_{ij} \)
Why use a low rank model?

- reduce storage; speed transmission
- understand (visualize, cluster)
- remove noise
- infer missing data
- simplify data processing
Outline

PCA

Generalized low rank models

Applications

Algorithms
Principal components analysis

PCA:

\[
\text{minimize} \quad \|A - XY\|_F^2 = \sum_{i=1}^{m} \sum_{j=1}^{n} (A_{ij} - x_i y_j)^2
\]

with variables \(X \in \mathbb{R}^{m \times k}, \ Y \in \mathbb{R}^{k \times n}\)

- old roots [Pearson 1901, Hotelling 1933]
- least squares low rank fitting
- (analytical) solution via SVD of \(A = U \Sigma V^T:\)

\[
X = U_k \Sigma_k^{1/2} \quad Y = \Sigma_k^{1/2} V_k^T
\]

(Not unique: \((XT, TY)\) also a solution for \(T\) invertible.)

- (numerical) solution via alternating minimization
Outline

PCA

Generalized low rank models

Applications

Algorithms
Generalized low rank model

minimize \(\sum_{(i,j) \in \Omega} L_j(x_i y_j, A_{ij}) + \sum_{i=1}^{m} r_i(x_i) + \sum_{j=1}^{n} \tilde{r}_j(y_j) \)

- loss functions \(L_j \) for each column
 - e.g., different losses for reals, booleans, categoricals, ordinals, ...
- regularizers \(r: \mathbb{R}^{1 \times k} \to \mathbb{R}, \tilde{r}: \mathbb{R}^k \to \mathbb{R} \)
- observe only \((i, j) \in \Omega\) (other entries are missing)

Note: can be NP-hard to optimize exactly…
Related work

- principal components analysis (PCA) [Pearson 1901, Hotelling 1933]
- exponential family PCA [Collins 2001]
- generalized2 linear2 models [Gordon 2002]
- convex relaxations of regularization [Srebro 2004]
- matrix factorization as clustering [Tropp 2004]
- matrix factorization models [Singh Gordon 2008]
- penalized matrix decomposition [Witten et al. 2009]
- low rank approximation [Markovsky 2012]
Matrix completion

observe A_{ij} only for $(i, j) \in \Omega \subset \{1, \ldots, m\} \times \{1, \ldots, n\}$

minimize $\sum_{(i,j)\in\Omega}(A_{ij} - x_i y_j)^2 + \sum_{i=1}^{m} \|x_i\|_2^2 + \sum_{j=1}^{n} \|y_j\|_2^2$

two regimes:

▶ **some entries missing**: don’t waste data; “borrow strength” from entries that are *not* missing

▶ **most entries missing**: matrix completion still works!

Theorem ([Keshavan Montanari 2010])

If A has rank $k' \leq k$ and $|\Omega| = O(nk' \log n)$ (and A is incoherent and Ω is chosen UAR), then matrix completion exactly recovers the matrix A with high probability.
Maximum likelihood low rank estimation

noisy data? maximize (log) likelihood of observations by minimizing:

- gaussian noise: $L(u, a) = (u - a)^2$
- laplacian (heavy-tailed) noise: $L(u, a) = |u - a|$
- gaussian + laplacian noise: $L(u, a) = \text{huber}(u - a)$
- poisson (count) noise: $L(u, a) = \exp(u) - au + a \log a - a$
- bernoulli (coin toss) noise: $L(u, a) = \log(1 + \exp(-au))$
Maximum likelihood low rank estimation works

Theorem (Template)

If a number of samples $|\Omega| = O(n \log(n))$ drawn UAR from matrix entries is observed according to a probabilistic model with parameter Z, the solution to (appropriately) regularized maximum likelihood estimation is close to the true Z with high probability.

examples (not exhaustive!):

- additive gaussian noise [Candes Plan 2009]
- additive subgaussian noise [Keshavan Montanari Oh 2009]
- gaussian + laplacian noise [Xu Caramanis Sanghavi 2012]
- 0-1 (Bernoulli) observations [Davenport et al. 2012]
- entrywise exponential family distribution [Gunasekar Ravikumar Ghosh 2014]
- multinomial logit [Kallus U 2015]
define *abstract feature space* \mathcal{F}_j
eq space

e.g., $A_{ij} \in \mathcal{F}_j$ can be

- boolean
- ordinal
- categorical
- ranking

just need a loss function $L_j : \mathbb{R} \times \mathcal{F}_j \to \mathbb{R}$.
Regularizers

\[
\text{minimize} \quad \sum_{(i,j) \in \Omega} L_j(x_iy_j, A_{ij}) + \sum_{i=1}^{m} r_i(x_i) + \sum_{j=1}^{n} \tilde{r}_j(y_j)
\]

Choose regularizers \(r, \tilde{r} \) to impose structure on representation

- small
 - \(r(x) = \|x\|^2_2 \)
- sparse
 - \(r(x) = \|x\|_1 \)
 - \(r(x) = I(\text{card}(x) \leq p) \)
- nonnegative
 - \(r(x) = \delta(x \geq 0) \)
- clustered
 - \(r(x) = \delta(\text{card}(x) = 1), \tilde{r}(y) = 0 \)
Outline

PCA

Generalized low rank models

Applications

Algorithms
Impute heterogeneous data

PCA:

GLRM:
American community survey

2013 ACS:

- 3M respondents, 87 economic/demographic survey questions
 - income
 - cost of utilities (water, gas, electric)
 - weeks worked per year
 - hours worked per week
 - home ownership
 - looking for work
 - use foodstamps
 - education level
 - state of residence
 - ...
- 1/3 of responses missing
Fitting a GLRM to the ACS

- construct a rank 10 GLRM with loss functions respecting data types
 - huber for real values
 - hinge loss for booleans
 - ordinal hinge loss for ordinals
 - one-vs-all hinge loss for categoricals
- scale losses and regularizers by $1/\sigma_j^2$
- fit the GLRM

in 3 lines of code:

```python
A = expand_categoricals(A, categoricals)
glrm, labels = GLRM(A, 10, scale = true)
X,Y = fit!(glrm)
```
American community survey

most similar features (in demography space):

- Alaska: Montana, North Dakota
- California: Illinois, cost of water
- Colorado: Oregon, Idaho
- Ohio: Indiana, Michigan
- Pennsylvania: Massachusetts, New Jersey
- Virginia: Maryland, Connecticut
- Hours worked: weeks worked, education
Outline

PCA

Generalized low rank models

Applications

Algorithms
Convergence theory for GLRM

can we fit GLRM?

- exactly, always: no
 - NP hard to solve weighted PCA [Gillis2011]
- exactly, sometimes: yes
 - some GLRM are equivalent to convex problems
- approximately (heuristically), always: yes
 - alternating minimization never increases the objective value
Fitting GLRMsWith alternating minimization

\[
\text{minimize } \sum_{(i,j) \in \Omega} L_j(x_i y_j, A_{ij}) + \sum_{i=1}^{m} r_i(x_i) + \sum_{j=1}^{n} \tilde{r}_j(y_j)
\]

repeat:

1. minimize objective over \(x_i\) (in parallel)
2. minimize objective over \(y_j\) (in parallel)

properties:

- subproblems easy to solve
- objective decreases at every step, so converges if losses and regularizers are bounded below
- (not guaranteed to find global solution, but) usually finds good model in practice
- naturally parallel, so scales to huge problems
Alternating updates

given X^0, Y^0

for $t = 1, 2, \ldots$ do

for $i = 1, \ldots, m$ do

$x_i^t = \text{update}_{L,r}(x_i^{t-1}, Y^{t-1}, A)$

end for

for $j = 1, \ldots, n$ do

$y_j^t = \text{update}_{L,\tilde{r}}(y_j^{(t-1)T}, X(t)^T, A^T)$

end for

end for

▶ no need to exactly minimize

▶ choose fast, simple update rules
A simple, fast update rule

proximal gradient method: let

\[g = \sum_{j: (i,j) \in \Omega} \nabla L_j(x_i y_j, A_{ij}) y_j \]

and update

\[x_i^{t+1} = \text{prox}_{\alpha_t r}(x_i^t - \alpha_t g) \]

(where \(\text{prox}_f(z) = \arg\min_x (f(x) + \frac{1}{2} \| x - z \|_2^2) \))

- simple: only requires ability to evaluate \(\nabla L \) and \(\text{prox}_r \)
- stochastic variant: use noisy estimate for \(g \)
- time per iteration: \(O\left(\frac{(n+m+|\Omega|)k}{p} \right) \) on \(p \) processors
Exactly, sometimes

Theorem

\((X, Y) \in \mathbb{R}^{m \times k} \times \mathbb{R}^{k \times n}\) is a solution to

\[
\minimize \quad F(XY) + \frac{\gamma}{2} \|X\|_F^2 + \frac{\gamma}{2} \|Y\|_F^2
\]

if and only if \(Z = XY\) is a solution to

\[
\minimize \quad F(Z) + \gamma \|Z\|_* \\
\text{subject to} \quad \text{Rank}(Z) \leq k, \quad (\mathcal{R})
\]

where \(\|Z\|_*\) is the sum of the singular values of \(Z\).

- if \(F\) is convex, then \(\mathcal{R}\) is a rank-constrained semidefinite program
- local minima of \(\mathcal{F}\) correspond to local minima of \(\mathcal{R}\)
Proof of equivalence

suppose $Z = XY = U\Sigma V^T$

\blacksquare $\mathcal{R} \leq \mathcal{F}$: if Z is feasible for \mathcal{R}, then

$$X = U\Sigma^{1/2}, \quad Y = \Sigma^{1/2} V^T$$

is feasible for \mathcal{F}, with the same objective value

\blacksquare $\mathcal{R} \leq \mathcal{F}$: for any $XY = Z$

$$\|Z\|_* = \text{tr}(\Sigma) = \text{tr}(U^TXYV) \leq \|U^TX\|_F \|YV\|_F \leq \|X\|_F \|Y\|_F \leq \frac{1}{2}(\|X\|_F^2 + \|Y\|_F^2)$$
Convex equivalence

Theorem

For every $\gamma \geq \gamma^*(k)$, *every solution to*

$$\begin{align*}
\text{minimize} & \quad L(Z) + \gamma \|Z\|_* \\
\text{subject to} & \quad \text{Rank}(Z) \leq k
\end{align*}
$$

(with variable $Z \in \mathbb{R}^{m \times n}$) *is a solution to*

$$\begin{align*}
\text{minimize} & \quad L(Z) + \gamma \|Z\|_*.
\end{align*}
$$

proof: find $\gamma^*(k)$ so large that there is a Z with rank $\leq k$ satisfying optimality conditions for \mathcal{U}

- if γ is sufficiently large (compared to k), rank constraint is *not binding*
Certify global optimality, sometimes

two ways to use convex equivalence:

▶ convex:
 1. solve the unconstrained SDP
 \[
 \text{minimize} \quad F(Z) + \gamma \|Z\|_*
 \]
 2. see if the solution is low rank

▶ nonconvex:
 1. fit the GLRM with any method, producing \((X, Y)\)
 2. check if \(XY = U\Sigma V^T\) satisfies the optimality conditions
 for the (convex) unconstrained SDP
 \[
 \|\partial F(XY) + \gamma U V^T\|_2 \leq 1
 \]
Why use the factored formulation?

pro

- size of problem variable: \((m + n)k\) vs \(mn\)
- smooth regularizer: frobenius vs trace norm
- no eigenvalue computations needed
- (almost) no new local minima if \(k\) is large enough
 - solution to rank-constrained SDP is in the relative interior of a face over which the objective is constant [Burer Monteiro]
- linear convergence of gradient descent to local minimum if loss is differentiable and strongly convex on the set of rank-\(k\) matrices [Bhojanapalli Kyrillidis Sanghavi 2015]

con

- local minima
- saddle points
Initialization

- fit census data set
- random initialization
 \[x_i \sim \mathcal{N}(0, I_k) \]
 \[y_j \sim \mathcal{N}(0, I_k) \]
- SVD initialization
 - interpret \(A \) as numerical matrix \(M \)
 - fill in missing entries in \(M \) to preserve column mean and variance
 - center and standardize \(M \)
 - initialize \(XY \) with SVD of \(M \)
Summary

- a general framework for fitting tabular data
 - losses for abstract data types
 - automatic scaling for heterogeneous losses
- a more general algorithm
 - parallel algorithms for (heuristically) fitting any GLRM
 - software package(s) implementing framework
 - heuristic initialization rules
- new analytic tools
 - model validation
 - certificates of optimality (sometimes)

paper
http://arxiv.org/abs/1410.0342

code
https://github.com/madeleineudell/LowRankModels.jl