Suppose we are given \((f, G) \in \mathcal{F}\), where \(f\) is convex on \(C := [-1, 1]^n\), \(G\) is a convex subset of \(C\) with either \(G = \emptyset\) or \(\text{vol}(G) \geq \delta^n\), and max \(f(C) - \min f(C) \leq 1\).

Definition 1 A pair \((H, z)\) is a **localizer** for \((f, G)\) if either \(z = (*)\) and \(G \subseteq H\) or \(z \in G\) and \(f(x) \leq f(z), x \in G \implies x \in H\). So \(\{x \in G : f(x) \leq f(z)\} \subseteq H\).

For simplicity, define \(f(*) := \infty\).

Proposition 1 If \((H, z)\) is a localizer for \((f, G)\) with \(\theta := \left(\frac{\text{vol}(H)}{\text{vol}(C)}\right)^{1/n}\), and \(\theta < \frac{\delta}{2}\), then

a) if \(z = (*)\), then \(G = \emptyset\);
b) if \(z \in G\), then \(\epsilon(z, f, G) \leq \frac{2\theta}{\delta}\).

Proof: \(\text{vol}(H) = \theta^n \text{vol}(C) = (2\theta)^n < \delta^n\), where \(\text{vol}(G) \geq \delta^n\) if \(G \neq \emptyset\), so a) follows.

Now suppose \(z \in G\). Let \(z_*\) be any minimizer of \(f\) over \(G\), and consider \(G(\epsilon) := \{(1 - \epsilon)z_* + \epsilon x : x \in G\}\) for any \(\epsilon > \frac{2\theta}{\delta}\). \(\text{vol}(G(\epsilon)) = \epsilon^n \text{vol}(G) \geq (\epsilon\delta)^n\) while \(\text{vol}(H) = (2\theta)^n < \text{vol}(G(\epsilon))\). So there is some \(x \in G(\epsilon) \setminus H\). So \(f(x) \geq f(z)\). Hence, for some \(\hat{x} \in G\), we have

\[
f(z) \leq f(x) = f((1 - \epsilon)z_* + \epsilon \hat{x}) \leq (1 - \epsilon)f(z_*) + \epsilon f(\hat{x}) = \min f(G) + \epsilon(f(\hat{x}) - f(z_*)) \leq \min f(G) + \epsilon.
\]

Since \(\epsilon > \frac{2\theta}{\delta}\) was arbitrary, \(f(z) \leq \min f(G) + \frac{2\theta}{\delta}\). \(\square\)

Start with the localizer \((H, z) = (C, (*))\). At iteration \(k\), let \(x_k\) be the center of gravity of \(H_k\), where \((H_k, z_k)\) is the current localizer:

\[
x_k = \frac{\int_{H_k} x d\lambda}{\int_{H_k} d\lambda}.
\]

Call the oracle at \(x_k\). If \(x_k \notin G \cap \text{int}(C)\), and the oracle gives a separating hyperplane \(G \subseteq \{x \in C : v^T x \leq v^T_k x_k\}\), then set \(z_{k+1} = z_k\) and \(a_k := v_k\). If \(x_k \in G \cap \text{int}(C)\) and the origin gives \(f(x_k)\) and \(g(x_k) \in \partial f(x_k)\), then set \(z_{k+1} = \arg\min\{f(x_k), f(z_k)\}\) and \(a_k := g(x_k)\).

In either case, \(H_{k+1} := \{x \in H_k : a_k^T x \leq a_k^T x_k\}\). Stop if \(\left(\frac{\text{vol}(H_{k+1})}{\text{vol}(C)}\right)^{1/n} \leq \frac{\delta}{2}\), or \(\left(\frac{\text{vol}(H_{k+1})}{\text{vol}(C)}\right)^{1/n} < \frac{\delta}{2}\) and \(z_{k+1} = (*)\).

Proposition 2 In MCG, each \((H_k, z_k)\) is a localizer.
Proof: By induction on \(k \); trivial for \(k = 0 \).

Assume true for \(k \). If \(x_k \not\in G \cap \text{int}(C) \), then \(z_{k+1} = z_k \) and \(a_k = v_k \) with \(G \subseteq \{ x \in C : v_k^T x \leq v_k^T x_k \} \). So \(G \setminus H_{k+1} = G \setminus H_k \). If \(x \in G \setminus H_{k+1} \), \(x \in G \setminus H_k \), so \(f(x) \geq f(z_k) = f(z_{k+1}) \).

If \(x_k \in G \cap \text{int}(C) \), then we get \(f(x_k) \) and \(g(x_k) = a_k \). Then take any \(x \in G \setminus H_{k+1} \); either \(x \in G \setminus H_k \) so \(f(x) \geq f(z_k) \geq f(z_{k+1}) \), or \(x \in H_k \) and \(g(x_k)^T x \geq g(x_k)^T x_k \), so \(f(x) \geq f(x_k) + g(x_k)^T (x-x_k) \geq f(x_k) \geq f(z_{k+1}) \). \(\square \)

Proposition 3 (Grübaum, Mityagin) If \(D \subseteq \mathbb{R}^n \) is a convex compact set with center of gravity \(x \), then for any \(0 \neq a \in \mathbb{R}^n \),

\[
\text{vol}(\{ y \in D : a^T y \leq a^T x \}) \leq \left(1 - \frac{n}{n+1} \right)^n \text{vol}(D) \leq \frac{e-1}{e} \text{vol}(D).
\]

Theorem 1 (Yudin and Nemirovski) If the method of centers of gravity performs 2.2n \(\ln \frac{2}{\delta} \) iterations and still has \(z_k = (\ast), G = \emptyset \). If it produces \(z_k \in G \), then within 2.2n \((\ln \frac{2}{\delta} + \ln \frac{1}{\epsilon}) \) steps it produces \(z_k \) with \(\epsilon(z_k, f, G) \leq \epsilon \).

Proof: After \(k \) steps, we have localizer \((H_k, z_k) \) with \(\left(\frac{\text{vol}(H_k)}{\text{vol}(C)} \right)^{1/n} \leq \left(\frac{e-1}{e} \right)^{k/n} \). Note \(\frac{1}{\ln \frac{1}{\epsilon}} < 2.2 \). Then \(\left(\frac{\text{vol}(H_k)}{\text{vol}(C)} \right)^{1/n} < \frac{2}{\delta} \) within \(\frac{n \ln \frac{2}{\delta}}{e} < 2.2n \ln 2/\delta \) steps. Similarly, within 2.2n \((\ln \frac{2}{\delta} + \ln \frac{1}{\epsilon}) \) steps, \(\left(\frac{\text{vol}(H_k)}{\text{vol}(C)} \right)^{1/n} < \delta \epsilon \), so we have an \(\epsilon \)-optimal \(z_k \). \(\square \)

In general, computing the center of gravity is “hard,” so how can we circumvent it?

a) Use only nice sets \(H_k \) for which the center of gravity is easy to compute (e.g., the ellipsoid method).

b) Use a different notion of center, which is “easy to compute.” (a) leads to the ellipsoid method of Yudin and Nemirovski (1976) and Shor (1977). This is a simple modification of MCG: at every iteration, we have a localizer \((E_k, z_k) \), with \(E_k \) an ellipsoid. We call the oracle at \(x_k \), the center of the ellipsoid, and update \(z_k \) as above, but then set \(E_{k+1} \) to be the minimum volume ellipsoid containing

\[
E_k^{1/2} := \{ x \in E_k : a_k^T x \leq a_k^T x_k \}.
\]

Questions: 1) How do we represent \(E_k \)?

2) How fast do the volumes of \(E_k \)’s shrink?

1) \(E_k = E(B_k, x_k) := \{ x \in \mathbb{R}^n : (x - x_k)^T B_k^{-1} (x - x_k) \leq 1 \} \) with some symmetric, positive definite \(B_k \).

2) \(\frac{\text{vol}(E_{k+1})}{\text{vol}(E_k)} < \exp \left\{ -\frac{1}{2(n+1)} \right\} \).