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Abstract

We describe some elements of interior-point methods for linear program-
ming. In contrast to Dantzig’s well-known simplex method, these algorithms
generate a sequence of points in the relative interior of the feasible region.
They have some remarkable properties: certain of these methods have very
attractive theoretical upper bounds on the number of iterations required
(O(y/nt) iterations for problems with n inequalities to attain a precision of t
additional digits), while others can be highly effective in solving large-scale
problems. We analyze in detail one of these algorithms (the primal-dual
affine-scaling method) that is very close to what is implemented in practice,
and show that it may take at least n'/® iterations to improve the initial du-
ality gap by a factor of twenty. We also discuss how far this analysis can be
extended to other primal-dual interior-point methods.

One unusual feature of our approach is that we do not construct bad
examples explicitly. Instead, our viewpoint is more like that of information-
based complexity in nonlinear programming; we reveal to the algorithm at
each iteration a bad pair of search directions, which may depend on the
previous iterations, but we show that all our directions are consistent with
some initial data for the linear programming problem.

Key words: Linear Programming, Primal-Dual Interior-Point Algorithms,
Lower Bounds.
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1 Introduction

For over forty years, Dantzig’s simplex method has been the standard solution
algorithm for linear programming problems, which seek to minimise a linear
function of several variables subject to linear equations and inequalities [5].
In practice, its performance remains excellent - the number of iterations
required is usually a small multiple of the number of equality constraints in
a standard-form problem, even though there are examples (see for instance
Klee and Minty [10]) needing an exponential number of iterations for many
particular simplex pivoting rules. This exponential gap has been explained
to some extent by theoretical analyses showing that the expected number of
iterations required by some simplex variants on random problems generated
from certain probability distributions is polynomial in the dimensions of the
problem instance; for a survey, see Borgwardt [4].

In the last eight years, there has been enormous activity in optimisation
in the field of interior-point methods for linear programming and extensions
_ the bibliography of Kranich [13] lists 1303 items. This explosion of research
was instigated by the work of Karmarkar [9], who provided a polynomial-time
algorithm whose extensions and variants have proved to be very efficient in
solving large-scale linear programming problems; see, e.g., Bixby et al. [3]
and Lustig et al. [15]. For an overview of such methods the reader is referred
to [6, 7, 27].

The most effective interior-point methods computationally are primal-
dual methods, and these are variants of polynomial-time algorithms having
the best complexity theoretically also. The latter methods, either path-
following methods (see, e.g., Kojima et al. [11], Monteiro and Adler [19], and
Gonzaga [7]) or potential-reduction methods (see Kojima et al. [12]), require
O(y/nt) iterations to attain an additional ¢ digits of accuracy in a problem
with n inequality constraints, given a sufficiently “centered” pair of initial
primal and dual strictly feasible points. On the other hand, computational
experience with sophisticated primal-dual interior-point codes suggests that
the number of iterations necessary grows much more slowly with the dimen-
sion n. Early papers cited an almost constant number of iterations to solve
a range of small to reasonably large problems, while the results of Lustig,
Marsten, and Shanno on problems with n up to two million suggested that
the growth was logarithmic in n [14]. Once again there is an exponential
gap between observed performance and theoretical bounds, even though the
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latter are now polynomial. We seek to investigate this gap.

There have been attempts to study the “expected” number of iterations
theoretically. These analyses are not rigorous as in the case of the simplex
method; instead of assuming a random problem held fixed throughout the
iterations, they make a probabilistic assumption about the data at a par-
ticular iteration, analyze the performance at that iteration, and hence make
heuristic estimates of the “typical” behaviour of interior-point algorithms.
Nevertheless, these studies indicate behaviour closer to what is observed in
practice. Nemirovsky [21] for a Karmarkar-like method and Mizuno et al. [17]
for a primal-dual wide-neighbourhood method derive “anticipated” bounds
growing only logarithmically with n.

Instead, we seek here to understand whether the theoretical upper bounds
are close to tight; perhaps a better analysis would yield worst-case bounds
nearer to what is observed in practice. Thus we look for lower bounds on the
number of iterations required. Such bounds have been investigated before,
mainly for Karmarkar’s original projective-scaling method. Thus Anstre-
icher [1] showed that Q(In(n)) iterations might be necessary to obtain a fixed
improvement in the objective function value. Ji and Ye [8] improved Anstre-
icher’s analysis and obtained a bound of £}(n) iterations from a starting point
quite close to the boundary. Powell [24] (see also [23]) also derived a lower
bound of (n) iterations for a discretisation of a semi-infinite problem, again
using a starting point quite close to the boundary. These results suggest that
Karmarkar’s result (an upper bound of O(nt) iterations) may be essentially
tight.

Very recently, Bertsimas and Luo [2] considered algorithms reducing the
Tanabe-Todd- Ye primal-dual potential function, and showed that the O({/nt)-
iteration bound is tight by proving a similar lower bound. The algorithms
they consider are “primal-or-dual” methods that are not symmetric between
the primal and dual, and update an iterate in just one of these problems at
each iteration.

All these papers construct a specific problem on which the algorithm
performs particularly poorly; none addresses the currently popular methods
used in implementations — symmetric primal-dual algorithms.

By contrast, Sonnevend et al. [26] discuss a particular problem for which
the primal-dual central trajectory has large “total curvature,” which shows
that primal-dual algorithms that follow this trajectory closely will require
Q(n1/3) iterations. However, most practical algorithms use much longer step
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sizes, and their iterates do not stay close to the central path.

In this paper we also obtain a bound of at least n/3 iterations to obtain
a constant factor decrease in the duality gap. The algorithm we study is
the primal-dual affine-scaling algorithm, which is very close to the methods
used in practical implementations. We also allow almost any reasonable step
size rule, such as going 99.5% of the way to the boundary of the feasible
region, again as used in practical codes; such step size rules definitely do
not lead to iterates lying close to the central trajectory. However, to give
the algorithms every benefit, we start at points on the central path. Note
also that, since our results are lower bounds, they apply also to more general
methods, e.g. those that allow infeasible iterates, and more general problems,
e.g. convex quadratic programming, as long as the algorithms reduce to the
studied method for feasible starts and linear programming instances.

We also discuss how far our results extend to other primal-dual interior-
point methods that use directions including some centering component. Many
practical algorithms include such a component to a small degree to keep the
iterates from approaching the boundary too closely prematurely. Our discus-
sion indicates that the lower bounds we obtain for the affine-scaling method
can often be expected to hold for other algorithms also.

In contrast to previous constructions of lower bounds, we do not give
explicit problems that cause the algorithm to take many iterations. Instead,
our approach is much closer to that used in analyses of the informational
complexity of nonlinear optimisation (see Nemirovsky and Yudin [22]), where
an oracle is assumed to generate information about the problem instance at
each iteration. In this view, the process can be viewed as a game between
the oracle, which tries to generate information about the problem instance
as unhelpfully as possible, and the algorithm, which uses this information as
efficiently as possible and tries to ask the oracle questions which will severely
limit the set of possible problem instances. (Think of the bisection algorithm
to determine a zero of a continuous function of a single variable.) This is an
unnatural view to take of linear programming, where the problem instance
is determined by the finitely many real numbers in the data. But interior-
point methods, in determining their steps at each iteration, use remarkably
little of this information; the search directions are just certain projections of
appropriate vectors, and a wide range of problem instances will lead to the
same pair of search directions. Thus our approach is to generate, for a long
sequence of iterations, a pair of singularly unhelpful search directions which
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lead to little improvement. Then we show that there is a problem instance
that will give rise to exactly these search directions. (Of course it is necessary
that no other part of the algorithm “look at” the data; hence we require that
the step size rule depend only on the current iterates and search directions.)

The paper is organised as follows. In the next section, we describe the
class of algorithms under discussion, show how the duality gap is reduced
at each iteration, and consider possible step size rules. One particularly
important algorithm in this class is the so-called primal-dual afline-scaling
method, to which we confine ourselves for most of the paper. The section
ends with a theorem giving sufficient conditions for a sequence of pairs of
search directions to arise from some problem instance.

Section 3 provides the main tool, showing inductively that a sequence
of particularly unpleasant search directions might occur. In Section 4, we
demonstrate that these search directions do lead to very slight reduction
of the duality gap, and hence obtain our lower bound for the primal-dual
affine-scaling algorithm.

In Section 5, we argue that, as long as the iterates satisfy a certain con-
dition, the lower bound remains valid for other primal-dual methods with a
centering component in the search directions. We verify that this condition
seems to hold for many such algorithms by making some computational tests
in MATLAB [18].

We must mention that these results are mainly theoretical. For n less
than a few billion, there is little difference between logarithmic growth in n
and growth like n!/%. Indeed, a good fit to the iteration counts in [14] can be
obtained using n!/3 instead of In(n). The correlation coefficient in [14] using
a logarithmic fit was R? = 0.979; using a fit to nl/3 gives instead R?* = 0.952.

2 Primal-Dual Interior-Point Algorithms
We consider the primal linear programming problem in standard form
(P) rrgin c'z

Az

X

(AVARRI
o o

with dual problem



max b'y
9,5

(D) ATy+s = ¢

where A € R™*", b € R™, and ¢ € R" are the data, and z,s € IR, and
y € R™ the variables. For any z feasible in (P) and (y, s) feasible in (D), it
is easy to see that the duality gap is

cx—by=xa's>0; (2.1)

the strong duality theorem of linear programming states that x and (y, s) are
optimal if and only if s = 0.

As long as (P) is feasible, (2.1) shows that the objective function value
of (y,s) is determined from s alone, and we will view our algorithms as
generating a sequence of pairs (z*, s*) lying in

FO={(z,s) eR™: Az =bATy+s=c (2.2)
for some y, > 0, s > 0};

the strict inequalities are the reason for the name “interior-point algorithms.”
It is easy to update y* along with s* so that (y*, s*) remains feasible in (D),
but we will suppress this for simplicity.

We assume that F° is nonempty, which implies that both (P) and (D)
have bounded sets of optimal solutions, and that we have an initial (2°,8°) €
Fo.

The pair (z¥,s*) will be updated at each iteration by taking a damped
perturbed Newton step for the optimality conditions

Az = b, (2.3)
ATly+s = ¢ (2.4)
XSe = 0, (2.5)
x>0, s> 0, (2.6)



where e denotes (1,...,1)T € R™ and X and S the diagonal matrices with
Xe = z, Se = s. The damping is carried out to maintain positivity in
{(z*,s*)}. Frequently, in order to encourage the possibility of a full step,
while maintaining positivity, a damped Newton step is taken for the per-
turbed system

Az = b, (2.7)
ATy+s = ¢ (2.8)
XSe = ~pe, (2.9)
2>0, s>0, (2.10)

where g = (2¥)Ts*/n and 0 < 4 < 1. The set of solutions to (2.7)-(2.10),
for 0 < v < oo, forms the so-called central trajectory for (P) and (D); path-
following algorithms are based on approximately following this path as =y

decreases to 0.
The Newton direction for (2.7)-(2.9) at (z*,s*) is the solution to

AE = 0, (2.11)
ATp4+o0 = 0, (2.12)
XFo + §%¢ = ype — X*S%e. (2.13)

(Superscripts are used throughout for indices; nonnegative integer powers
are indicated by enclosing their arguments in parentheses.) The form of the
solution to (2.11)~(2.13) can be made more apparent by the following scaling.
Let

Dk - (Xk)l/Q(Sk)——lﬂ’ Vk e (Xk)l/'?(sk)l/?, (214)
v o= oFi=Vhe, wi=v—yu(VF) e, (2.15)
A = ADF, &:= (DM, &:=Do. (2.16)

Then (2.11)-(2.13) is equivalent to

Aé = 0, (2.17)
ATp+6 = 0, (2.18)
G+E = —w, (2.19)



whose solution can be written as

£=—Piw, &=—(1—P;w, (2.20)

where Py; denotes the matrix that projects a vector orthogonally onto the
null space of M. For future reference, we note that

Py=I—-M"(MM")™'M, (2.21)

where the rows of M form a basis for the row space of M.

The scaling above corresponds to the change of variables taking = to
(D*¥)~'z and s to D*s. Note that both z* and s* are thus transformed to v.
If v = 0, i.e., if we do not perturb (2.5) to (2.9), then w = v and our steps

in scaled space are then { = —Pjv, & = —(I — Pj)v.
We can now state our generic primal-dual interior-point algorithm:
Algorithm

Choose (2°,s%) € F° and set k = 0.
While (2¥)Ts* > 7 do

begin

choose 0 < 7% < 1;

set
pho= (@)t (2.22)
D = DF.=(XM)/}(s")7V2 A= AD; (2.23)
Vo= VR = (XRYR(SEYE (2.24)
v = vFi=Ve, wi=wi=0v— Ve (2.25)
5 = FF.=Dlgb=v, §:=5:=Ds"=v; (2.26)
compute
£ = & i=-Ppw, 5:=5"1=—-(—Piw; (227
¢ .= D, o =D7'e% (2.28)



choose p% > 0 and p, > 0 so that

2H = 2k 4 pheR >0, =5 4 phot > 0; (2.29)
and set k:=k + 1.

end

This general framework includes most primal-dual methods. For mstance
short-step path-following a,lgorlthms (e. g [11, 19]) arise by taking * =
1 — k/+/n for some fixed & and ph = ph =1 for all k; the vers1on of OB1
described in [15] chooses v* = 1/n or 1/y/n and pf and p% equal to .995
of their maximum values. Of paxtlcula,r interest to us are the primal-dual
affine-scaling methods, whlch choose ~% = 0 at each iteration, with various
choices for the step sizes p% and p¥ [20, 16, 28]. The parameter 7 in the
algorithm is the stopping criterion; for theoretical purposes, we assume it is
zero (or sufficiently small) in the analysis.

Proposition 2.1 If pb = pk = p¥, then
P=PD
(@) Ts5 1 = {1 — p*(1 — )} (") (2.30)

Proof. Note that £75 =0 ({ lies in the null space of A, while & lies in its
row space). It is convenient to write

i o= (DF) e = i 4 b (2:31)

and

§t = DFF =5 4 phy5. (2.32)
Then

($k+1 )Tsk—H

l
/é\{/\
+

l
832



T§+p
= 775+ (—v v+ uFeTe)
Ti4 pF(—1+45)3"5

Here we have used pfeTe = pfn = (25)TsF =275 O

Hence to achieve a large decrease in the duality gap, we would like p*
to be large and 7* to be small. Most of the results of this paper concern
the affine-scaling algorithm, for which v* = 0 for all k. Then the algorithm
will perform poorly if pF is small. We will show that for a long sequence
of iterations we can ensure that the directions are such that maintaining
feasibility forces small values of p*.

It appears that the restriction p% = p% in Proposition 2.1 is unduly
limiting on the algorithm we consider; indeed, practical algorithms of this
type allow different step sizes in the primal and dual problems. However,
under a very natural symmetry property, the examples we construct will
have the property that ph = pk. Specifically, we assume that

ph = pP(z*,€F)  and oo = p P (sF, o), (2.33)
where the function p(¥) satisfies the property
p (I, T1¢") = ptP) (", €°) (2:34)

for every z*,£F and every n X n permutation matrix II. Thus the step sizes
depend only on the current iterate and search direction (and possibly the
iteration number) and are symmetric between primal and dual and between
different components. Hence if s* = [Iz* and o* = I1¢£* for some permutation

I1, (2.33) and (2.34) imply

b = P (2.35)

We assume until Section 5 that

4F =0 forall &k, (2.36)

so that we are considering an affine-scaling algorithm.

10



We describe below a particular step size rule satisfying (2.33) and (2.34).
Suppose at some iteration that £ =0, so that & = —v. Then pho=pk =1
leads to z**! = 2F, sF*1 = 0, with (2zF*')Ts*1 = 0. It follows that zF+! and
s*+1 are optimal in (P) and (D) and the algorithm stops. But if £ =0, v lies
in the row space of A, whence s* and so c lie in the row space of 4. In this
case, at the initial iteration we would find v in the row space of A, so the
algorithm would terminate immediately. Similarly, & = 0 at some iteration
implies £ = —v, and then pf = pp = 1 leads to gkt = 0, sF*! = s and
z*+1 and s**! are then again optimal in (P) and (D). If this happens, v lies
in the null space of A/sob= Av = 0. Again, the initial iteration would then
find & = 0 and the algorithm would terminate immediately.

Let us therefore assume that at each iteration € # 0 and & # 0. Then
v = —v Pu = -HéH? < 0 shows that £ has a negative component, and
similarly so does &. Then we can write

k k z; k k s
pp = Ap min {-”J_E} , pp=Ap min { Jk} ) (2.37)
7€ <0 —“ﬁj jiok<o | —0;

for positive X’s, and (2.29) holds iff M M < 1. The A's represent the
proportion of the way to the boundary of the feasible region taken by the
step. Note that (2.33) and (2.34) hold if A = Ak = XF depends only on the
iteration k. (The code OB1 [15] chooses A\* = .995 for all &.)

The only obvious restriction on the directions £ and & is that they be
orthogonal and sum to —v. The following example from [17] shows that at
least one of p&, p%, could be forced to be very small:

= §:=vi=e¢,

= —(1++n,1,...,1)7/2,

= —(1—=+n1,...,1)7T/2.

Then p% must be less than 2(1++/n)~" in order that % be positive. In order
to force both pk and p¥% to be small, we modify the example slightly:

Qi vy, 81

§:=v:i=ce, (2.38)

—(1 4 \fn/2 1 = fn2, 1, 0T, (2.39)

—(1=/n/2, 14020, D72 (2.40)

11
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Then any step size rule satisfying (2.33) and (2.34) must yield ol = ph =: p¥,
and feasibility demands p* < 2(1 +4/n/2)~!. Proposition 2.1 then gives

(") Tkt > k (2.41)

2
- ——— | (a")7s".
(o ﬁz) .

Suppose that in fact this happens at the initial iteration, with 20 =35 =e.
It is not hard to construct a matrix A so that (2.39)-(2.40) hold, so that
(2.41) implies a very small decrease in the duality gap. Can we continue to
choose “bad” directions for a long sequence of iterations? We will show in
the next two sections that this is indeed possible. To conclude this section
we present a result giving sufficient conditions for a sequence of directions to
be produced by the affine-scaling algorithm.

Suppose at the kth iteration we have £ + & = —v. A sufficient condition
for £ to be —P;v and & to be —(I — Pj)v is then that £ lies in the null space
and & in the row space of A. Removing the scaling, we want &% and oF to lie
in the null space and row space of A respectively.

< k. A sufficient

Theorem 2.1 Let (¢7,07) € IR*™ be given for 0 < j
,0< 7 <k, such that

condition that there exists A € R™ ™ and n’ € R™

A =0, AT +07=0,0<; <k, (2.42)
15 that

(i) k+1 < min{m,n —m}; and

(i) Z:=[£%..., 6" and £ :=[0°,...,0"] satisfy =TY =0.

Proof. Let the columns of = and ¥ form bases for the column spaces of =
and ¥ respectively, and suppose they have rg < k+1and ro < k+1 columns.
By (ii), the orthogonal complement of the column space of = (which is the
same as that of =) is an (n — r¢)-dimensional subspace of [R™ containing the
r, linearly independent columns of ) (which span those of XJ). Extend these
r, vectors to a basis for the subspace, and let the m rows of A consist of
m of these basis vectors including the r, columns of ¥ (ro <k+1<mc<
n—k—1<n—r from (i)). Then (2.42) clearly holds. O
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3 The Inductive Step

In this section and the next we demonstrate how the bad behaviour of (2.39)-
(2.41) can continue for several iterations. The Oth iteration will “contami-
nate” the first pair of components of = and s; similarly the (k — 1)st will
“contaminate” the kth pair of components, but all subsequent components
of z and s will still be equal. It is convenient therefore to index the compo-
nents in pairs. We assume that n =: 2p is even, and index the components
17 ’17 27 —27 SRREY Sy 2

In addition, we will preserve symmetry in the first 2k components of z*

and s*. Specifically, z¥ will equal sk, 2% will equal s¥ and so on. To de-

scribe these properties conveniently, we let I denote the permutation matrix
that switches the jth and (—j)th components of each vector in/R",1 < j < p.
We also let S¥ denote the set of permutation matrices that leave fixed the
first k pairs of components of vectors in IR™.

We suppose that (e, e) € F°, and let the initial iterates be

°=s"=e. (3.1)

We assume that at the beginning of the kth iteration we have (z*,s%) €
FO satisfying symmetry of the pairs,

Mz* = s*, (3.2)

and equality of the final components,

Mzk = o, Is* = s*, for all Il € SE. (3.3)

We make similar assumptions about the previous search directions. Let

=k = [€0,..., €] and TF := [0°, ..., 0F7!] be the matrices of previous primal
and dual search directions. We assume

(TR =0, (3.4)
1=F = ©*, (3.5)

and, for each 0 < 5 <k,
et =g Tlo? ™ =0, forall Il € Si. (3.6)

13



Here, (3.4) ensures that the previous search directions are consistent with
some matrix A (see Theorem 2.1), while (3.5) maintains the symmetry be-
tween pairs of components. Finally, (3.6) shows that the search directions
¢-1 and o971 treat all components after the first j pairs equally.

Note that, by setting z° = s° = e, (3.2) and (3.3) hold for k£ = 0, while
(3.4)—(3.6) hold vacuously. Also, note that, if =F and F contain the single
columns (2.39) and (2.40), (3.4)-(3.6) hold for k£ = L.

We next examine the effect of these assumptions on X*, S, D* and v =
v*. From (3.2) and (3.3),

OX*MT = S* and
OXFIT = XF, ISHIT = S%, forall I € S
We then find

ODMI = TI(X%)VRI (S~
= (SHVH(xH)TVE= (DN (3.7)
and similarly
DN = D* for all I1 € Si. (3.8)

In the same way,

ot = TI(X*)V20 TI(S%)Y/10 Tle

(Sk)1/2(Xk)l/2€ — Uk, (39)
and
vk = v*, for all 1 € SE. (3.10)
QOur final assumption is
max{vf,vfj 1<j<k}<vf,=vh == vy = vk . (3.11)

(The equalities follow from (3.10).) We shall see the importance of this
assumption later. We have thus made the

14



Inductive Hypothesis

At the beginning of the kth iteration, the iterates (z¥, s*) and the previous
search directions ZF and ©* satisfy (3.2)—(3.6) and (3.11).

We now make the scaling D* to primal and dual iterates and directions:

o= (DM)7eh = ok, (3.12)
§F = DFsF =0k, (3.13)
=k = (DM, and (3.14)
ko= DFRF (3.15)
We note that =F and ¥ satisfy
(EMTSF =0 (3.16)
from (3.4), and (3.5) and (3.7) show that they satisfy
=k = 5*, (3.17)

From (3.6) we deduce IT=F = =% and [IS*F = £* for all IT € S%, so (3.8) shows

Zh= 2k ISk = 2R (3.18)
for all such II’s.

The purpose of this section is to show that we can choose the next direc-
tions in the form

~ 1

€k - _§(Uk+(6176-17""€k+176—-k~—1’07"'70)T)7 (319)
1

6k = —é'(vk—(61,6_1,...,6k+1,6-k_1,0,...,0)T), (320)

where ¢; + e_; = 0,1 < 7 < k+ 1. Note that [IéF = &% and 1k = ¢€*,
6% = &%, for all I € Sk+1,

Theorem 3.1 As long as k+1 < p = n/2 and the inductive hypothesis
holds, we can choose € and % as in (8.19)-(3.20) so that = := [=, €] and
Y = [XF, 5%] satisfy =T = 0.
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Proof. For simplicity, we write P; for P(ék)T and P, for P(f)k)'r- Set

g(l) = —Povk7 5(2) = "(] - P&)vkv
&M = —Pok, @ = —(I - P,)v".
Then (£F)TEM = 0 and, since £® lies in the column space of =, (3.4) shows

that (2’“);"5(2) = 0. Similarly, (EHT6M) = (Z%)T6(® = 0. Thus, if we set
5(3) == %(6(1) + 6(2)) and 6-(3) g %(5‘(1) + 6—(2))’ we have

(SHTER) = (2K)T60) = 0. (3.21)

Also, from the definitions,

R T (3.22)

Let =F have as columns a column basis for =F. Then_from (3.17) we
deduce that 5% = ITE* has as columns a column basis for =F. Using (2.21)

we find

IEW = —IIv* 4 TIXK(
= " 4+ (ISR (@SH) T (IISk)) " (IEF) TTIv*.
But IIv* = o* by (3.9) and ISk = =F so IEW = —Peof = 6. Similarly,
é® = 63 and thus

éd® = 50 (3.23)

An analogous argument using (3.10) and (3.18) shows that [EW = €M) and
similarly TIE®) = £2) and 66 = 50 ;5 =1,2, for all I € S%, so that

é® = @, 1150 = @ for all T € SP. (3.24)

We can now almost choose ¥ = €@, 5% = 50). Indeed, (3.22), (3.23) and
(3.24) show that they have the correct form (3.19) and (3.20) (with €xqq =
e_x_1 = 0), while (3.4) and (3.21) show that we only need (ENT5B) =0 to
satisfy the conclusions of the theorem. Now by their definitions,
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Since I — P = R(ZF)T for some R and I — P, = = ¥*S for some S, (3.4) shows
that (£)76(® = 0 also. Now, since (EH)TEk =0,

PP = Py = Py, for M=[ZFXHT,

and

ENTe0 = LEmyTem
1

1
= Z(’Uk)TP&avk

S (3.25)

We then define

& = ¥ 4(0,...,0,—¢ +¢,0,...,0)7,
& = ¥ 4(0,...,0,+¢—¢0,...,0)7,

where the epsilons occur in the (k+1)st palr of components and where e >0
is chosen so that (€¥)7% = 0. (Thus, e = (3)'/?|| P, v¥||.) Then ¥ and 6* are
of the correct form (3.19), (3.20) (with €41 > 0), and defining = and ¥ as in
the theorem, we easily check that =T % = 0. (Note that each column of =* has
equal entries in the (k+1)st pair of components, so (EM)Tek = (2%)T60) =0,
and similarly (2*)TéF = 0.) O

Theorem 3.1 establishes almost all of the inductive hypothesis with &
replaced by k + 1. Indeed, the new matrices of past search directions are
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Ek-}-l — DkE, Ek+1 — (Dk)—-lz’

where = and ¥ are defined in the theorem. Then (3.4)—(3.6) hold for k + 1
by the conclusions of the theorem, the inductive hypothesis for k, and the
form (3.19)—(3.20) of the new directions.

It only remains to show that (3.2), (3.3), and (3.11) hold for k + 1. If
we assume that (2.33) and (2.34) hold, then (3.2) for £ and Ik = o show
that p& = p, and hence that IIz**! = s¥*1. Similarly, (3.3) and ek = &*,
[lo* = o* for all Il € S*¥*! show that (3.3) holds for & + 1.

We now turn to (3.11). We see that

oFF = (b = (D)) (DR )
= {(f + PE) o)

for each j, 1 < |j| < p, where p* := pk = p¥. Let p* := p*/2. Then, from
(3.19) and (3.20),

o = (([1 = b+ G (L - Aol — i)}
= {(1 =725 = (B )PP < (1= )]

for 1 < |j| < k+1, while

o = {([L = AP = PP} = (1= )

for k+1 < |j| < p. Thus (3.11) for k establishes that it remains true for
k+1.
We therefore have

Theorem 3.2 Suppose the inductive hypothesis holds for k < p, and that
at the kth iteration of the primal-dual affine-scaling algorithm, the step sizes
are chosen by some rule satisfying (2.33) and (2.34). Then search directions
can be chosen such that the inductive hypothesis remains true for k+1. O
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4 The Main Result

By Theorem 3.2, we can continue generating search directions satisfying the
inductive hypothesis for p = n/2 iterations. Moreover, for m < n, the first
min{m,n — m} of these iterations will be consistent with some m x n matrix
A by Theorem 2.1, and hence, if we choose b = Ae and ¢ = ATy + e for any
y, will be the directions obtained in the affine-scaling algorithm applied to
(P) starting at z° = s® = e.

We now examine how the duality gap changes in the kth iteration, assum-
ing that the inductive hypothesis holds and the search directions are given
by (3.19) and (3.20). We suppose the step sizes are chosen by (2.33) and
(2.34) so that ph = pb =: p* =: 2p*. We show that p* must be very small,
and apply Proposition 2.1.

k

Let B denote vf,; =vF,_, =...=vf =vF . Then

(V) To* = 2(p — k)(B)%.

Now £* and &% (and hence 26* and 25*) are orthogonal, and using (3.19) and
(3.20) this yields

> () =T =200 - k)(B)

1<pl<k+1

Hence some |¢;| is at least /2% 3. Recalling that €; + ¢_; = 0, we have
J k41 g J J

n — 2k
2k +2

6]'2

p (4.1)

for some 1 < |5] < k4 1. Since
#f = (1= — "¢ >0,
we have

k
v B 1
pr< —t < < —,
6j+vj €j+!8 1+ 2k+42

(4.2)

where we have used vf < f from (3.11).
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For k& = 0, the bound (4.2) is like that which led to (2.41), giving a
reduction of only a factor of 1 — O(n='/?) in the duality gap. As k increases,
the bound in (4.2) increases. However, suppose K is the first iteration for
which

(2")Ts™ < exp(=t)(2)"s".
Then, using Proposition 2.1,
K-1

IT (1 = 2p*) < exp(-1),
k=0
whence
K-1 2~k
Zln(1+1_2k Zlnl—?p

k=0
and, using In(1 + ) < 0, we obtain

kz:‘g 1/pk—-2) =~

Next, substituting the bound (4.2) on p¥, we reach

& wWeVE+]
2 (\/n—Qk—\/2k+2) =

Now let us assume that

(4.3)

K <n/50,
so that, for k < K—1,v2k + 2 < V2K < /n/5and vn — 2k > V/n — 2K >
\/24n/25 > 194/n/20. Thus the denominators in (4.3) are always at least
3v/n/4, and we deduce that

K 1 3
2;1 Vk > W—Q_E'\/ﬁt'
But K K+1 9
SoVE< [ VB < (K + 1),
1 1 3
whence
K+1> (2 23[ 7 A/nt)H3 > 5antP3, (4.4)

Combining this analysis with Theorems 2.1 and 3.2, we arrive at
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Theorem 4.1 Consider a primal-dual affine-scaling algorithm that uses a
step size rule satisfying (2.33) and (2.34) at each iteration. Also, suppose
n/50 < m < 49n/50. Then there is an instance of (P), with A € R™",
b=AecR™, andc= ATy +e €R" for any y € R™, such that to decrease
the duality gap by a factor of exp(t), starting with z° = e and s° = e, the
algorithm requires at least

min{n/50, .54n!/3¢*/3 — 1}
iterations.

(Observe that for large n and moderate ¢, the second term attains the mini-
mum. Hence for n at least 1000, it takes no less than n!/3 — 1 iterations to
achieve the modest reduction of a factor of exp(3) — about 20 — and at least
2n1/3 _ 1 iterations to achieve a reduction of a factor of exp(8) — about 3000.)

We conclude this section with a few remarks. Note that we have to be
given the algorithm’s step size rule before we can construct the bad example,
and this must satisfy (2.33) and (2.34). Thus the rule cannot use any in-
formation about the problem instance besides the current iterate and search
direction. (It could use some properties of previous iterates and search direc-
tions, as long as it is symmetrical enough to yield p% = p%.) But it cannot
inspect A globally, because A is not yet known — only after constructing bad
search directions for Q(n'/3) iterations do we provide the matrix A that pro-
duced them. Subject to this minor restriction, any primal-dual affine-scaling
algorithm requires n/? iterations to achieve even a modest constant factor
reduction in the duality gap.

5 FExtensions and Discussion

In this section we investigate how the analysis of Sections 3 and 4 can be
extended to more general primal-dual interior-point algorithm using a cen-
tering component. Thus, at some or all iterations, 4* in (2.25) is nonzero,
and £* and &% are projections of w* # vF, where we recall that

W = vF — AFFV e = oF — AR ((0F) TR )V e (5.1)
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Like the step sizes, we allow 7* to depend on k and the current iterates z*

and s*, but not on any other information in A, b, or c.

We again assume that the algorithm is initiated with 2% = % = e, and
that at iteration k, the current iterate (z*,s¥) € F° satisfies (3.2) and (3.3)
and the past search directions =% and T* satisfy (3.4)-(3.6). As in Section 3,
these assumptions imply that D* and v* satisfy (3.7)-(3.10), and we deduce
from (5.1) that

0

Mw* = wt and Iw* =w* forall I € SE. (5.2)

It may be unrealistic to assume (3.11) when there is a centering component
in the search direction; let us instead assume that

amax{vf,v’ij 1<j<k} < v, = ok == v;f = vﬁp, (5.3)
where 0 < a < 1.

With this new inductive hypothesis, we can check that Theorem 3.1 re-
mains true where now, in (3.19) and (3.20), v* is replaced with w*. We call
the resulting expressions (3.19)" and (3.20)'. Moreover, Theorem 3.2 is still
valid, except that the inequality in (5.3) may not be true for £ + 1.

We now turn to the effect of the kth iteration on the duality gap as in
the previous section. Our tool is again Proposition 2.1. To simplify the
notation, we suppress the dependence on k. If ¥ = 1 (a so-called centering
or constant-cost centering step), then the proposition shows that the duality
gap is unchanged.

If v¥ = 1 — k/+/n for some fixed x and p* = 1, as in short-step path-
following methods, we see

(ajk+1)T3k+1 — (1 _ Fi/\/ﬁ)(a?k)TSk,

and hence 0(n'/?) steps will be necessary to achieve a constant factor reduc-
tion in the duality gap. Our interest is in algorithms using small but possibly
nonzero values of «y, perhaps interspersed with centering steps. Thus we as-
sume that
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(5.4)

b

N

0<~v<a<

where 4 does not depend on the iteration number.

Again, let p% = pk =: p*¥ =: 2p*. We wish to show that p* is small, so
that the reduction in the duality gap (no better than the factor 1 — 2p*) is
also small. As in Section 4, we find, for 1 < |j| < k +1,

&+ 20",
= v+ p(=v; +ypvit — )

ST
hats

using (5.1) and (3.19)". Hence, if there is such a j with (v;)*+ ¢;v; —yu > 0,
we have

—k (UJ‘)2
< . 5.5
S (T e p——” (5:5)

Thus we wish to show that there exists a j such that the denominator of
(5.5) is large.

Since ¢F and &F are orthogonal, we find as before

Yool =ww=(1=2yv"v+ (yp)’ v?,
1<]il<k+1 1<[i<p

where the last equation follows from the definition (5.1) of w. Hence

Yo () = (yw)vi?) = (1 = 29)np,

1<jl<k+1

and there is therefore some 7, 1 < |j| < k4 1, with

N (1 —2y)n
() = (yu)?0;% + BT
or
/2
1—2y (v;)? n !
el > 1 . . . 5.6



Since €; + ¢_; = 0, we may assume that ¢; > 0, and hence the denominator
in (5.5) is positive.
We now use (5.3) to get a bound on (v;)*/p. Indeed

np=v"Tv > (n = 2k)(vy)* 2 (n — 2k)(e)* (v;)’,

so that

32
6= (U;) < - ija'Q < 2a7? (5.7)

as long as k < n'/* — 1 so that n — 2k > n/2. Combining (5.5) and (5.6),
and using § as in (5.7), we obtain

< 6 B 1)
_ n 1/2 - 1/2
b
f(é)’

where v = %} “ 515 > 0 using (5.4).
It is easy to show that f(§) is monotonically decreasing for é > 0, and
thus we can obtain a valid bound on p* by substituting the bound on ¢ in

(5.7). Hence we find, for k <n'/®—1,

2
o< ; -2 n /2
2+7(a) [<1+ (@) '2k+2) '1]
2
= 2 201-27)  _n \Y?
7(a) (1+ (a)? .2k+2>
2

’7(0!)2 (2{1—2’)’! . _n )1/2

(ay)? 2k+2

2 k+1
(1—27)"%2a\ n
2 k41
(1—-29)Y2aV n (5-8)
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where we have used the uniform bound (5.4) on 7.
We therefore have

Theorem 5.1 Suppose at the kth iteration, with k < n'/3 — 1, the inductive
hypothesis holds, with condition (5.3) replacing (8.11). Suppose that the
search directions are given by (8.19) and (3.20). Then, if the step size rule
satisfies (2.83) and (2.34), and if either ¥* =1 or 0 < vk <7 < 1, then

4 _
(xk+1)TSk+l 2 (1 - W” 1/3) (Z’k)TSk.

Moreover, if (5.3) holds for all such iterations, then Q(n'/3) iterations are
required to obtain a constant factor decrease in the duality gap. O

The weakness of this result, in contrast to Theorem 4.1, is that we must
assume that the iterates satisfy (5.3) at each iteration, whereas this could be
proved by induction (with @ = 1) in the case of the affine-scaling algorithm.
One way to assure (5.3) is to require that all iterates satisfy the fairly weak
centering condition that they lie in

{(z,s) € F° || XSe — pelloo < xpt, Where p = zTs/n}

for some 0 < x < 1 (see [17]). Then all z;s)s lie within a factor of (1 +
x)/(1=x) < (1—x)"2 of each other, and (5.3) holds for & = 1 — x. However,
this centering condition is not imposed for most practical implementations.
In order to see whether this assumption is reasonable in practice, we have
made a number of computational runs with n = 10° using MATLAB [18].

At each iteration, we do not compute the search directions by prolectlons
Instead, we use the form (3.19)'—(3.20) of the directions, computing €f ... e}
by the conditions (Ek)Tfk = 0, and then €f,; so that (fk)T F=0. In theory,
= (3 (ECNT&EN/2 = <75 | Pow®|| is real (see the proof of Theorem
3.1), but we found many times that (5( NT&E) was numerically negative
and these runs were aborted. (Again, £ ®) and 5 were not computed by
projections; they are the vectors of the form (3.19)' and (3.20), with €f,; = 0,
satisfying (55)T€®) = 0, (Z%)T6®) = 0.) These numerical difﬁculties were
caused by near linear dependence in the columns of S* and =F. However
the remaining runs (about a fifth of the total) successfully completed 150
iterations (n'/® = 100) with the anticipated results.
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We tried keeping 7* fixed at the level 0,.1,...,.9 (not all satisfying (5.4)),
with step sizes chosen by (2.37) with /\'; =M = XNequalto .1,.2,...,.9, .95,
.99. In these runs, (5.3) was always satisfied with a = 1, i.e., (3.11) remained
true. We next tried the same values for A with ~* fixed at .95, .97, .99 and
.995. Even with such a large centering component, (5.3) remained true for
a =.98.

Finally, we tried predictor-corrector algorithms as in [17] — see also [25,
26]. Here every other iteration used ~4* =1 (a centering step), while the
remaining iterations used a fixed ~* with the values mentioned in the previous
paragraph. For the noncentering steps, we used the step size rule of the
previous paragraph, with the values of A listed there. For the centering
steps, we chose p to be the smaller of 1 and that given by strategy above;
p = 1 corresponds to a Newton step for a centering problem, and was chosen
in all but two runs. Once again, (5.3) was true for all runs if we set o = .75.

It thus appears that the poor behaviour established rigorously for the
primal-dual affine-scaling algorithm might also be exhibited by most primal-
dual algorithms of the form given in Section 2. We must stress again, how-
ever, that this is a theoretical bound on the asymptotic behaviour of such
algorithms. For problems with a million variables, n'/3 is only 100, and this
is not an unreasonable number of iterations, and seems to be in line with
what has been observed in practice for such large problems - see Lustig,
Marsten and Shanno [15].
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