Last time we saw that every bounded polyhedra is a polytope in the set of convex combination of its vertices.
Now we will extend the theory to pointed polyhedra (i.e., those that contain no lines).

Definition 1 Let C be a nonempty convex set: then the **recession cone** of C, $\text{rec}(C)$, is
\[
\{ d \in R^m : \forall x \in C, \forall \alpha \geq 0, x + \alpha d \in C \}.
\]

Proposition 1 If C is a nonempty set then $\text{rec}(C)$ is a nonempty convex cone.

Proof:
Let $d_1, d_2 \in \text{rec}(C), \lambda_1, \lambda_2 \geq 0$. We want to show that $\lambda_1 d_1 + \lambda_2 d_2 \in \text{rec}(C)$. For any $x \in C$ and any $\alpha \geq 0$
\[
x + \alpha (\lambda_1 d_1 + \lambda_2 d_2) = [x + (\alpha \lambda_1) d_1] + (\alpha \lambda_2) d_2.
\]
The quantity in brackets lies in C since $\alpha \lambda_1 \geq 0$ and $d_1 \in \text{rec}(C)$, and then the desired vector lies in C because $\alpha \lambda_1 \geq 0$ and $d_2 \in \text{rec}(C)$. Also, $0 \in \text{rec}(C)$ by definition. \(\square\)

Proposition 2 For $Q := \{ y \in R^m : A_x^T y \leq c_x, A_w^T y = c_w \}$ then (if Q is nonempty)
\[
\text{rec}(Q) = \{ d \in R^m : A_x^T d \leq 0, A_w^T d = 0 \}.
\]

Proof:
\(\supseteq\):
if $A_x^T d \leq 0, A_w^T d = 0$ then for any $y \in Q, \alpha \geq 0$.
\[
A_x^T (y + \alpha d) = A_x^T y + \alpha A_x^T d \leq c_x + 0 = c_x,
\]
and similarly
\[
A_w^T (y + \alpha d) = c_w,
\]
hence $(y + \alpha d) \in Q$.

\(\subseteq\):
Suppose $d \in \text{rec}(Q)$, and choose any $y \in Q$. Then $\forall \alpha \geq 0$
\[
A_x^T (y + \alpha d) = A_x^T y + \alpha A_x^T d \leq c_x;
\]
and then
\[
A_x^T y \leq c_x \Rightarrow A_x^T d \leq 0
\]
(otherwise, the inequality would fail for large α); similarly
\[
A_w^T d = 0.
\]
\(\square\)
Theorem 1 (Representation of Pointed Polyhedra). Let Q (defined as in Proposition 2) be a nonempty pointed polyhedron, and let P be the set of all convex combinations of its vertices and K be its recession cone. Then

$$Q = P + K := \{ p + d : p \in P, d \in K \}.$$

Proof:

$\supseteq:$
Every vertex of Q satisfies all linear constraints of Q so p also does for any $p \in P$.
So any $p + d \in P + K$ has

$$A^T_x (p + d) = A^T_x p + A^T_x d \leq c^x + 0 = c^x;$$

$$A^T_w (p + d) = A^T_w p + A^T_w d = c^w + 0 = c^w.$$

$\subseteq:$
The proof is by induction on $\{ m - ra(y) \}$.

True for $\{ m - ra(y) = 0 \} \iff y$ is itself a vertex of Q and $d = 0 \in \text{rec}(C)$.

Suppose true if $\{ m - ra(y) < k \}$ for some $k > 0$ and consider $y \in Q$ with $ra(y) = m - k < m$.
Choose $0 \neq d \in \mathbb{R}^m$ with $a^T_j d = 0, \forall j \in I(y)$ and consider $y + \alpha d, \alpha \in \mathbb{R}$. Since Q is pointed there are three cases to consider.

(1) α is bounded above and below, say by $\underline{\alpha} < 0 \ & \ \bar{\alpha} > 0$.
As in the previous theorem

$$y = \frac{\bar{\alpha}}{\bar{\alpha} - \underline{\alpha}} (y + \alpha d) + \frac{\underline{\alpha}}{\bar{\alpha} - \underline{\alpha}} (y + \bar{\alpha} d),$$

and $(y + \bar{\alpha} d)$ has $m - ra(y + \bar{\alpha} d) < k$, so

$$(y + \bar{\alpha} d) = \bar{p} + \bar{d} \ , \ \bar{p} \in P \ , \ \bar{d} \in K;$$

and similarly

$$(y + \underline{\alpha} d) = \underline{p} + \underline{d} \ , \ \underline{p} \in P \ , \ \underline{d} \in K;$$

so

$$y = \frac{\bar{\alpha}}{\bar{\alpha} - \underline{\alpha}} (p + d) + \frac{\underline{\alpha}}{\bar{\alpha} - \underline{\alpha}} (p + \bar{d})$$

$$= \left[\frac{\bar{\alpha}}{\bar{\alpha} - \underline{\alpha}} p + \frac{\underline{\alpha}}{\bar{\alpha} - \underline{\alpha}} \bar{p} \right] + \{ \ldots \underline{d} + \ldots \bar{d} \}.$$

The vector in brackets is a point of P and that in braces a point in K.

(2) α is bounded below but not above. Then $d \in K$ and $y = [y + \alpha d] + (-\alpha) d$, with α defined as before. The vector in brackets lies in $P + K$ as in the first part by the inductive hypothesis. Therefore
\begin{align*}
y &= (p + d) + (-\alpha) d \\
 &= p + (d + (-\alpha) d)
\end{align*}

lies in \(P + K \).

(3) \(\alpha \) is bounded above but not below. Then we can simply switch \(d \) to \(-d\) and \(\alpha \) to \(-\alpha \), and we get back to case(2).

This completes the proof. \(\square \)

Theorem 2 (*Fundamental theorem of LP*). Consider the LP problem \(\max \{ b^T y : y \in Q \} \) with \(Q \) being a pointed polyhedron. Then

1. if there is a feasible solution, there is a vertex solution (basic feasible solution);
2. if there is a feasible solution and \(b^T y \) is unbounded above on \(Q \), then there is a ray or halfline: \(\{ y + \alpha d : \alpha \geq 0 \} \in Q \) on which \(b^T y \) is unbounded above; and
3. if \(b^T y \) is bounded above on \(Q \), then the max is attained and attained at a vertex \(Q \).

Proof:

(1): If \(Q \neq \emptyset \), so there exists a vertex.

(2) & (3):

Assume \(P \neq \emptyset \) & \(P \) is a set of convex combinations of \(v_1, v_2, v_3, ..., v_k \).

\[
\sup \{ b^T y : y \in Q \} = \sup \{ b^T y : y \in P + K \} = \sup \{ b^T p + b^T d : p \in P, d \in K \} = \sup \{ b^T p : p \in P \} + \sup \{ b^T d : d \in K \}.
\]

If there is some \(d \in K \) with \(b^T d > 0 \) then by considering \(\alpha d \), \(\alpha \to +\infty \), see that \(\sup \{ b^T d : d \in K \} = +\infty \). Then \(b^T y \) is unbounded above on \(Q \) and clearly unbounded above on \(\{ y + \alpha d : \alpha \geq 0 \} \) for any \(y \in Q \).

If there is no such \(d \in K \), then \(\sup \{ b^T d : d \in K \} = 0 \), attained by \(d = 0 \). Then

\[
\sup \{ b^T y : y \in Q \} = \sup \{ b^T p : p \in P \} = \sup \{ \sum_{i=1}^{k} \lambda_i (b^T v_i) : \sum_{i=1}^{k} \lambda_i = 1, \text{ all } \lambda_i \geq 0 \} = \max_{1 \leq i \leq k} b^T v_i.
\]

In this case \(\sup \{ b^T y : y \in Q \} \) is attained by \(y = v_i \) where \(i \) attains the maximum. \(\square \)