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Abstract
Kojima-Mizuno-Yoshise’s potential reduction algorithm for the linear complementarity
problem is shown to retain its convergence properties when the search direction is changed to

projected scaled steepest descent. We also show that their algorithm for linear programming is

just a specialization of their linear complementarity method.



1. Introduction

This note is concerned with the potential-reduction algorithm of Kojima, Mizuno and
Yoshise [3] for solving the linear complementarity problem (LCP):

Find x,y ERB‘_ with y = Mx + q and xTy =0,
where M is an nxn positive semi-definite (but not necessarily symmetric) matix and q € RM.

We assume that
S++:={(x,y)€R2n: y=Mx+q, x>0, y>0}

is nonempty. Given a suitable pair (XO, yO) € S++, their algorithm will find a pair

(F)Tyk < 2t

in O(4nt) iterations, and hence provides a polynomial time algorithm for such LCP’s if M
and q are integer.

The algorithm is motivated by seeking sufficient reduction in the potential function

f(x, ¥) = pluxTy — T; tuxgy; — nénn

J J7]
nX'y-
—(p - T, . X, J°J
=(p-n)lnx'y ZJ gn(xTy)

at each iteration, where p = n 4 vn. Guaranteeing a fixed decrease in this function at each
iteration ensures the convergence result stated above; it is only necessary that the initial pair
satisfy f(xo, yo) = O(+nt).

At each iteration, a symmetric primal-dual scaling is (implicitly) made, and then a
search direction is chosen. However, this search direction is not necessarily the projected steep-
est descent direction for the potential function in the scaled space in the usual sense (although
Kojima, Mizuno and Yoshise [3, Section 3(B)] show that it is such a direction with respect to a
suitable norm on the subspace {(x,y) € R21; y = Mx}). In section 2, we will show that the dir-

ections do coincide when M is skew symmetric (as in the case where the LCP arises from a



linear programming problem), and that if the search direction is changed to the projected
steepest descent direction, then the complexity analysis of [3] remains valid, with only some
constants changed.

Other potential reduction algorithms for the LCP do use the scaled steepest descent
direction, but with separate primal and dual scaling (Kojima, Megiddo and Ye [1], Ye [5], and
Ye and Pardalos [6], for example). We show that this direction can also be viewed as a sort of
Newton direction for minimizing the potential, where the Hessian comes from the barrier part
—Ejﬁn XY of the potential function. However, for this algorithm at best a bound of O(nzt)
iterations has been proved [l, 5, 6], even for the positive semi-definite case, with a larger
value for p. We comment briefly on this difference.

In section 3(A), Kojima, Mizuno and Yoshise [3] state that their analysis remains valid
for the linear programming problem with suitable changes to the definitions. In section 3, we
will show that the situation is not merely analogous; if the appropriate LCP is set up, the two
algorithms are identical. This was probably known to several researchers, including Kojima,
Mizuno and Yoshise, although to our knowledge it has not been stated explicitly. We

demonstrate the equivalence in the context of convex quadratic programming.

As far as possible, we use the notation of [3].

2. Scaled steepest descent

Let the current iterate be (x, y) € S++. Kojima, Mizuno and Yoshise let the next iter-

ate be

(%,7) == (x, ¥) — 0(Ax, Ay) (2.1)

for a suitable direction (Ax, Ay) (with Ay = MAx) and step size 6. To ensure that
(%, 5) € S++, they require

81X L Ax]loe < 75 OIY AYlloo < 7 (2.2)
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where 7 € (0,1) and an upper-case letter (like X) denotes the diagonal matrix with diagonal

entries the components of the corresponding lower-case letter (like x). They show that

1%, ) < (6, y) + 0gy(Ax, Ay) + 0%85(Ax, AY), (23)
where
g (Ax, Ay) == —uT(VIYAx + vixay); (2.4)
= x)2, v = Ve (2.5)
w= L v vl (26)
vV
and

i ax)? + 1y tay)?

= L AT
go(Ax, Ay) = Ty Ax* Ay + 2T = 7) (2.7)
Consider the so-called symmetric scaling:
2 %= vive = xy )%,
(2.8)
~ ~ - ~ 1 2
¢ - 7= vixg = xyh /
Note that (%, ¥) = f(%, §), and that (%,3) € S iff
&%) €S, ={%9) Ry =M% +3, £>0, § >0
where
2 2 3 -
= xy'h/ M(XY‘l)l/ , § = (XY INVEN (2.10)

We remark that 1\71, as a symmetric scaling of M, is skew-symmetric or positive semi-definite

exactly when M is.

Under the symmetric scaling, the current iterate (x,y) is transformed into (v, v) and
the direction (Ax, Ay) is transformed into (Aﬂx, Ay) = (V"lYAX, V'IXAy) (cf. (2.4)). The

gradient of f at the point (v, v) is
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Vi(v, v) = (u, u). (2.11)

In order to decrease the bound (2.3) on f as much as possible, Kojima, Mizuno and

Yoshise choose Ax and &'y as the unique solution of

they assume M (and hence ﬂ/'I) is positive semi-definite, so that I + M is positive definite
and Ax = (I + ﬁ)"lAu, Ay = M(I + 1\71)'1Au solves (2.12).

Instead, we will use the projected steepest descent direction for f in this scaling. Using
(2.11), we want the projection of (u, u) into the null space of (—1‘\71, I). Using standard tech-

niques this gives

Rx = 1+ ATy L1 + MM
(2.13)

Ay = M(I + MTﬁ)'l(I + MT)u;
then

Bx + Ay = v := (1 + M)A + T8 11 4+ M) (2.14)

This is the form of the step given (with a different scaling) in [1, section 4]. An alternative
representation
Ax =1+ M7+ MfT) 11 — fM))u

Ry = (1 — (14 MUTY 11 - M)

is used in [1, section 7], and also in [5,6], but this is less convenient for our purposes. The
equivalence is easily shown. Note that, for any IC*I, I+ MMT and I+ MTM are positive
definite and hence invertible, so that (Ah'x, Ay) in (2.13) is well-defined; but (2.12) requires

conditions, since it may have no solution (e.g., if M = —I and Au # 0).
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Actually, we shall scale Ax and A"y in (2.13) and define them (for M positive semi-

definite) as the unique solution to
!

S

Ay = MAX.

Ax + Ay = Ad' (2.15)

The next result parallels theorem 2.2 of Kojima, Mizuno and Yoshise [3], with «]_?;/4 replacing

—

N3/2.

Theorem 1. Suppose M is positive semi-definite, and let Voin min{vl,VQ,...,vn} and

§ =v_ . 7 forsome 7 € (0,1).

Suppose the direction (zfx, A’vy) satisfies (2.15) and Ax = VY'lA'vx, Ay = VX"lANy. Then

(2.2) holds, and

6g,(Ax, Ay) < —({3/4)7, (2.16)
QQgQ(AX, Ay) < ma,x{n;f , 2(11_7)}72. (2.17)

As in [3], this implies that, if n > 2 and 7= .4, {(%,¥) < f(x, y) — .03, giving the required
complexity result.

The proof of theorem 1 follows that of theorem 2.2 in [3]; we assume the reader is
familiar with the argument there. Lemma 2.3-2.5 in [3] remain valid, with Au’ replacing Au in
the proof of lemma 2.4. Then (2.2) and (2.17) follow as in [3]. However, for (2.16) we find

0g1(Ax, Ay) = -—uT(&'x + Any)vminr

uu

— e VT
[[uf]] ~min

T4 S+ TR a4 8
(1 + M1+ MR 4 S|l

il ( Mmin @)

Ay LT —
- Amax|juf] mn = Amax 2

min



where )‘mi and Amax are the minimum and maximum eigenvalues of the positive definite

n

matrix

H o= (I 4+ M)+ MR L+ M7). (2.18)
Hence the proof will be completed if we establish

Lemma 1. For any K/I, define H by (2.18). Then
a) The eigenvalues of H are all at most 2;
by If M s positive semi-definite, the eigenvalues of H are all at least 1;

c) If M is skew-symmetric, H = L.

Proof. Note that (I + MTYI + M) = (1 + MT81) + (% + MT). I M is skew-
symmetric, the last term vanishes, so that (I + mTﬁ)'l = (I 4+ 1('4)'1(1 -+ IVIT)_l and so
H=1 If M is positive semi-definite, M + MT >0 (A>B means A — B is positive
semi-definite) and so (I + MT)(I + M) > I + MTM. It follows that (I + Myt >
I+ 1(:/1)”1(1 + MT)'I and hence H > I. This proves (b).

For (a), we have (I — MhHa - M) =1+ MT™M — (lc/l + MT) >0, so

21+ MTR) > 1+ MTH + 8 + M7
= (I + MH)(T + M).

A ~ - 2 ~ ~ ~ -~ - A
Thus H := (I 4+ M™M) 1/ (I+MT) I+ MY(T+ MTM) 1/2 < 21, so H has all eigenvalues

at most 2 and hence so does M.

Not only does lemma 1 prove the theorem; it also shows that, when M (or M) is skew-
symmetric (as in the case of an LCP arising from a linear programming problem), v =u so
that the projected steepest descent direction given by (2.15) coincides with the Kojima-

Mizuno-Yoshise direction given by (2.12).
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If a steepest descent step is good, a Newton step should be even better. Such a step
can be defined by minimizing a local quadratic model of f subject to remaining in the affine
hull of S e Unfortunately, the Hessian of f is not necessarily positive definite. If we
instead use the Hessian of ——Ej in X5¥5 which is
X2 0

3

0 Y2

we find (Ax, Ay) is the solution to

min —VydTAx — VyiTAy + 1 AxTx2Ax + § ayTY Ay
Ay = MAx

(the negative signs are present because we are taking a step in the direction (—Ax, —Ay)).
To compute this direction, we recall that the Newton direction is invariant under affine
transformations, and in particular under diagonal scalings. So we scale space so that our

approximate Hessian becomes the identity. This is the separate primal and dual scaling:

x-1
v-1

k)

> WD

~
— X
-~
-y

A B ]

In this scaled space, the projected Newton direction is exactly the projected steepest descent
step, which is the direction of Kojima, Megiddo and Ye [1], Ye [5], and Ye and Pardalos [6].

It can be computed from (2.13), using now

M= v IMX, u= £ XYe — .
x'y

However, note that M loses properties like symmetry, skew-symmetry or positive semi-
definiteness possessed by M. This invalidates several of the arguments used by Kojima-Mizuno-

Yoshise.
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We would argue that, while the “Newton” or Kojima-Megiddo-Ye direction is good
when M has no structure, it is not appropriate otherwise. Indeed, the philosophy behind the
Newton step is to make a transformation of the space so that the resulting problem is as nicely
behaved as possible. While in many numerical analysis problems this idea translates into
making a single Jacobian or Hessian matrix into the identity, we believe that in the present
context the simplicity of the nonlinear function f allows one also to pay attention to preserving
structure in M. Given that we wish to confine ourselves to symmetric scalings, that in (2.8)
makes the Hessian of the barrier term as well-conditioned as possible. Moreover, in this scaled
space, a large entry in the Hessian (which indicates that second-order effects might preclude
sufficient decrease in the function) corresponds to a small entry of v; hence small steps are
necessary in this case to preserve feasibility, but the gradient u has large norm, and so an

adequate reduction in f is still possible.

3. Equivalence of LP, QP and LCP algorithms

In this section we will show that the LCP framework not only suggests analogous
algorithms for linear and convex quadratic programming, but that in fact these algorithms are
identical. We will show this equivalence in the context of Kojima-Mizuno-Yoshise’s potential
reduction algorithm, but the arguments used apply also to related path-following methods.
This analysis may be well-known to many, but it seemed worthwhile to make it explicit.

We write the primal convex quadratic programming problem in the form
min ¢Tw + % wiQw

(QP) Aw="Db

with dual
1

max bTr — QwTQw

(QD) —Quw + ATr+s=c¢

s > 0,
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where A is mxn and Q is symmetric and positive semi-definite (possibly 0, which vields
linear programming). The statement analogous to that of Kojima-Mizuno-Yoshise in section
3(A) of [3] (they only treated LP) is that the analysis of the LCP remains valid for the QP if
we use

f(w,s) =plnw's — Y In wis; — D fnn (3.1)
with p = n + n, define

§44 = {(ws) €R™™: (wys) > 0, Aw =b, (3.2)

—Qw + ATr + s = ¢ for some r eR™}
(assumed to be nonempty) and define the direction (Aw, As) via

T lsaw + V1was = Au (3.3)
AAw =0, —QAw + ATAr + As =0
for some Ar, where
T =ws) ", v="Te, (3.4)
and Au and u are as in (2.6), (2.12).

We first note that, if §++ is nonempty, then any dependent rows can be removed
from A without changing (QP), §++ or the direction (Aw, As) solving (3.3). Indeed, the
removal of such rows does not change either the set of feasible (w,s) or the corresponding
objective function value in (QD). We therefore assume that A has full rank m.

By permuting the columns of A if necessary (which also leaves the algorithm invar-
iant), we can assume that the last m columns are linearly independent, and partition A into
[Al,A2], with A2 square and nonsingular, and similarly cT, wT, w? and sT into [c}:,cg],

{WI,W;], [w'{,wg] and [s'{,sg], and finally Q into
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Q11 Q2
Q= . (3.5)
Qg1 Qa9

Then Aw = b implies Ajwq + Agwy = b or
= x e 3 _oacla oz a F o a-l
Aw=A;w, + wy =D, with A = Ala, A =A3'A), b =AY (3.6)

We can change A and b into A and b without changing (QP), (QD), §++, or the
direction (Aw, As) solving (3.3). Indeed, r and Ar just become T = A%r and Ar = A;Ar.

Now we may use (3.6) to solve for w, in terms of wy and substitute it in (QP). We

find
(QP) min E'{wl + -% W-{Qllwl
‘K‘lwl —+ Wo = b
W1, Wo >0
with dual
(QD) max bTF — % w'{Qllwl

from which we can remove the constraint T + sg = 0 by replacing T by —so. Here

S 5T T ATO. T
€y = ¢ — Ajcg + Qpob — A Qoob,

B _ _ _ _ (3.7)
Qq1 = Qqp — QoA — ATQgy + A7 QoA

Note that (QD) is not immediately equivalent to (QD) unless w satisfies the constraints of
(28), in particular Aw = b. However, only such dual solutions are considered in both the

LCP formulation of a quadratic programming problem or the interior-point algorithms

designed for such problems (cf. (3.2)).
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Now observe that §++ is unchanged if we derive it from (QP) and (QD) instead of

(QP) and (QD) (because of the presence of the constraint Aw = b). Hence

Siy=1{(ws) €RZ™: (wys) > 0, Aqwy + wy =B, —Qpqwy — Afsy +51 =1} (3:8)

Similarly, the direction (Aw, As) which solves (3.3) also solves the analogous system derived

from (QP), (QD):
V- 1sAaw + V-lwas = Au,
(3.9)

" . ~ T _
AjAwy + Awgy = 0, —QllAwl — A1A32 + Asy = 0.

But the optimality conditions for (QP) and (QD) can be written as a linear complementarity

problem:
o xT

! 51 no Qi M 1

find x:=1|g and y:=|w eRY with y=Mx 4 q= x4+ (3.10)
2 2 + x b

and xTy = 0.

Moreover, if we define S++ from this LCP as in the introduction,

Wl Sl . ~
(X’y) e 52 . W2 S S++ iff (W,S) c S++.
Next, V = (x)7? = (w9)/? = ¥. And since

S Aw W, As
SAw+WAs=(1 1)+( 1 1)
W2A82

SQAW2
_ (SlAwl) n (WlAsl)
W2As2 SQAwl
= YAx + XAy,

we see that system (3.9) to determine the direction (Aw, As) corresponds exactly to system

(2.12) to determine the direction (Ax, Ay) for the LCP (3.10).
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Hence we have

Theorem 2. The interior-point algorithm for (QP) and (QD) that generates sequences

of pairs in §++ of (3.2) by moving in the direction (Aw, As) solving (3.3) yields identical

iterates to the Kojima-Mizuno-Yoshise potential-reduction algorithm applied to the related

LCP (3.10), given corresponding initial solutions and step sizes. If Q = 0 (so the program-

ming problems are linear), the algorithm for the LCP (3.10) using the projected steepest

descent direction given by the solution to (2.15) also generates identical iterates.

As we mentioned at the beginning of this section, analogous theorems hold for other

interior-point methods for quadratic programming and linear complementarity problems, which

often differ only in the choice of Au in (3.3); for instance, the primal-dual path-following algo-

rithms of Monteiro-Adler [4] for QP (see their equations (3.1)) and Kojima-Mizuno-Yoshise [2]

for LCP’s (see their equation (2.1)) are similarly equivalent, given corresponding p’s.

o
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