1 Path-Following Methods

Recall that, as long as $\mathcal{F}^0(P)$ and $\mathcal{F}^0(D)$ are non-empty, for each $\mu > 0$ there is a (unique) solution $(x(\mu), y(\mu), s(\mu))$ to

\[
\begin{align*}
A^T y + s &= c \\
Ax &= b \\
XSe &= \mu e
\end{align*}
\]

for $x > 0$ and $s > 0$, defining the central path. Suppose we have an approximate solution (x, y, s) to this system with $x \in \mathcal{F}^0(P)$, $y \in \mathcal{F}^0(D)$ and $\frac{1}{\mu}XSe \approx e$, where $\mu = \frac{\mu}{n}$. We want to find $(x + \Delta x, y + \Delta y, s + \Delta s)$ to approximately satisfy (1) with μ replaced by $\sigma \mu$, $0 \leq \sigma \leq 1$. ($\sigma = 0$ means we are trying to find the optimal solution, $\sigma = 1$ means we are trying to get a better approximation to $(x(\mu), y(\mu), s(\mu))$, so usually $0 < \sigma < 1$). Then, $(\Delta x, \Delta y, \Delta s)$ satisfy

\[
\begin{align*}
A^T \Delta y + \Delta s &= 0 \\
A \Delta x &= 0 \\
S \Delta x + X \Delta s &= \sigma \mu e - XSe
\end{align*}
\]

where in the last equation we have dropped the second order term $\Delta X \Delta Se$ to get a linear system.

What we need is to solve this $(2n + m) \times (2n + m)$ structured linear system. We proceed as follows:

1. Express Δs in terms of Δy: $\Delta s = -A^T \Delta y$.

2. Express Δx in terms of Δs, and hence Δy:

\[
\Delta x = \sigma \mu s^{-1} - x - XS^{-1} \Delta s = \sigma \mu s^{-1} - x + XS^{-1} A^T \Delta y,
\]

where s^{-1} is the vector composed of $1/s_i$, $i = 1, \ldots, n$.

3. Substitute this into the second set of equations to get: $(AXS^{-1} A^T) \Delta y = b - \sigma \mu As^{-1}$, where we have used $Ax = b$. $AXS^{-1} A^T$ is a symmetric $m \times m$ positive definite matrix that is possibly sparse. Note also that this is primal-dual path following since we have XS^{-1} in the matrix.
Solve the (Schur complement) equation for Δy, then Δs and Δx. Then, set $(x_+, y_+, s_+) = (x, y, s) + \alpha(\Delta x, \Delta y, \Delta s)$ for some $\alpha > 0$ and continue. Note: the system in 3. is very much like that used to compute the affine-scaling direction \bar{d}: $(AX^2A^T)y = AX^2c$, then $\bar{d} = -X^2c - XA^T_y$.

We need a strategy for choosing σ and α at each iteration. These are often based on staying in some neighborhood of the central path:

- $||\frac{1}{\mu}XSe - e||_2 \leq \beta$, the L_2-neighborhood;
- $||\frac{1}{\mu}XSe - e||_\infty \leq \beta$, the L_∞-neighborhood;
- $\frac{1}{\mu}XSe - e \geq -(1-\gamma)e \Leftrightarrow XSe \geq \gamma\mu e$, the L_∞-neighborhood;

for some $0 < \beta < 1$ or $0 < \gamma < 1$.

Common strategies for doing this are:

- Let $\sigma = 1 - \frac{\theta}{\sqrt{n}}$ for some fixed $0 < \theta < 1$ and let $\alpha = 1$. Then, if $||\frac{1}{\mu}XSe - e||_2 \leq \beta$, $||\frac{1}{\mu+}X+S_e - e||_2 \leq \beta$. Thus, we stay in a small L_2-neighborhood of the central path. This gives an “$O(\sqrt{n} \ln \frac{1}{\epsilon})$” iteration algorithm.

- Choose $0 < \sigma < 1$ independent of n and let α be the largest value in $[0, 1]$ such that $X(\alpha)S(\alpha) \geq \gamma\mu(\alpha)e$ for all $0 \leq \alpha \leq \bar{\alpha}$. It can be shown that $\bar{\alpha} = \Omega(\frac{1}{\mu})$ and we get an “$O(n \ln \frac{1}{\delta})$” iteration algorithm. But, in practice this technique usually works better than the previous one.

- Suppose $||\frac{1}{\mu}XSe - e||_2 \leq \frac{1}{4}$, $\sigma = 0$. Choose the largest $\bar{\alpha}$ such that $||\frac{1}{\mu(\alpha)}X(\alpha)S(\alpha)e - e||_2 \leq \frac{1}{2}$ for $0 \leq \alpha \leq \bar{\alpha}$, and let the result be $(\hat{x}, \hat{y}, \hat{s})$. Now take a second step from this point using $\sigma = 1$ and $\alpha = 1$ to get (x_+, y_+, s_+) with $||\frac{1}{\mu+}X+S_e - e||_2 \leq \frac{1}{4}$. This gives an “$O(\sqrt{n} \ln \frac{1}{\epsilon})$” iteration algorithm, but it also has quadratic convergence.

2 Initialization

1. Use artificial variables and constraints: the primal problem (\hat{P})

$$\min \quad c^Tx + M_1x_{n+1}
\begin{align*}
Ax + (b-Ae)x_{n+1} &= b \\
(e-c)^Tx + x_{n+2} &= M_2 \\
\hat{x} &= (x;x_{n+1};x_{n+2}) \geq 0
\end{align*}$$

and the dual problem (\hat{D})

$$\max \quad b^Ty + M_2y_{m+1}
\begin{align*}
A^Ty + (e-c)y_{m+1} &+ s = c \\
(b-Ae)^Ty + s_{n+1} &= M_1 \\
y_{m+1} + s_{n+2} &= 0 \\
\hat{s} &= (s;s_{n+1};s_{n+2}) \geq 0.
\end{align*}$$
\((\hat{P}) \) and \((\hat{D}) \) have strictly feasible solutions if \(M_1, M_2 \) are large enough:

\[
\begin{align*}
\hat{x} &= (e; 1; M_2 - (e - c)^T e) > 0, \\
\hat{y} &= (0; -1), \\
\hat{s} &= (e; M_1; 1) > 0.
\end{align*}
\]

2. Infeasible-interior-point methods: The “infeasible” means that \(Ax \neq b \) and \(A^T y + s \neq c \) are possible and the “interior” means that \(x, s > 0 \). We can start with, say, \(x = s = e \) and \(y = 0 \). Then, when we seek \((\Delta x, \Delta y, \Delta s) \), just compensate for the infeasible \(x, (y, s) \):

\[
\begin{align*}
A^T \Delta y + \Delta s &= c - A^T y - s \\
A \Delta x &= b - Ax \\
S \Delta x + X \Delta s &= \sigma \mu e - X Se.
\end{align*}
\]

Proceed as before. This works well in practice, but the theory is much more complicated.

3 Extensions of Interior-Point Methods (IPM’s)

IPM’s have been extended to many non-linear, but convex, programming problems, e.g. SDP (semi-definite programming).

\[
\begin{align*}
\text{min} & \quad C \cdot X \\
A_i \cdot X &= b_i & i = 1, \ldots, m \\
X &\succeq 0 & \text{(symmetric, positive semi-definite)}
\end{align*}
\]

where \(U \cdot V = \text{tr}(U^T V) = \sum_i \sum_j u_{ij} v_{ij} \). The dual is

\[
\begin{align*}
\max & \quad b^T y \\
\sum_i y_i A_i + S &= C \\
S &\succeq 0
\end{align*}
\]

This problem has a logarithmic barrier function \(- \ln(\text{det}(X))\) defined on symmetric, positive definite matrices. The central path is defined by dual-primal feasibility and \(XS = \mu I \), but this last equation is not easy to linearize satisfactorily.

4 Summary and Overview

- Linear Programs (LP): An important class of optimization problems arising in a wide variety of resource allocation, production planning, and data-fitting applications.
- Powerful Duality Theory: Short certificate of optimality, sensitivity analysis, certificate of near optimality.
• Geometry: Polyhedral (extreme points, extreme directions), nice barrier function.

• Algorithms:
 – Simplex Method: practically efficient, theoretically bad, gives optimal basis, useful for sensitivity analysis and for re-optimization.
 – Ellipsoid Method: practically inefficient, theoretically good, nice implications in combinatorial optimization.
 – Interior-Point Methods: practically efficient and theoretically good, give approximate dual solution but not a basis, not good for re-optimization.

• Future Courses:
 – OR631: integer programming (Trotter), complexity of convex programming (Todd)
 – OR632: non-linear programming (Lewis or Todd)
 – OR634: combinatorial optimization (Bland)
 – OR635: interior-point methods (Renegar or Todd)
 – OR639: convex analysis (Lewis)
 – CS621: matrix computations