Madeleine Udell is Assistant Professor of Management Science and Engineering at Stanford University, with an affiliation with the Institute for Computational and Mathematical Engineering (ICME) and courtesy appointment in Electrical Engineering, and Associate Professor with tenure (on leave) of Operations Research and Information Engineering and Richard and Sybil Smith Sesquicentennial Fellow at Cornell University. She studies optimization and machine learning for large scale data analysis and control, with applications in marketing, demographic modeling, medical informatics, engineering system design, and automated machine learning. She has received several awards, including an Alfred P. Sloan Research Fellowship (2021), a National Science Foundation CAREER award (2020), an Office of Naval Research (ONR) Young Investigator Award (2020), a Cornell Engineering Research Excellence Award (2020), an INFORMS Optimization Society Best Student Paper Award (as advisor) (2019), and INFORMS Doing Good with Good OR (2018). Her work is supported by grants from the NSF, ONR, DARPA, the Canadian Institutes of Health, and Capital One.

Her research in optimization centers on detecting and exploiting novel structures in optimization problems, with a particular focus on convex and low rank problems. These structures lead the way to automatic proofs of optimality, better complexity guarantees, and faster, more memory-efficient algorithms. She has developed a number of open source libraries for modeling and solving optimization problems, including Convex.jl, one of the top tools in the Julia language for technical computing.

Her research in machine learning centers on methods for imputing missing data in large tabular data sets. Her work on generalized low rank models (GLRMs) extends principal components analysis (PCA) to embed tabular data sets with heterogeneous (numerical, Boolean, categorical, and ordinal) types into a low dimensional space, providing a coherent framework for compressing, denoising, and imputing missing entries. This research enables novel applications in medical informatics, quantitative finance, marketing, causal inference, and automated machine learning, among others.

At Cornell, Madeleine has advised more than 50 students and postdocs. She has developed several new courses in optimization and machine learning, earning the Douglas Whitney ’61 Engineering Teaching Excellence Award in 2018.

Madeleine completed her PhD at Stanford University in Computational & Mathematical Engineering in 2015 under the supervision of Stephen Boyd, and a one year postdoctoral fellowship at Caltech in the Center for the Mathematics of Information hosted by Professor Joel Tropp. At Stanford, she was awarded a NSF Graduate Fellowship, a Gabilan Graduate Fellowship, and a Gerald J. Lieberman Fellowship, and was selected as the doctoral student member of Stanford's School of Engineering Future Committee to develop a road-map for the future of engineering at Stanford over the next 10–20 years. She received a B.S. degree in Mathematics and Physics, summa cum laude, with honors in mathematics and in physics, from Yale University.