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Abstract

In February 1979 a note by L.G. Khachiyan indicated how an
ellipsoid method for linear programming can be implemented in poly-
nomtal time. This result has caused great excitement and stimulated
a flood of technical papers. Ordinarily there would be no need for
a survey of work so recent. The currcnt circumstances are obviously
exceptional. Word of Khachiyan's result has spread extraordinarily
fast, much faster than comprehension of its significance. A variety
of issues have in general not been well understood, including the
exact character of the ellipsoid method and of Khachiyan's result on
polynonmiality, its practical significance in linear programming, its
implementation, its potential applicability to problems outside of the
domain of linear programming, and its relationship to earlier work.
Our aim here is to help clarify these impcrtant issues in the context
of a survey of the ellipsoid method, its historical antecedénts,

recent developments, and current research.



1. Introduction

l In February 1979 the note "A polynomial algorithm in linear programming"”
by L.G. Khachiyan [35) appeared in Doklady Akademiia Nauk SSSR. Several
months later it first came to the attention of operations researchers,
computer scientists, and mathematicians in the West through informal
dissemination and discussion. In another six months Khachiyan's note
became front-page news, not only for researchers, but for readers of major

daily newspapers in the United States, Europe, and Japan (see [€u]).

The Theoretical Result

The immediate significance of Khachiyan's article was the resolution of
an {mportant theoretical question eoncerning the computatforal cozplexity
of linear programming. Most of the basic discrete optimization grcblems
in operatior.s research have been known for a number of years either to be
solvable in polynomial-time (e.g., the shortest path prcbler with rennegative
arc lengths), or to be NP-complete (e.g., the traveling salesman groblem,
and the shortest path probiem with arbitrary arc lengths).* Yet lirear
programming, the most studied of all optimization proble:s in operaticns
research, resisted classification. Most researchers considered it ver
unlikely that linear programming might be theoretically as difficult as
the NP-complete problems, but no one had managed to prove its mertership
in P, the class of problems solvable by polynomial-tire algorisirs.
Finally, Khachiyan [35] indicated how onc could adapt a method fcr convex
optimization developed by the Soviet mathematicians N.Z. Shor, D.B. ITudin,
and A.S. Nemirovskil to devise a polynomial-time ellipsoid methold for

linear programming.

Y]

Appendix A provides an informal dizcuscion of the natinns of polynenial
boundedncss and NP-completeness for the unacquainted reader. Fcr a rigorous
treatment sea [3,15,33,30],
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_ of nz. Since such a graph may have as many as % (n2-n) arcs,
Dijkstra's algorithm appears to be an attractive practical procedure.
An examination of the known ﬁolynomial bound on the ellipsoid method for
linear programming does not lead so readily to a promising conclusion,
as we shall see.
We must also keep in mind that polynomial-boundetdness
is a worst-case criterion; the most perverse problem instances determine
this measure of an algorithm's performance. How likely are we to
encounter in practice problem instances like those in (Qn) that
cause algorithm A to behave badly? Are they pathological,
contrived? This has been claimed of thosc known familles of problems
that lead to exponential behavior of the standard simplex pivoting rules.
Researchers in computational ccmplexity are very well aware of these
limitations to the practical significarce of polynomiality.
However, most known polynomial-time algorithms for problems of
interest to operations researchers are, in fact, efficient in practice as
well as in theory, perhaps leading some to attach greater significance

to polynomiality than is merited.

Outline
Ordinarily there would be no need fur a survey of work so recent as
that prompted by [35]. The current circumstances are obviously excep-

tional. W¥ord of Khaphiyan's result has spread extraordinarily fast,

much faster than comprehension of it: wuipnificance. A variety of lssues
have been so muddled by accounts in the press, that even a technically
sophisticated rcader may be uncertain of the exact character of the

ellipsold method and of Khachiyan's reiutt on polynomiality, its practical
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significance in linear programming, its implementation, its potential
applicability to problems outside of the domain of linear prograr=.ing,

and its relationship to earlier work. Our aim here is to help clarify these
important issues in the context of a survey of the ellissoid methcd, its

historical antecedents, recent developrents, and current research.

In Section 2 we describe the basic ellipsoid algorithm for finding
a feasible solution to a system of linear inequalities. We outline the
modifications introduced by Khachiyan and the arguments used by him to
prove that the feasibility or infeasibility of such a systenm can le
determined in polynomial time with this algorithm. The extensicn to
linear optimization is discussed in.Section S.

In Section 3 we present a detailed account of the research that led up
to the ellipsoid algorithm. We show that it was a fairly natural out-
growth of the relaxation and subgradient algorithms of 4gmorn, Mctiziia
and Schoenberg, and Shor, ?he method of centered cross-sections cf' Levin,
and the methods of space dilation of Shor. In particular, we observe that
the ellipsoid algorithm was first introduced by the Soviet matheraticiarns
D.B. Iudin and A.S. Nemirovskii and then clarified by N.Z. Shor; all three
were interested in {ts application to convex, not necessarily differentiable,
optimization. Khachiyan modified the method to obtain a polyrcnial-tire
algorithm for the feasibility problem for a system of lirear irej.zlitles.

1f the ellipsoid algorithm is to be more than just a theoretical
tool, it must be implemented in a numerically stable way and rodified
so as to increcase its rate of converpence. In Section 4, three - 1ifi-

cations to the basic algorithm arc described. These are the ue of deep
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ATx < b (2.1)

where AT {s mxn and b is an m-vector. The columns of A, corre-
spending to outward normals to the constraints, are denpted al.az.....am.
and the comporents of b are cdenoted 51'82":"Bm' Thus (2.1) can be

restated as
aIx < Bi' i 21,2,.00,m,

We assume throughout that n s greater than one,

The Basic Iteration

The ellipsoid method constructs a sequence of ellipsoids Eo.tl.....Ek,
..ss each of which contains a point satisfying (2.1), if one exists.
On the (k+ll)st iteration, the method chocksiwhether the center % of the
curreat ellipsoid Ek satisfie;.the constraints (2.1). If so, the methcl

stops. If not, some constraint violated by xes  say

a'x <8 (2.2)

is chosen and the ellipsoid of minimum volume that contains the half-elliz-

soid

g ) (2.3)

{s constructed. (See Figure 1(a),) 7Thi: new ellipsold and its center are
denoted by Ek’l andv LI respectively, and the above iterative step
i1s repecated.

Except for initialization, this pives a (possibly infinite) iterative

algorithm for determining the feasibility of (2.1). Khachlyan showed that
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one can determine whether (2.1) is feasible or not within a pres;ecified

number of iterations by: (i) modifying this algorithm to accourt for

finite precision arithmetic; (ii) applying it to a suitable perturiation

of system (2.1); and (iii) choosing Eo appropriately. System (2.1)

is feasible if and only if termination occurs with a feasible sclution

of the perturbed system within the prescribed number of iteraticrs.
Algebraically, we can represent the ellipsoid Ek as

E = {x € R"l(x-xk)TB;I(x-xk) <1} (2.4)

where % is its center and B_ is a positive definite syrmetric matrix.

k
In terms of this representation the (k+1)st iterative step of the ellipszid

method is simply given by the formulae

Bka
Kegp % " T (2.3)
/aTBka ’
and !
Bka(Bka)T
Bk+l = 6(8k -0 T ) (2.6)
aB a
k
where
- 2,02 -
T = 1/(n+d), a = 2/(nel), and & = n“/(n-2). 2.7

That B dotermined by x ., and B ., as in (2.4)-(2.7) 1is the
ellipsoid of smallest volume that contains the half-ellipsoid (2.23) is
proved in Appendix B. We call 1, 0, and § the step, dilaticn, and

expansion parameters, respectively. Note that if Bk is a multiple of
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Ve need to show that the number of steps is polynomial in L. There
" avre two main issues In the proof.

First, the formulae (2.5)-(2.7) for %o and Bk+1 assume exact
arithmetic. To perform an algorithm in polynomial time with accepted
models of computation one must use finite-precision arithmetic. Khachiyan
indicated that 23L bits of precision before the point and 3€nL after

&€} 3
suffice. Note that {f the values of X1 and Bk+l are rounded to
this specified number of bits, the ellipsoid Ek*l may not contain the

required half-ellipsoid. Khachiyan showed that if B is multiplied

k+l
by a factor siightly larger than one before being rounded, then Ekfl
will still contain this half-ellipsoid. Unless otherwise noted we will
assume throughout that exact arithmetic is used.

' Second, we must provide a polynomial bound on the number of itera-
tions'required. We start by examining @ special case in which for some

known a. ¢R" and R>r >0, and unknown at em" .

0
S(a*,r) c P c S(ay,R), (2.10)

where P is the solution set of (2.1) und S(a,p) denotes the ball of
radfus p centered at a. In this cane we initlallze with Eo = S(uo.R).

We now use the fact that when the formulac (2.4)-(2.7) are employed,

n-1
vol Eyyy s (_ng ) ! < e-l/?(n*l) (2.11)
vol Ek n+l n2-l
Supposze % > 2n(n+l)log(F/r). Then, .. iing the ellipsoid algorithm

continues this far, the volume of Ek will have shrunk to less than (r/R)"
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times its original value; thus it cannot contain a ball <f radiu: r.
But, as we have remarked above, the sequence of eilipsoids generzzel
satisfies S(af,r) € Pc Ek for all k. This contradic:lon

proves that the algorithm must terminate with X € P for scme

k < 2n(n+l)log(R/r). Hence if R and r in (2.,19) are rezarcei =s
part of the input, or log(R/r) is polyncmial in L, then the n.~ler
of steps required is polynomial.

In many practical problems, a priori bounds as in(2.10) ray be
available and should be used. However, to provide a polynomial zlgorithz
we must assume that nothing is known about the system (2.1) other <ttan >
its description in terms of A arf®' b. In this case K.zchiyan :rcoved

that, if P is nonempty, then

P ns(0,2%) # 0; (2.1:

thus 2L can play the role of R in (2.10), and we can initiallze the
algorithm with Eo = S(O,?L). Clearly, however, P need not contain a
ball of any positive radius. Thus Khachiyan perturbed (2.1) to citain

the system of inequalities

2Lazx < ?LBi +1, 1=1,2,...,m (2.1
with solution set P'. He then proved that P is noner ty i{f arl only 17
P' 1is. Moreover, a solution to (2.1) can be obtained (in polyromial tire)
from a solution to (2.137and the nunder of hits needed < pepre- e (2,27)

is at most (m(n+l)+1)L, hence polynomial in L. The recason fcr ccnsidering

*®
One methad for ohtaining eyart anlutinna fram apprayic e aalgrionn fa
deseribed at the end of Gectfon b,
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The subgradient method for minimizing a convex, not necessarily
differentiable, function £:R® >R was apparently first introduced

by Shor [S1]. It has the general form

Xeor = % - we/llegldl (3.2)

where g, is a subgradient of the function £ at % Note that if

we wish to solve (2.1) we can minimize
£(x) = max{a'x - 8 W0}; (3.3)
g 1 i

then a = a, is a sudgradient of £ at % if Aix :'Bi is a most-
.violated constraint from (2.1). Thus (3.2) includes (3.1) as a special
case. Ermolev [12]and Polyak [49] give choices for e that ensure
glodal convergence; for example, v 0 and tuk = » suffice. However
very slow convergence results. Polyak [50) and Shor [52] Aemonstrate

linear convergence for certain choices of the step lengths under

¥k
suitablg conditions on f. However, the rate of convergence is still
heavily dependent on the function f.

Shor [53,54] seems to have becn the first to realize that improvements
could be made by working in a transformed space. bThe idea is exactly
that which leads from the steepest descent algorithm (with linear conver-
gence, the rate depending on the function) to Newton's method (with
quadratic convergence for smooth functions) and quasi-Newton algorithms

(with superlinear convergence for wr...th functions). The iteration now

takes the form
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& = s/ logg Il

a
a1 T % T Ok (3.4)

_ A AT
Tar = AT - Bgg)s

for suitable pargmeters as Bk. The update of the mairix Jk correszcnis
to "space dilation” in the direction of the subgradiernt g+ Shor (S4]
describes precisely the difficulties with the linear convergence'ra:e

of his earlier subgradient method [52]. His modified algorithm (3.u6),
when f satisfies certain conditi?ns allowing the paraneters a, and

Bk to be estimated, provides linear convergence whose rate Zegends on

the function £, but is invariant with respect to linear transfcrmaticss.

When £ is quadratic and strictly convex, the parametsrs 2an = chosen

W

so that the method becomes a method of conjugate gradiernts [22]. Fer
this algorithm, the minimum value of f mnust be known; his later methcd
[54] relaxes this requirement. In [58], Shor and Zhurbenko perfcrm

the "space dilation" in the direction of the differerce Vi T Epel T B

between successive subgradients; this method is even more reminiscent
of quasi-Newton minimization methods. This paper contains results of
some limited computational experiments.

The last method on which the ellipsoid algorithm is based is that

of Levin [43] who addressed the problem of minimizing a convex function

£ over a bounded polyhedron PO < P". The method prcduces a s2juence

of iterates (xk) and polytopes (Pk) by choosing x, as the center

of gravity of Pk and
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Xhachiyan's contributions [35] were precisely those described
in Section 2. He gave a modified form of the ellipsoid algorithm for
the feasibility problem of (2.1) with integer data and showed that
feasibility or infeasibility could bLe determined in polynomial time
by this algorithm.

We conclude this section by mentioning other related papers in
the Soviet literature. Shor has two survey papers [55,57] on non-
differentiable optimization. The second of these [57) states that
cozputational comparisons of subgradient algorithms, subgradient
algorithms with space dilation in the diroction of the subgradient
[52,54) or in the direction of the diffcrence of successive subgradi-
ents [53], and the "conjugate subgradient”" methods of Lemarechal [u2]
;nd Wolfe [%3] tend to favor the method [58], at least for dimensions
up to 200-30. For higher dimensions, storing and updating the extra
space dilation matrix becomes too expensive and subgradient or conjugate
suwgradient methods become preferable. The paper also demonstrates
the application of the ellipsoid algorithm to computing saddle points.

The interesting paper [28] by Nemirovskii and Iudin concerns an
application of the ellipsoid method where the "effective" dimension may
be much less than n. 1In this case a projection method can lead to faster
convergence. Finally we note that, :or thor's earlier method [53,54],
Skoxov [59] suggested updating the symmctric matrix Bk = Jkdz

save storage and reduce computation. His formulae are analogous to

to

those of Gacs and Lovasz [14] which we hove given as (2.5)-(2.7). We

will show In Section 6 some of the d.uy:::. of this approach.
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4, Modifications of the Basic Algorithm

In this section we describe several simple modifications t- the

basic algorithm to improve its rate of convergence.

Deep Cuts
As before, suppose that % viclates constraint (2.2). 7Tne ellip-
sold E, , determined by formulae (275)-(2.7) contains the half-ellisscii

{x ¢ BkIaTx < aTxk). As we only require that contain the sraller

E
k+l
portion of E , {x € EklaTx < B}, it seems obvious that we can obtain

T
an ellipsoid of smaller volume by using the "deep cut" a'x < g insteal

of the cut aTx < aTxk, which passes through the center of Ek. This Is

1)lustrated in Figures 1(a) and le). The smallest such elligzszid is given

by X and kal as in (2.5)-(2.6) with the parameters v, ¢, and

§ chosen as

2
= i;g? s, 0= (;%%%%%%%T , and & = ; (1-02) (4.1)
n -1
where
aT -8
e S (v.2)

/aTB a

k

For a proof of this see Appendix B.

The quantity a which now appears in the usdating formules recresents

the (algebraic) distance of X from the half-space H = {x eXR"}aTx < 3}
T.-1,1/2

Another way of viewing a is to represcnt the ellipsoid Ek as

L o= {xc m|x = Xt 92 Hzll < 1) (4.3)
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fespect to that subset. It is shown in [21], [61] that if KTBkK

has nonpositive off-diagonal entries--i.e., the constraint normals in

A are nmutually obtuse in the metric given by Bk--and if * violates

all constraints in (4.5), then the u given by (4.6) is nonnegative.
Solving a quadratic programming problem or computing u by (4.6)

for a large subset of constraints may e too high a price to pay to

cbtain the deepest or nearly deepest surrogate cut. Consequently in

[21] it is recommended that only surrogate cuts which can be generated

from two constraints be considered. In [38], surrogate cuts are generated

from as many as n constraints by an iterative procedure which combines

two constraints at a time.

‘ Parallel Cuts
. If the system of linear inequalitiec (2.1) contains a parallel pair
of constraints

aTx <8 and -aTx < -a

it is possible to use both constraints simultaneously to generate the

aTx -8 . B- aTxk
new ellipsoid Ek?l' Let a = --— and @ ¥ =———— , and suppose
JaTSka /aTBka

that ad <1/n and @ € -a < 1. Then ‘oroulae (2.5)-(2.6) with

b 2 (1-a&-
o= =5 (n + e (1-aa-p/2)),
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generate an ellipsoid that contains the slice {x ¢ gk}§ < alx < 2} of £,
- - v

.

When 8 =8, 1.e., aTx = 8 for all feasitle x, @ = -a and we get

n

n2-1

and Ekfl becomes flat in the dircction of a.

t*a, 0 =1, and § = (l-c2); that is, rank(Bk'l) rank(sk) -1

S§. Solving Linear Programming Prcblers

So far we have considered only the feasibility prcblem for cyctenms
of linear inequalities. Here we address the linear prograrting pr<blesz,

which we write in inequality form as

maximize ch subjgct to A'x <b, x>0, (5.1)
L

where AT is mxn. There are several ways this problem can be a:tackel
by the ellipsoid algorithm. We firct 2iscuss these ar:ircaches fre- a
theoretical viewpoint to establich the existence of pclynomizl alzcrithrs

for (5.1). Then we mention more practical consideraticns.

Simultaneous Solution of the Primal and Dual in B™'"

The problem dual to (S.1) is

minimize bTy subject to Ay > ¢, y > 0. (5.2)

By strong duality, (5.,1) has a finfte o vir:l solutfon !t ari -nlo If
(5.2) does, in which case the objective function values are equal. For
any primal feasible x and dual feasible y we have c'x < b’y by

weak duality. Thus x® and y# are optimal solutions to (95.1) und (5.2)
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It can be shown from (4.4) that for a given' a, r{(a), the ratio
of the volumes of E and Ek increases with the dimension n.
The volume reduction from a cut based on the primal constraints wil)}
therefore be smaller in the product space R™™  than in the primal
space ®". Hence it is desirable to handle the objective function of
-(5.1) without increasing the dimension of the problem. We now discuss
two such approaches based upon systems of linear Inequalities of the

form
T
A'x <D, -x<0, -ex & -¢ (5.4)

for various values of . These methods do not produce optimal dual

solutiors.,

Bisection Method

This method !nitially applies the ellipsoid algorlthm to the con-
straints of (5.1) to obtain a feasible solutfon x 1f one exists, if
there is none, we terminate. Then [ = cTi is a lower bound on the
optimal'value of (5.1). Next we obtain an upper bound on this value.
If the feasible region of (5.1) is bounded and contained in the known
ellipsoid Eo given by (2.4) then 7 = cho + (c:'PBoc)]'/2 is such
an upper bound. Otherwise, we may «;;ly the ellipsoid algorithm to
the constraints of (5.2) to obtain u Jual feasible solution y 4if one
exists, a~d set [ = bTy; i1£ (5.2) is inteasible, we terminate.
From now on, cach major fteratlion ntirt . with an Interval [E.Z] that
contains the optimal value, where ¢ = cTi for some known feasible

solution x, and applies the ellip:oid .lporfthm to (5.4) with
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¢ = (T+g)/2. If a feasible solution ¥ 1s generated, we set x + x,
L chk and proceed to the next major iteration. If it is cetermined
that (5.4) is Infeasible, we set { + § and proceced to the next iteration.
The process stops when T- ¢ is sufficiently small. This algerithz can
be made polynomial. It has the advantage of operating only in h
(except for possibly one application in ®™).

From a practical viewpoint, the rain disadvantage is that the
systems (5.4) with Z too large will be infeasible and may take a
large number of iterations. It is therefore imperative to use the ceep
cuts of Section 4 and the resulting tests for infeasibility to allew °
early termination in such cases. fNote that when a major iteration is
started with a new f greater than the old (i.e., a feasible solution
x has just been generated), the final ellipsoid of the previous majer
iteration with center x can be taken as the initial ellipsoid cf the
new major fteration. If, instead ¢ has just been decreased, we can
initialize with the last recorded ellipsoid with a feasible center--the

algorithm backtracks. Avoiding such backtracking leads to the final

method that we shall consider.

Sliding Objective Function Method

Suppose we start as before by generating a feasible solutizn x

to (5.1). We next consider (5.4) with g« ¢ = cri. while x is

feasible in this problem, we may proceed with the ellipsoid algorithm
since as long as the center is either on or violates the chosen cut,
the next cllipsofd can be defined. Hence iIn this methed, we are always
considering feasible systems (except possibly the first). Whenever a
T

feaulble fterato e vatintlen uTxk s

[ A chk and procecd,

Ix

- f, wWe Let X9 %, and
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then x?* {s the unique rational vector of form (5.5) in this ball,

For y € S(x, —25) implies that ||y-x*]] < 2? » but if y is also
24 A

of the form (5.5) and for some j, y; # x%, then ij-xgl :'3?
a
Implying that ||y-x#]] > 3? . Therefore 1f° x,x" are as above,
Y

x is known,and x®* is unknown, we can obtain x® by rounding each
component of x to the nearest ratioral g having |q] <4 by
the method of continued fractions (sce [46]).

We will be interested in the situation where x* is an optimal
extreme point of the lirear programming problem (5.1), and x is
obtained from the ellipsoid method. Grotschel, Lovasz, and Schrijver
(23] point out that one can replace the objective function vector c of
(5.1) by a perturbed vector d = y ¢ + (\ro,...,y"-l)'r such that the

preblem

maximize de subject to Ax <b, x>0 (5.6)

has a unique optimal solution at an extreme point x%*, and x* also

= QLntL+l

solves.(5.1); for example we can set y It is important to

note that log v is polynomial in L and n, so that the size of

(5.6) is a polynomial function of the ~ize of (5.1). By Cramer's Rule
xf is of the form (5.5) for & greater than or equal to the absolute
value of the largest determinant o! ¢ny nxn submatrix of the constraint

matrix of (5.1); in particular we can take 4 = 2L. Now we would like
to be adble to guarantee that for sufficiently small € > 0
1
Hxr-x]| « = (5.7)

?A2

for every c-approximate colution =z of (5,6), If, in addition, ¢ can
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be chosen so that
log(1l/€) is polynomial in n and L, (5.8)

then an c-approximate solution x of (5.6) can be computed by the
ellipsoid method In time polyncmial in n and L. It follews frem a
derivation in [23] that one can speci¥y € as a function of n, i,

and |]c|| so that (5.7) and (5.8) are satisfied. With & = 2% ema

g s L set 1/c = nY/2 R(n242e2ILAZ0NS ) 1) 1/7 ,20Le3005
Since xj < 2L for each component xj of x, the rounding of x by
continued fractions requires at most O[n(p+L)] arithretic operz:lons

each involving numbers with at most p+L binary digits, where ¢ is

the number of binary digits of precision maintained in the ellipscid

method.

6. Implementation

In our description of the ellipsoid algorithm, we have follcwed Gacs
and Lovasz [14] in representing an ellipsoid Ek by its center X and
a positive definite symmetric matrix Bk. This representation results ir

particularly simple updating formulae for determining and

kel Brers
and hence Ekol' Unfortunately, however, if these forrulae are used to
implement the ellipsoid algorithm on any currently availcble finlte
precision computer, roundoff errors will almost invariably cause the
computed matrices Bk to become indefinite. Consequently, the guantity
aTBka, whose square root is required, may turn out to be zero cr negative.

To avoid such numerical difficultics one must implement the ellip-

sold algorithm in a numerically stuble way. One appreach that can be
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formula (6.3) can result in Jk losing rank as a result of‘roundoff
errors.

. It {s possible to keep Jk in (6.3) and Lg in (6.6) in product
form. Indeed such implementations are analogous to th; product form of

the inverse and the Bartels-Golub LU factorization for the basis matrix

in the simplex method [S5].

7. Some Recent Work and Extensions

Although the ellipsoid algorithm was unknown to almost all of the
mathema:ics;operations research-computer science community outside of
the Soviet Union before the summer of 1979, the excitement generated by
Khachiyan's note, due in part to its coverage in the popular press,
has already resulted in a rather large nurber of technical paperé on
the sudbject. In this section we will try to summarize some of the
more important results contained in this recent work, and point out
pronmising avenues for fur;her study.

In [14] Gics and Lovisz described the ellipsoid algorithm as it
is preseﬁtcd in Section 2 and supplicd jronfa for the claima in
Khachiyan's note, ignoring some of his computational considerations
for the purpose of exposition. With the dissemination of this report
and its presentation at the ¥ Internaticnil Symposium on Mathematical
Prograrming in Montreal, Canada, in Aupust 1979, widespread investigatiorn
of the ell’psoid alpnrithm began in carnest.

0f the scveral papera that have .« red which treat the compu-
_tational complexity of the ellipsoid ulpcrithm in the spirit of Gics
and Lovasz [14], the papers by Padbery aud Rao [47,48] are probably the

mont comprotiensive,  In [W7] the vl idity of the el pnotd alporithm
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with deep cuts, i.e. (2.5) and (2.6) with step, dilaticn, and expznsion
parameters defined by (4.1) and (4.2), is proved under the assur;tizn that
all computations are performed in exact arithmetic. Thece resulic are
extended in [48) to the finite precision case. Padberg and Rao [-7]) also
derive a polynomial bound for the computational effort required Ly the
bisection method described in Section 5 fcr solving the linear ;rogramming
problem (5.1). By far the most important theoretical aZvarce thz: has
come from the ellipsoid algorithm since Yhachiyan's brezkthrcugh Is the
paper by GrStschel, Lovdsz and Schrijver [23]. In [22] it is shcwm how
the full generality of the ellipsoid algorithm can be used to device .
polynomial-time algorithms for scr.a corbinatorial optimization priblems
and to prove that certain other problems are NP -hard. We iliustraze

this approazh in some detail in the next section.

The Grotschel, Lovasz, and Schriiver paper also deals with

accuracy required in performing calculaticns with the ellizsoid e

1)

ned
and it proves that the sliding objcctive function apprnach for solving
optimization problems and the methed for rounding approxirate solvsicns

to obtain exact solutions described fn Sectlon 5 can be done {n jolynemial

2
time. They show that 1f & in (2.6) i3 replaced by ?D~%2 --d.e., If
n
the axes of nkfl are expanded slightly--then the elli;soid methold
remains valid if all calculations are rounded to a jrez:zrited finics
. 1/2 "/:"2 2L
precision. Khachiyan [ 35) replaces 6 in (6.5) Ly <777 ¢ ¢
to achieve a similar result.
In [37),Yozlov, Taranov and Fhoohiyan Sdecopibe o L lal-t 0 e

algorithm bascd upon the ellipsoid method and the bisection metnc! for sclving

convex quadratic programming problems. After obtainirg an approxizate ojtimal
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given by Xrol and Mirman (38], both the matrix Jk and the constraint
data Ak and bk in the affine-transformed space are updated on each
iteration.

Halfin also remarks that therc is a similarity between the update
T T
1 k
agkﬂ.) g, /2(a§k) _(ﬂa; ) agk)/a;k) a;k))a;k)).
§=1,...,m-and a simplex pivot. Whether this observation will lead to

of Ak—-i.e..

some understanding of the relationship of the ellipsoid algorithm to the
simplex method remains unclear. In fact, the above iterative formula
appears to bear a closer resemblance to Gram-Schmidt orthogonalization

(8§ = » = 1) than to a simplex pivot. Although this resemblance is not
(k)
)

mentioned in [24], it is shown that a

2ll of the other agk)'s

becomes "more orthogonal"” to

after a space dilation based upon a(k).

KON
P i
mutually obtuse, then as a consequence of such an ellipsoid step a

(x) will become more obtuse, cven though they become more orthogonal

j .

a;k). For the special case of a ny:tem of linecar equations Goffin

(k)

However, in [21] it is observed that if and a are

(x)
1
and a
to
[19) proves that ABknAT = (6™(1-0))"(512), where D is a positive
definite diagonal matrix, f is a matrix with elements whose order of
pagnitude is (l-o)k, and the cuts are chosen cyclically. Thus in the

retric corresponding to B, the constraint normals progressively become

k
more and more orthogonal.
Nearly one-half of the papers that have appeared since the Gacs and
Lovdsz p .per [14] ‘.ave been concerned with modifying the basic algorithm
(2.5)-(2.7) in order to reduce the volum: of Ek as much as possible. The

most obvious way to do this is to uic decp or possibly "deepest' cuts.
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As already mentioned in Section 3, Iudin and Nemirovskii's [27]
description of the ellipsoid algorithm allows for cuts that ¢o not

pass through the center of the ellipsoid. Although they were inter-
ested in "shallow" cut;, their formulae apply to deep cuts as well.
Because the English translation of [27] was unknown to rost resezrchers,
much of the recent work on improving the ellipsoid algcrithm has involved
the rediscovery of these formulae.

Krol and Mirman [38) and Goffin [19] give relaxaticns of the
deep-cut version of the ellipsoid method by allowing different fcrmulae
for 1, 0 and §. Krol and Mi;man hypothesize that such a choice may
result in a faster algorithm, since a locally optimal strategy fcr volume
reduction is not necessarily globéily optimal.

The idea of using surrogate cuts was proposed independently by Goldfard
and Todd [21] and Krol and Hirrmen [33). The sufficient z:inditicne for
U in (4.6) to give a deepest surrogate cut are fronm [21]. ¥rol and
Mirman [38] élvc necessary and sufficient conditions for forming a
surrogate cut using a deepest cut together with another less viclated--
possibly even satisfied--constraint. These conditions indicate whether
or not the u in (4.6) for the 2-constraint case is nonnegative. Since
the surrogate cut is deeper than either of the cuts from which it is
generated, the process can be rercated iteratively ucing the newlv
formed surrogate cut and a regular cut. If a valid surrcgaze cut
cannot be formed, then either the point on the current deepest (surrogate)
cut closest to the center of Ek in the metric Bk is a soluticn to the
system of lincar inequalitics (2.1), or that system ic infeauille. The

iterative procedure described in [38] which is based ujon these cbservations
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Just as in the simplex method, there are many ways to implement
the ellipsoid method. These include using and updating: (1) the
positive definite matrix Bk " as described in Section 2 [14], [47],
[23]; (i1) the matrix Jk which transforms a sphere into the elllp-
soid Ek translated to the origin, [53], [35], [38]; (iii) the
Cholesky or LDL'r factorization of 2, (23], (21]; and (iv) the
problen data uncer the transformation irduced by J, (243, [38]. A
product form version of (iii) is discussed in [21]. One of the principal
computational and practical drawbacks of the ellipsoid method is that
it does not appear to be possible to implecment it so as to take advantage
of any sparsity in the problem data, other than block diagonal structure.
To save work, 1t also has been suggested that the ellipsoid and relaxa-
tion methods be combined into a hybrid aléorithm [21], [60]). If a s

large enough one can sir:ly scale 3 i.e., set t=a, &= 1-32 anc

i
o =0 in (2.5) and (2.6). If a > l/n the volume ratio is< -
e-1/2n;

ii)nlz <
hence such an algorithm is polynomial. A hybrid algorithm which
corbines the ellipsoid method with the sirplex method is proposed in [68].
It {s also important to mention that the ellipsold method can be
pplied to problems other than systems of linear inequalitles and linear
programs. As already stated in Section 3, the ellipsoid method was
developed for solving convex (not ne..wu.urily differentiable) optimizaticn
problems [53], [27). Clearly much of our discussion in the preceding
sections is applicable to this more general setting. More is said in the
next section about the full generality of the method. It seems more
likely that the ellipsoid method will e *ound to be of some
practical value for nonlincar and nendiftcrentiable problems than for

Hnoar programming.  Koxlov, Tarazev and vhachiyan [37] have utied the
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ellipsoid method in conjunction with the method of bisection to shcw
that the convex quadratic programming problem is in P. Several cther
authors have used it to gttack the linear corplermentarity sroblex [1 ],
Cs 1, [321.

Finally, we note that although relatively little corputaticnal
experience with the ellipsoid method has been reported, the gererzl
concensus is that at present it is not a practical alterrative tc the
simplex method for linear programming problems. A list of agers that
report such computational results appears in [64]. In fact the cnly riidly
encouraging results are those reported by Krol and ¥irman [(38).% cCur
own computational experience indicates that the slow convergence erxhibitel
in the example analyzed in Appendix.c is pather typical. We found that in
spite of using deepest cuts, surrogate cuts of several tyres, and ciher
refinements, on the average the parareter a (see 4.2) was &zrroximazely

1/n. Thus, unless there are some further breakthroughs in izzle

nvatics,

it seems unlikely that the ellipsoid method will replace the simzlex meths

as the computational workhorse of linear programning.

8. Combinatorial Implications

It s intriguing that the overall approach of the ellipsoid rethod
does not depend directly on the availability of an explicit list oI the
defining inequalities, or even on linearity. In a very interesting pager,

Grotschel, Lovasz, and Schrijver [23) examine the ellipsoid method in a

general framework, establish theoretical results based on the gereral

”®
More rccently at the Sprinpg 1980 ORSA necting, Krol and Virman expressed
pessimism about the practicality of the mothed.
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problem is to design at minimup cost an undirected communication network
with n nocdes and prescribed two-terminal flow values. We denote

the §et of nodes by N = {1,...,n}. In the n'-vector x = (xij) of
nonnegative decision variables each componeng xij represents the
capacity of the link {i,j} between nodes i and J # 1.* The

network rust have sufficient capacity to accommodate a flow rate of

r units between nodes i and j # i when they act as the unique

ij

source-sink pair. The cost of providing capacity xij on link (4,3}

is dij'xij’ and the objective is to provide sufficient capacity to

reet 211 n' requirements Ty at minimum total cost de = E dijxij'
1<i<j<n

Note that the decision variables are permitted to assume non-integer

values, for example when n =3 and d =r = (l,l,l)T the unique optimal

solution has x = (1/2, 1/2, 1/2)T.

In the special case where all dij =1 (or d is constant over all lirks)
Gomory and Hu (see [12]) give a beautifully simple procedure for solving the
synthesis problem. Gomory and Hu [22] also point out that the general
problem. though not solvable by their simple procedure, is at least a linear
prograrmming problem, which unfortunately has an enormous number of defining
inequalities. From the -Max-Flow Min-Cut Theorem of Ford and Fulkerson
(see [13]) we know that a given x € H§' satisfies the single requirement

rij if and only if the capacity of every i-3 cutset is at least Pij'

i.e., if and only if for every Y c N having 1 e Y, j ¢ Y = N\Y

x(Y,¥) = § x, >r,.. (8.2)
piy Tk =43

K Y

[

In the discussion of this example we will denote the ocnter of the kth
cil!psold by x* rather than Ker 0 that x;j is the ({,J)-component of
x",
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Thus the set of all feasible solutions x of our synthesis problez
can be described as the polyhedron P consisting of all x>0
satisfying (8.2) for all 1 < i < j < n. A large nurler of the cerdi-
tions (8.2) can obviously be discarded. If n > 3 then for a given
gAY s N there will be different pairs {i,j} and {i',i'} sucn
that i,i'e¢Y and J,3' € Y, so one of the constrairts *(Y,7) 2 T

and x(Y,Y) >r is implied by the other. Hence we can write the

iljl
network synthesis problem as the linear programming problem

minimize d'x (8.32)
subject to x(Y,Y) >r, forall @ #YgHN, (8.35)
x>0 (8.3c)

- -y
where ry = max(rij: i €Y, Je Y. This still leaves us with 27 ~-_

distinct inequalities of the form (8.3b), each involving only n'

% r(=-1)
variables. Moreover all of the conditions (8.3b) having ry > 0 Cdefine
facets of P; none can be deleted without properly relaxing the feasitle
set. To apply the ellipsoid method in the standard way directly to (3.3)
would result in two overwhelming problems caused by the large nurter of

inequalities (8.3b) relative to the size

2 = llog n} + X Llog ri.J + f Llog dijj + 2(n2-n01)
1<i<j<n ] l<i<j<n
rij#O dij#O

of the problem encoding.
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There are several polynomial time implementations of the maximum flow
algorithm; the flow algorithm of [4u] will solve each of our flow
problems in O(ns) computations, each involving numbers with at most
4 < log(2R+2) + p binéry digits, where p is the numﬁer of digits of
accuracy maintained in the updates.

Based on the comments above it should now be evident that we can
compute an c-approximate optimal solution of (8.3) in time polynomial
in 2 and log(%). We can then round our e-approximate solution to an
exact solution as described in Section §. For this to be done in time
polynomial in £, we need to choose 4 and € so that 1og(%) is
bounded by a polynomial in &, (not L, the size of the encoding of
the linear programming formulation (8.3) of the problem). That our
linear programming basic solutions can arise from nonsingular systens
with 2n-1_ 1 rows and columns looks discouraging. Note however tna:z
all but q <n' basic columns are slack (unit) vectors. 'So the values
assumed by the basic xij:variables arise from a qxq su?system Ax = b,
where A is a submatrix of the (0,1)-constraint matrix of (8.3). It

. 2
follows that det A < [% n(n-1)]! < (n2)! < nzn', permitting us to

select 4 = nznz, which allows ¢ to be chosen so that log(%) is
polynomial in £.?* Thus we achieve a polynomial-time algorithm for the
network synthesis problem.

Most combinatorial optimization problems can, like the network
synthesfs problem, be recast as lincar programming problems in which

the number of defining fncqualitic: s cxponential in the size of the

original problem encoding (although it is usually very difflcult to find

4 3.2 3.2
X .
One suftable choice is %_=2n§un2n tin thnoan 2S‘|d||““n *on ’1/2-
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an explicit description of the defining inequalities). In many of these.
problems, including many NP-complete problers, one can specify values

of xo, R, p, P» and A that guarantee a polynomial bcund on the nurber
of cbmputations performed in the optimization routine of the elli;zzid
method. In the terminology of complexity theory, the ellizccid alzzrith=
provides a polynomial Turing reduction from the optimizatisn prcilles to <ie

separation problem (see [15]).

time it suffices to give a polynomial-tirme sezaration routine. Gritschel,
Lovasz, and Schrijver [23] have indicated hcw to accorplish this fcr a
variety of problems including: optimum branchings, the undirectel Chinese
Postman Problem, minimum weight perfect matchings and maximun welght )
matchings in graphs, minimization o; submodular set functicrs, arl the
stability number in perfect graphs. The latter two problems were n.O%
previously known to be in P. Though the others were krcwn o be In P,

the approach of [23] is new, and the ease with which it e-braces such a

variety of problems is rather provocative.

The casual reader should resist any temptation to ccnclude that one should
be able to immediately show that P = NP by exhiditing a polymomizl-tire
separation routine for, say, the traveling salesman prcblem. Certainly
one can usc the approach of [23] to establish that separation prcllenms
associated with some NP-hard problems are also NP-hard, as in the exar;le
that follews. But It might be naive to czject 10 to e any oo o 100
a polynomial-time algorithm for such a separation problem than for the

problems previously known to be NP-complete.

Optimal Uxtreme Points of Polyhedra

First consider the problem

maximize (ch: x ¢ [xt(P)}, (3.4)
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network decomposes into a sum of directed s-t path flows is NP-hard;

there exists a polynomial-time algorithm for this problem only if P = NP.

Polynomial Equivalence of Optimization and Separation

Our comments thus far have not fully portrayed the strength of
the results of [23]. Suppose that K is a class of polytoges K each

with known xo and 0 < p < R such that
S(xo,p) cKe s(x%,R). (8.7

We have observed so far that the existence of a polynomial separation
algorithm for K implies the existence of a weak (i.e., e-approximate)
optimization algorithm that is polynomialvin log R, log(%). log(%)
and L, the size of the encoding. Grotschel, Lovasz, and Schrijver
[23) actually show that it suffices to have a polynomial algorithm for

all X ¢ K for the weak separation problem:

g!&en z ¢ R efther determinc that there exists y ¢ K
such that ||z-y|| < e, or give o vector w ¢ ",

{1=]] > 1, such that nlz > wTy - €, Vy € K.

Furthermore they establish the convirse of this result, ramely that
4f the optimization problem is weakly solvable for K, then so is the
separation problcm.k Indeed they decmonstrate the polynomial equivalence
of weak scparation and weak optimfuition for any class K of convex
(not necessarily polyhedral) bodies sati:fying (8.7), and they use this

additional generality in solving the stability number problem for perfect

“The very recent paper of Xarp and Fap etindtriou alto deals with the relation-

Lhip between optimization and sepaeation o peneral comb bnatorial optimbzation
- TP . o B ATH |
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graphs. Since Khachiyan's work was motivated by the work of Shor [53)

and Iudin and Nemirovskii [27] in convex optimization, it should rct

be surprising that thesq results go beyond the polyhedral dorain. How-
ever, the rounding arguments that establish the equivalence of weak and
strong (exact) optimization depend on polyhedral structure.

Grotschel, Lovdsz, and Schrijver [23) give an interesting algcrithziz
application of their result that polynomial-time optimization algorithcs
yield polynomial-time separation algorithms. The well known greezy
algorithm is a polynomial-time algorithm for the maxirmum weight irlezencenz
set problem in matroids. Thus by [23] one gets a polyncrmial-tirme algoriziz
for the related separation problem. Now given k matroids our ability
to solve the separation problems igheach, immediately yields a polynomial-

time separation algorithm for k-matroid intersections, and hence cne for

k matroids. When k = 2 the vertices of the intersection cf the Tdio
matroid polyhedra will be'integer, and thus Grotschel, Lovasz, and
Schrijver provide an alternative to Edmonds' algorithm [11] for the
(2-) matroid intersection problem.

As with the application of the ellipsoid method to general lirear

programming, one must be careful here not to confuse the lovely results

of [23] concerning theoretical efficiency with practical censider: .S,
Grdtschel, Lovasz, and Schrijver do not suggest that their polyrcrial-tir:
combinatorial algorithms should be used, as is, in the practical solu-
tion of such problems. Even in the network synthesis exarple, whizh

has a recasonably modest bound on the number of fteraticus ard a very easy

scparation routine, the required number of Lits of accuracy to obiain the
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itself to sensitivity analysis or to the addition or deletion of
constraints or variables, However, once a problem has been solved
by the ellipsoid method, one can readily obtain this information by
conventional techniques.

It {s important to point out that because of the limitations of
finite precision arithmetic it {s unl kely that any reasonable imple-
mentation of the method would be polyromial. Indeed some researchers
have been so distressed by the presence of L, the length of the problem
encoding, in‘the bound on the number of iterations, that they are
unwilling to consicer the algorithm to be polynomial even with full
precision. The presence of L is c«rtainly unpleasant from a practical
point of view, but is perfectly natural to the accepted Turing machine
mdel of computation. Also, note that L is bounded by (mn+m+n)(2+log o),
wher; o is the magnitude of the larzest nurber in the data. Even in
such elementary polynomial-time algorithms as Dijkstra's d(nz)
shortest path algorithm (;ee [40]), the total computational effort
depends on log o, in that each of the O(n2) steps involves operations
on numbérs with as many as 1 + log 0 bits. Because log ¢ appears in
the bourd on the number of iterations in the ellipsoid method, the bound
on its total computational effort is a function of (log 0)2. If
log 0 is well accepted, (log 0)2 should cause no great distress.

It should be clear from our discusiion of [23] in Section 8 that
the ellipsoid method is a powerful thcoretical tool and a unifylng
element in the analysis of the computational complexity of combinatorial
optimization problems. This is espccially striking given the non-
combinatorfal nature of the mothod. One of the most importnnt and

long-lasting effects that Xhachiyan's rewnlt may have is to expand our
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perspective of linear programming and related combinatorial proble=s.
Glven the extensive use of the simplex method, it is ironic that many
fundamental questions concerning its computational behavior remain
unanswered. Perhaps the excitement caused by the ellipsoid will

generate further research in this area.
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with the property that g does not grow too rapidly as a function of s.

We might be displeased if the best possible guarantee g had g(s+l) > 2z(s)
for all s (or even g(s+k) > Ag(s) for all s > t, where A >1, and

k and t are positive integers) Indicating exponential growth in the
nuzber of computations performed by A as problem size increases. A is

said to be a polvromiai-bounded or polynomial-time algorithm if there

exists a polynomial function g(s) setisfying (A.3). Problem Q is

called polynemially solvable {if there cxists a polynomial-time algorithm
for Q. ‘The class of all polynomially solvable (clecision) problems is ldezsted ti P.
Note that in the determination of whether a problem is polynomially solva:le
it does not mattér whether we encode interurs in their binary expansions,
or decimal expansions, or expansion in ary base b larger than 1, since
such a change increases the length of the encoding by at most a factor of
log b,

Polynonial boundedness was prorosed by Edmonds [10] and independentl:
by Cobham [7] as a theoretical criterion for algorithmic efficiency,
and has been widely studied: among the problems for which there are known
polynonial-time algorithms are the assignment, shortest path, maximum
flow, and minimum cost flow problems. There are a large number of

classical optimization problems in operations research for which there is

no known polynomial-time algorithm. Theuc include the traveling salesman
prodlem, dnteper linear propramaing, ! vecfous production schedullng
problems. MNo one has managed to show thit there exists no polynomial-time

algorithm for these problems, but the thcory of NP-completeness offers
substantial evidence of their difficulty. It implies, roughly, that there
exists a polynomial-time algorithm for, suy, the traveling salesman problem
if and only if every problem solvable Ly a polynomial-depth branch-and-bound

alporithn fu solvablo by o polysombal i atporithm,
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The decision form of each of the problems noted abcve is a ~e~ler &f
the class NP, Informally we can regard NP to be the class of all (Zecisizz)
problems solvable by a backtrack ccarch (or Lranch-ard-lound) alg-rlths fir
which the depth of the search trec'and the nurber of co~;utaticns 27 ea
node (subproblem) can be bounded by fixed polynomials in the size I the
problem encoding. (Sothat for every'yes' (feasitle) instunce, thera Is sc-3 sequernce
of branches that leads to a'yes'ancwer in polynomial tire.) NP ir-liies z
large number of well-known problems; indeed it should be clear thzt P c \?,
since a polynomial-time algorithm is trivially a polyrcmial-dez:h éa:k:ra:k
search algorithm (that never backtracks). Of course the breadth cf a »»
polynomial-depth tree may grow ex;e:ntially, 2s unfortunately cc:iurs Iinm
the obvious backtrack search algorithms for the traveling salesman ;reile-,
so we might well imagine that there could be problems in NP not in P. Ths
question of whether P s NP or P = NP is unrscclivel; it is ofver z:llel o3
"biggest" open problem in theoretical computer science. Most resczrziers
consider it very unlikely that P = NP.

Although the P gNPquestion is unresolved, problems that mus: e in\P\P,
if P # NP, have been identified. Among these are the NP-ccmzlete ;rcblems first
examined by S. Cook (8]. Essentially, Cook showed how to device f:cm a

polynomial-depth backtrack search alporithm for any probiem Q

Q, a ;olyncmizl-

time alyorithm AQ that transforrs instances o€ O fore o lvalens 10 tios

of the satisflability problem in the projositicnal cal-ulus., Ev oy pril-=

Q in NP is in this way polynomial-reducible to satisfiability, which is itself in !

Hence aatinflabllity can be peparded to Lo s hard an any peebler Do 6Py ole i

sald to be complete in NP, or NP-complete.  In particular a poly: ~ialeti-e
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Appendix B: Minimum Volume Ellipsoids

Here we show that the formulae given in (2.5)-(2.7) and (4.1)-(4.2)

yield an ellipsoid E of minimum volume containing the appropriate

k+1

part of Ek. Since affine transformations multiply volumes by a constant

factor, we may assume E _ is the unit ball and a ¢ R® s a multiple of

k
the first unit vector. We denote tha. jth unit vector by ej. § =2 1,2,..0,00
Hence suppose

E = {x cIRnIHxH <1} and H = {x eanleIxf_-a)

and consider the general ellipsoid

t1
"

{x EYR“[HJ-J-(X.-XO)H <1}

{x <mn|(x-x0)75'l(x—xo) <1} (8.1)

where B = JJT. We will i)mve

Theorem B.1. If -l/n<a <1, the minimum volume ellipsoid containing

EnH is B*. where

_ . T
X, = -ty and B = §(1 uelel) (B.2)
and
2
l+na _ __2(14na) _._n 2
e S e vTorry B e Sk

n-1

The theorem will follow from Lemmas B.3 and B.4 below. First we

need to prove
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Proposition B.2. (Hadamard's Inequality) Let Y be an nxn ncnsinguler
matrix. Then

. n
leet vl < 1 |lvell
i=1

with equality if and only if the columns of Y are orthogonal.

Proof: Since Y is nonsingular A = YTY is positive cefinite 2wl has a

Cholesky factorization A = LLT where L is lower triangular. 2y

definition
a2
ayy * 121 155 4y (B.u)
Thus
2 2_ % 2
(det Y)“ = det A = (et L)" = 1 2
ye1 33
n n 2
<n ajj = 1 llYejll .
j=1 j=1

Equality holds i{f and only if lji =0 forall §#1 by (3.4), i.e.,
T

1f and only if A = Y'Y {s diagonal or, equivalently, the colurnz of Y
are orthogonal.

Now we come to the first lemma. Note that E n H contains the 2n-l

points -e, and -ae 2 l/2ei, )-/2

) + (1-a%) i=2,...,n. Llet y = (1-a%)""".

1

Lemma B.3. If -1 <a <1, the ellipsoid of minimum volume containing

the points -ey and -ae, * e, i=2,...,n, is E* given by (3.1)-(2.3).

¢t

. S R . = a1
Proof: Let Y =J with columns Yy¥gresoo¥y and let Yo ¥ %p-

Suppose E_ in (B.1) contains the specified points. Then
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'Proofz Let xT = ((1.....En) . and note that
2 2 2 ’
-1 (n+1) n°-1 n-1
B ~ = diag = sese .
(nz(l-u)z nz(l-uz) '.n2(l-u)2
Hence
To=1
(x-xo) B (x-xo)
O BTNTL ()2 % » 2ns)ena) , Leam?
Ty - i e} 1Y 2, 2
(l-a ) n“(1-e) n“(1-a%) n (l-u) n“(i-a)
2
n +21)
- 2 (llx‘lz 1+ 2§n+l)(1+ ra) Cf 2(n+1)(l+na) 51 2(n¢1)(' 1)
n (1-0 (l-a )(1-a) n (l-u) n (l—a )(--a)

2
=——(||x1|2n

2(n+1)(l+na)
2

(g, +a)(E 1) + 1.,
n (l-c 2(l-u2)(l-u) : 1

Thus if- -1/n <a <1, -1<§ <-a and ||x|] <1, the above expression
is at most one, and x ¢ 8’.
A more general version of the thecorem, involving cuts by two parallel

hyperplanes, can be found in Todd [€2].
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Appendix C: An Example

We descridbe an example where the iterates (xk) and (Bk) can
be given explicitly and which demonstrates that convergence can te very
slow even when the deep (or even deepest) cuts of Secticn U are used.
This example also shows that the iterates (xk) need not ccnverge
toward the feasible set if that set hus zero volume. If the fezsitle
set is empty, then even an infinite sequence of iterations employirg
deepest cuts will not necessarily reveal infeasibility.

We again use ej for the jth unit vector, and denote the cimzo-
nents of x (xk) by Ej (Ek‘j)’ Suppose we are trying to find x ¢ EN

satisfying !

Ej <o, -Ej <0 for j =1,2,...,n; (c.1)

even though the solution set has zero volume, we will ignore the ;ertur—

.
.

bations of Section 2.

Let us start with

T 2
Xy = (1,1,...,1)" and B, = n°IL.

The outward normals to the constraints are :ej. j=1,2,...,n, and
(tej)TBO(:ej) = n2 for all i. Thus the a corresponiing o ez:zh can-
straint is $1/n.

Our algorithm chooses one of the violated constraints, say € < o,

as the cut; thus from (4.1) 1 = 2/(n+l), o = un/(n#1)2 and 6 = 1.

It follows that
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