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Abstract

We reconsider the ellipsoid method for linear inequalities. Using the ellipsoid represen-
tation of Burrell and Todd, we show the method can be viewed as coordinate descent on
the volume of an enclosing ellipsoid, or on a potential function, or on both. The method
can be enhanced by improving the lower bounds generated and by allowing the weights on
inequalities to be decreased as well as increased, while still guaranteeing a decrease in vol-
ume. Three different initialization schemes are described, and preliminary computational
results given. Despite the improvements discussed, these are not encouraging.

1 Introduction

In the mid 1970s, a Russian, Arkadi S. Nemirovski, and a Ukrainian, Naum Z. Shor,
independently devised the ellipsoid method for convex nonsmooth minimization. Their
motivations were rather different: Yudin and Nemirovski [21] were interested in the infor-
mational complexity of convex optimization and in developing an implementable version
of the method of central sections of Levin [11] and Newman [13], while Shor [16] was inves-
tigating a special case of his space dilation methods with intriguing geometric properties.
The history of the study of convex minimization in the Soviet Union is nicely described
in the survey article of Tikhomirov [19].

The algorithm did not attract a great deal of interest in the West until a couple of
years later, when Leonid G. Khachiyan [9] used it to prove the polynomial-time solvability
of linear programming. This was a very impressive theoretical advance, but the algorithm
did not seem to be useful in solving large-scale sparse linear programming problems in
practice. There were also important consequences in combinatorial optimization, as noted
by Karp and Papadimitriou [8], Grétschel, Lovasz, and Schrijver [6], and Padberg and
Rao [14], and explored in depth in [7].

Considerable efforts were made over the years after the ellipsoid method was first
developed to improve its performance. The fundamental problem is that the volume of
the enclosing ellipsoid is cut only by a factor of about 1—(2n)~! at each iteration, where n
is the dimension of the problem, whereas the method of central sections cuts the volume of
an enclosing set by a constant factor. Thus variants using so-called deep cuts and parallel

*School of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14853, USA.
E-mail mjt7@cornell.edu.



cuts were developed first by Shor and Gershovich [17] and then rediscovered by many
others, but unfortunately did not improve practical performance by much. Nemirovski
and Yudin devised algorithms adapting to the effective dimension of the problem [12],
and recently Rodomanov and Nesterov [15] have developed a hybrid of the ellipsoid and
subgradient methods avoiding the difficulties of the former in high dimensions. Tarasov,
Khachiyan, and Erlikh [18] developed an inscribed ellipsoid method that decreased the
volume by a constant ratio, but at the expense of a much more complicated computation
at each iteration. A summary of the early developments can be found in [1].

In the domain for which it was intended, the ellipsoid method did prove quite effective
for medium-sized highly nonlinear problems (Ecker and Kupferschmid [4]), although test-
ing by Shor indicated that other versions of his space-dilation methods were preferable;
see also the more recent theoretical analysis in Burke, Lewis, and Overton [2].

Our interest here is in linear programming, and more specifically in systems of linear
inequalities. As we have noted, the ellipsoid method can be very slow when attacking
problems of high dimension, even when using deep cuts. However, there is a hope of
improved performance when the algorithm is viewed a different way. Burrell and Todd
[3] showed that an enclosing ellipsoid could be derived by combining rank-one convex
quadratic inequalities obtained from the original inequalities, provided these were two-
sided. Thus the Burrell-Todd version of the ellipsoid method required lower bounds on
the linear functions involved in the inequalities (we assume these are all given by upper
bounds), and these bounds were obtained from duality arguments. At each iteration,
a single violated inequality was chosen, and then the multiplier d; on the associated
quadratic inequality adjusted, possibly after updating the corresponding lower bound.
This method was shown to be closely related to the deep/parallel cut ellipsoid method.
One advantage of this viewpoint is that it is sometimes possible to infer the infeasibility
of the original system of linear inequalities, and obtain a certificate of this infeasibility,
whereas the original method could only do this in the case of rational data, after making
perturbations, taking an astronomical number of iterations without obtaining a feasible
point, and then concluding infeasibility without producing a certificate.

Recently, Lamperski, Freund, and Todd [10] developed the oblivious ellipsoid algorithm
(OEA), which by modifying the method above slightly is guaranteed to either find a
feasible solution or prove infeasibility in a number of iterations that is polynomial in
the dimensions of the problem and the logarithm of a certain condition number of the
system. In the case of infeasibility, the proof relies on a fixed decrease in a certain
potential function. However, the algorithm operates obliviously (without knowing whether
the problem is feasible or infeasible), and so it must choose its parameters carefully to
guarantee a simultaneous decrease in both the volume of the enclosing ellipsoid and the
potential function. As a result, the decrease in the volume is even slower, by a factor
of about 1 — (2m)~!, where m > n is the number of inequalities. Another consequence
was some counter-intuitive steps in the algorithm: the ellipsoid was not always defined by
the best lower bounds obtained on the constraint functions, and sometimes these lower
bounds were actually decreased.

In this paper we propose improvements to both the OEA and the standard (deep-
cut) ellipsoid algorithm (SEA), implemented as in Burrell-Todd [3]. Among all the lower
bounds on the jth constraint function a?m that could be derived from ellipsoids differing
from the current one by only adjusting the weight d; and its defining lower bound [;, we
show how the “best” one can be obtained at negligible cost. We demonstrate how the



OEA can be adapted with no loss in theoretical guarantees to always use the best lower
bounds generated. The SEA can also use this improved bound. We also show how the
SEA can be modified to use decreasing or drop steps which decrease the weight d; on
a well-satisfied constraint, again without losing theoretical guarantees. In addition, we
give a modification of the potential function which allows some weights d; to be zero, and
still allows convergence to be established in the infeasible case. We provide a geometric
interpretation of these potential functions.

Finally, we give the results of some preliminary computational tests, which show that,
while the performance of the algorithms is improved by these changes, it remains unfor-
tunately slow, with a number of iterations growing roughly with the 1.7-th power of the
dimension.

The paper is organized as follows. In Section 2, we give the ellipsoid representation we
employ and show some of its properties. We discuss the improved lower bound in Section
3. Then, in Section 4, we define the modified potential function and show that it can also
be decreased by a constant at every iteration. We consider steps that decrease weights d;
in Section 5, and put all these ideas together in improvements of the OEA and the SEA
in Section 6. The results of computational testing are given in Section 7.

2 The ellipsoid representation and certificates of
infeasibility

In this section we describe the technique Burrell and Todd [3] used to generate an ellipsoid

containing a polyhedron and how it can be used also to certify infeasibility. We will

generally use the notation of [3], except that, as in [10], we use 7; to denote the semi-

width of the ellipsoid in the direction of a; rather than its square, to avoid square roots.
We would like either to find a point in

P:={ycR": ATy <u}

or to prove it empty. We assume A is n x m, and has rank n (otherwise we can project y
and the columns of A to a lower-dimensional space). The jth column of A is denoted a;;
without loss of generality, we suppose all columns are nonzero.

Our first step is to provide lower bounds also on the linear functions in ATy. Let us
assume we have an m X m matrix A and an m-vector [ with

AN =—-A, A>0, [=—-ATy, (1)

so that y € P implies
ATy = —ATATy > ATy =1,

implying that [ is a vector of lower bounds as desired. Burrell and Todd [3] explain how
to obtain such a A if we are given upper and lower bounds on the components of a feasible
y. Then

P={ycR": 1< Ay <u}. (2)

We will also assume | < u; otherwise P is empty or we can again project it to a lower-
dimensional space.

We now proceed from this bounded polyhedron defined by many linear constraints
(with potentially exponential complexity in vertices and faces) to an approximating set
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defined by a single quadratic inequality, as follows: First we multiply linear inequality
by linear inequality, to get a (rank-one) quadratic inequality; then we aggregate these
inequalities using nonnegative weights. Thus the inequalities indexed by j imply

(ajy—1;)(a] y — uy) < 0;
then, multiplying this by d; > 0 and summing, we find
yeP = Zdj(ajry - lj)(a?y —uj) < 0.
J
If we let D := Diag(d), this quadratic inequality can be written
(ATy — " D(ATy —u) <0. (3)

We always assume that d is chosen so that ADA” is positive definite. Then we can

complete the square as follows. Define

u—+1 u—1
ri=—, = ,
2 2

so that l =r —v,u = r + v. Then set
7 := (ADAT)"'ADr.

Now simple algebraic manipulations show that the quadratic inequality (3) can be written
as
(y—9)"(ADAT)(y —y) < y" (ADA")g—1"Du
= r"DAT(ADATY"'ADr — " Du (4)
= rT'DAT(ADAT)"YADr — vT Dr 4+ v7 Du.

If the right-hand side above is positive, this defines an ellipsoid centered at y; if zero, the
ellipsoid degenerates to a single point; and if negative, the inequality is infeasible.

Let us suppose for now that the right-hand side is positive. Clearly the ellipsoid
depends on the vector d, but since the algorithm sometimes updates the lower bounds
[ (while also updating A to preserve the derivation (1)), we denote it by either E(d) or
E(d,l). We have shown above that

P C E(d):=E(dIl)
= {yeR": (y—9)"(ADAT)(y — §) < rTDAT(ADAT)"'ADr — " Dr + v Dv}.
Since we are temporarily assuming that the right-hand side )
f(d) == f(d, 1) :=rTDAT(ADAT)YADr — ¥* Dr 4+ v Dv (6)
is positive, we can scale d so that it becomes 1. Then, if we write

B := (ADAT)™!

(we will use this notation whether f(d,[) is 1 or not), the ellipsoid can be written {y €
R": (y — 9)TB~1(y — y) < 1}, which is the traditional way to represent ellipsoids in the
ellipsoid method. Let us note now two important advantages of the representation in (5)
we are using:



(i) The conditions in (1) and the nonnegativity of d certify the containment (5); and

(ii) The matrix ADA” preserves more of the sparsity and structure of the matrix A
than its inverse B, and a Cholesky factor of ADA” is also likely to preserve some
of this sparsity (as in interior-point methods), while allowing us to perform cheaply
all the operations in the algorithm. In contrast, B may be dense or close to dense.

Given such an ellipsoid E containing P, an iteration of the ellipsoid method
(a) stops if its center ¢ satisfies all the constraints, and otherwise
(b) possibly stops with a proof of infeasibility, or

(c) generates a new ellipsoid E; containing P and satisfying

1

vol(E,) < exp [_2(124—1)

] vol(E). (7)

The oblivious ellipsoid algorithm (OEA) of Lamperski, Freund, and Todd [10] is de-
signed to terminate in a polynomial number of steps whether the system of inequalities is
feasible or not (and without knowing which), and so takes a more conservative approach
to updating the ellipsoid, so that (7) is modified to replace the dimension n with the
number of inequalities m:

1
(Ey) < ——— | vol(E). 8
vol(By) < exp | 5L vol(B) 0
At the same time, the OEA guarantees a decrease in a certain potential function ¢(d, 1)
which we will define later, so that its value at the new iterate is decreased by the same
factor:

! )] s (9)

< -
O+ —eXp[ 2(m + 1

If the ellipsoid is represented as above, with E = FE(d, ) and d scaled so that f(d,l) =1,
(b) and (c) are accomplished by first choosing a violated constraint j; then checking
whether [; is at least as large as the minimum value of a;fpy over F, ajng — (a;-FBaj)l/ 2 and
if not, updating it and the jth column of A so that (1) remains true; and finally increasing
just the jth component of d so that (7) (or (8) and (9)) holds. (The OEA also modifies
l; in a more complicated way; the first part of the step is to decrease [; until the center
y satisfies aJng = u;.) We will elaborate on this in the following sections; details can be
found in Burrell and Todd [3] and Lamperski et al. [10]. We note that the algorithm
in [10] and its analysis are quite technical. We will therefore not provide more details
here, hoping that our version in Section 6 is easier to understand, but we will rely on the
analysis in [10] to establish convergence.

Among the contributions of this paper are a better way to update the lower bound and
to show that a suitable volume reduction can also be achieved by choosing a constraint
that is well satisfied, and then decreasing the corresponding component of d, possibly to
zero. Since decreasing a component of d can make the right-hand side of the quadratic
inequality negative (or zero), we are led to another advantage of the representation we
are using:

(iii) If f(d,1) is negative (or if it is zero and the center g is not feasible), the representation
in (5) provides a certificate of infeasibility for P.
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Throughout this paper, a certificate of infeasibility means a Farkas-type certificate
(an L-certificate in the notation of [10]). We say that z € R certifies the infeasibility of
[ < ATy < if

Az =0, ulz, — 1Tz <0 (10)

(here x4 and z_ are the componentwise positive and negative parts of z so that z, —z_ =
z, x4 >0, z_ >0, and x:i:c_ = 0). To show that such a certificate is valid, note that
if o satisfies (10), and if | < ATy < w, then vz, > y"Az, and ITz_ < yTAzx_,
so subtracting gives v’z — [Tz_ > yTA(x, — x_) = 0, which is impossible. As an
example, suppose a lower bound [; is certified by a vector A; as in (1) so that A\; =
—ay, Aj >0, and — uT)\j = lj, and lj > Uuj; then we find A()\j + 6j> = 0, /\j +e; =
0, and uT'(\; + €;) = uj —l; < 0, so that x := \j + e; is a certificate of infeasibility.
Here e; denotes the jth coordinate vector; we also use e to denote the vector of ones of
appropriate dimension.

We note that a certificate of infeasibility for I < ATy < u easily yields one for ATy < u,
i.e., a vector Z with

Az =0, >0, u'z<o.

Indeed, if x satisfies (10), then it is easy to see using (1) that & = x4 + Ax_ satisfies the
system above.

Item (iii) above was proved in [10]; here we provide a simpler derivation. We first
establish the claim in the case of a negative right-hand side (in Section 4 we will give
geometric intuition for why f(d,l) < 0 implies infeasibility).

Theorem 1 Suppose, with the notation above,
f(d, 1)) =r"DATBADr — " Dr +v"Dv < 0.

Then

where

t:=Aly—r, (11)
certifies the infeasibility of | < ATy < w.

Proof: We need to show that Dt satisfies the conditions in (10). . First, Az = 0
follows from the definition of §. Now note that the projection of D'/2r onto the null space
of ADY? is

q:=DY?r — DY2AT(ADAT)"'ADY2D'Y?r = — D%, (12)

and its norm squared is
¢'q=r"Dr —rTDAT(ADATY "' ADr. (13)

So the right-hand side of the quadratic inequality being negative is equivalent to —q”q +
vI'Dv <0, or
1/2
IDY?0]| < gl

Finally,

T

w'ey —1Te_ = (r+v)lay — (r—v)T

e_=rT(zy —z )+ ol (zy +2_) =rTz 4+ 02|,



where |z| denotes the vector of absolute values of the components of x. Now r’x

(DV2)T(DY2) = —(DV2r)Tq = —gTq = —[ql, while oTja| = (DV/20)7|D1/2] <
|DY2v][||q|| < llq||?, which shows that the quantity displayed above is negative.
O
The proof incidentally provides another useful form for f(d,[). Using (6), (12), and
(13), we obtain
f(d,1) = v Dv -t Dt. (14)

Finally, we consider the case that the right-hand side f(d,[) is zero. Then the solution
set to the quadratic inequality is the singleton g. If this is feasible, we have our desired
point in P. If not, we know P is empty, but again we would like a certificate of infeasibility.
We show that either x or a perturbation of it provides such a certificate.

Proposition 1 Suppose now
f(d, 1) =0.

Then, if y is infeasible, either
x:= Dt

or
i =z +¢(e; — DAT Ba;)

is a certificate of infeasibility for | < ATy < wu, where in the second case either a?y > U
and € > 0 or a?y <lj and € <0, and € is sufficiently small in absolute value that none of
the nonzero components of x change sign in T.

Proof: By examining the proof of the theorem above, we see that || D/2¢]| = || D'/?v||
and that, if  does not yield a certificate, D/ 2| and D2y are collinear. Henceforth,
assume 7 is infeasible and x is not a certificate of infeasibility. Then, for nonzero dj,
tn, = Fvp, and afg =: wy, is either I, or uy. Moreover, if d; # 0 but z; = 0, then
aly =rp and t, = 0, so vy, = 0 and wy, = I, = uy,.

Thus, if dj, is nonzero, afgj = wy, so that DATy = Dw. Then ADATy = ADw, so
BADw = 3. Now choose j so that a;-rﬂ > uj; or a;‘rgj < l; (since g is infeasible), so that
d; = 0, and choose € as in the statement of the proposition.

Since Az = 0 and A(e; — DAT Ba;) = a; — a;j, we have A% = 0, and it remains to show
that uTJE+ —1T7_ < 0. If &, > 0, then wy, > 7, so w, = up, and &, > 0, updp = WyTh.
Similarly, if xj < 0, then 5, < 0, (=Ip)(—Zp) = wpZp. And if dj, # 0 but x = 0, then
wp, = up = lp, so upZp = (—lp)(—2p) = wpTp. A similar argument with x instead of
¥ shows that wlz = uT'z, — [Tz = 0, since z is not a certificate of infeasibility. Now
suppose aJTy > u; and so € > 0. Then

wl'ay — 1Tz = Z [wpxy — e(wpdpal Baj)] + eu;
dn£0
= w'z +e(u; —w' DAT Baj)
= e(uj —ajy) <0,
and a similar argument holds if ajng <.
0

It appears therefore that decreasing the right-hand side f(d,[) aids both in finding
a feasible point in P if one exists (by decreasing the volume of the enclosing ellipsoid
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E(d,l)) and also in finding a certificate of infeasibility in the case that P is empty. We
now make this more precise.

By considering a linear transformation carrying a unit ball to E(d, ), we see that twice
the logarithm of the volume of the ellipsoid differs by a constant from

g(d) := g(d,1) :==nln f(d,1) —Indet ADAT = nln f(d,1) + p(d), (15)

where p(d) := —Indet ADA” is a standard barrier function designed to keep ADAT
positive definite. (Here and below, we define —Indet M to be +oo if M is not positive
definite, even if its determinant is positive.) We could therefore consider an algorithm
that iterates values of d or of (d,l) to minimize g, or maybe its upper bound

g9(d) := g(d, 1) == nf(d,l) + p(d) —n, (16)

which has the advantage of being defined even if f is nonpositive, and is a convex function
of d. However, while we have expressions for these functions and their derivatives, they
involve the inverse or determinant of ADAT, which is costly to evaluate for each new d.
It therefore makes sense to consider coordinate descent algorithms, changing just a single
component of d at each iteration, since then ADAT is modified by a rank-one update and
its inverse (or Cholesky factorization) and determinant are simple to update. It turns out
that such coordinate descent algorithms are exactly variants of the ellipsoid algorithm, as
we shall see in Section 5.

3 The “best” lower bound

Recall that Section 3 of Burrell and Todd [3] shows that a lower bound on a constraint
function can be generated by any ellipsoid represented as above (with f(d,l) = 1). Thus,
given an index j, we can calculate

A= D(AT(§ —~; ' Bay) — ), (17)
where v; := (a;‘-FBaj)l/Q, which satisfies A\ = —a;, and then
O(N) = 1TA_ —uT X,

provides a lower bound on a?y over P. This A can be converted into a nonnegative

~

A= AN+ Ay

which also satisfies A\ = —a; and 0(\) = —uT X\ = 0()), equations which directly certify
the lower bound from ATy < u. We call such \’s dual vectors, because they certify lower
bounds via duality.

In both the SEA and the OEA, a variety of ellipsoids is considered at each iteration.
In the SEA, there is the original ellipsoid, the ellipsoid obtained by decreasing d; to zero,
and the final ellipsoid. In the OEA, there is the original ellipsoid, the ellipsoid obtained by
decreasing /; until the center satisfies a;‘-Fy = u;, and the final ellipsoid. All these ellipsoids
differ from the original merely by a different d; and a different /;. In this section, we obtain
the best lower bound of the form §(\) that can be obtained from a class of A’s including
all those generated as above.



Note that A above is a linear combination of D(ATy — r), DAT Baj, and e; (with a
zero weight on the latter). We first show how to get an improved lower bound based on
a dual vector of the same form, but with jth component zero, as long as the lower bound
from A improves on /; and a;‘-Fg > T,

Note that Proposition 4.2 in [3] shows that dj'yj2 < 1,and so \j = dj'yj(ajTg—rj —55) >

—1. Hence
~ 1

= 1-|—)\j

(A= Ajes)

is well defined. Tt also has jth component zero, and satisfies AN = —aj. If Aj > 0 then

we find . \
O(\) = O(\ I,
N =13, Ny

a convex combination of the bound given by A and u;. If (\) > u;, indicating infeasibility,

then 6(\) is also greater than u;, and we can use it to generate a certificate of infeasibility.

If §(\) < uj, then O(X) provides at least as good a lower bound as 6(\).
On the other hand, if A\; < 0, then we have

~ 1 Aj
1—1-)\]'

l;,

or

O(A) = (L+X)0X) + (=)l

a convex combination of #(\) and [;. In both cases, we either obtain a certificate of
infeasibility, and terminate, or

o(\) > 6(N),
and note that A is also a linear combination of D(A”5 —r), DAT Ba;, and e;.

In the SEA, ajng > rj, i.e., t; is positive, in the ellipsoid at the start of the iteration
because we choose j as a constraint where ¢ violates the upper bound; ¢; remains positive
in the ellipsoid after dropping a; by (23) in [3]; and it is still positive for the final ellipsoid
since (29) of [3] shows that it is multiplied by 1 — & > 0 from its previous value. In
the OEA, t; is positive in the ellipsoid at the start of the iteration by the choice of j; it
remains positive after the decrease of [; by (47) in [10]; and it is still positive for the final
ellipsoid by (41) in [10]. Thus in all cases we can move from X to A and either still have
a certificate of infeasibility or obtain at least as good a lower bound. So we now confine
ourselves to dual vectors that are linear combinations of D(ATg — r), DATBaj, and e;
and have jth component zero.

Let d and [ denote the vectors used in the ellipsoid at the start of the iteration, and
let d and [ correspond to another of the ellipsoids considered in the previous paragraph,
so that they differ from d and [ only in their jth components. Let D, #, and 1 correspond
to these new vectors. Then

ADA" = ADA" + aajal (ADAT)™' = (ADAT)™! + B(ADAT) *ajal (ADAT)™
for some «, 8. Next AD? = ADr + da; for some 4, so that

§ = (ADAT)'ADF = 5 + e(ADAT) ta;
T ~

for some €, and so D(AT¢ — 7) is a linear combination of D(ATy — ), DA” Baj, and e;.
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Similarly, (ADAT)a; = ((ADAT) a; for some ¢, so that DAT(ADAT) a; is a
linear combination of DATBaj and e;. It follows that 5\, like A, is a linear combination
of D(ATy — ), DAT Baj, and e;.

We have shown that any lower bound generated by one of the ellipsoids we have
been considering arises from a dual vector which is a linear combination of these three
vectors, and that moreover, we can restrict our attention to those dual vectors whose jth
component vanishes.

Let us therefore consider a generic such dual vector

A= uD(AT§ — )+ vDAT Ba; + Te;
with A\ = —a; and A\; = 0. The first condition yields
v+m=-—1,

while the second gives
udjfj + l/dj’)/J2 +7=0.

We can now solve the first equation for v in terms of 7, substitute in the second, and
then solve for 7 in terms of u, and thus express A as a linear function of p. Next we find
and sort the m values of  where a component of A vanishes, and then by moving through
the sorted values we find p to maximize the piecewise-linear concave function #(A). This
gives us the desired best lower bound from any of the set of ellipsoids under consideration.
The work for this last phase is O(mInm), while that of the remaining computations (in
particular, of calculating AT Ba;) is O(mn).

(Note: the final A has zero jth component, but this may not be true of A := AA_ 4+ \,.
It may then be possible to improve the lower bound further, as in moving from A to A
above; note that X is not of the form above so such an improvement does not contradict our
argument. This is also why we put “best” in quotes above. It would be possible to compute
the best lower bound achievable from a dual vector as above after the improvement just
discussed, but this would require a one-dimensional search for the maximum of a piecewise-
rational function and would require up to twice as much arithmetical work per iteration,
and so we did not pursue it.)

4 A modified potential function
Let us define

2(A,u) := min max(aly — u;), T(A,u) = |z(A4,u)].
yeR™ ¢

We use 7(A,u) as a condition number for the problem (strictly, its inverse is a condition
number). If P is empty, then every point has some alTy — w; positive, and since z(A4, u)
can be written as the optimal value of a bounded linear programming problem this shows
that z(A,u) is positive. If P is nonempty, and has positive volume, then there is a point
satisfying all constraints strictly, so that z(A,u) is negative. If all constraint normals a;
are normalized, then 7(A,u) is the minimum distance each constraint must be relaxed
to make the problem feasible in the first case (P empty), and the radius of the largest
ball contained in the feasible region in the second (P nonempty). (In [10], all constraint
normals were normalized, but that is not needed in what follows.)
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We use 7;(d, 1) as the semi-width of the ellipsoid E(d,!) in the direction a;:
7i(d, 1) := max{a/ (y — §) : y € E(d, 1)} = \/ f(d,1)a] Ba,. (18)

If P is empty and we have an ellipsoid E(d, ) where the index j with maximal (positive)
al § — u; has vj(d,l) < 7(A,u), it is not hard to see (Proposition 5.2 of [10]) that we can
construct from a dual vector certifying a lower bound for ajTy a certificate of infeasibility.
Thus at every iteration, the OEA of [10] ensures a decrease of not only the volume of
E(d,l), but also a measure that forces an aggregate decrease in the 7;’s. In fact, [10]
requires that the weight vector d is strictly positive, and uses the following upper bounds
on the v;’s (Proposition 7.1 of [10]):

o< (ag)

Then [10] uses the potential function

" dz‘ _1/2 m
d, 1) —Em&x{(Jc(d?l)) ,erlT(A,u)}.

Clearly, ¢ is bounded below, by (m7(A,w)/[m + 1])™, and if we decrease it to this value,
then all ;(d,)’s are below 7(A,u) and we can prove infeasibility. Thus, [10] proves that
¢ decreases by a fixed fraction at every iteration, and hence establishes convergence in
the infeasible case.

One disadvantage of using this function is that it forces all iterates to have d strictly
positive. Here, we suggest a modified potential function that avoids this restriction,
and we give geometric interpretations to both potential functions (and incidentally to the
infeasibility criterion f(d,l) < 0). We simply use the ~;’s directly in the potential function
instead of their upper bounds:

(.0 = [ mas {0, 4 | (19)

=1 +1

In order to prove that this modified potential function decreases suitably at each
iteration, it suffices to prove the following analog of Lemma 7.1 of [10]:

Lemma 1 Letd >0 and I € R™ satisfy f(d,l) > 0, and similarly let d>0andl e R"
satisfy f(d l) > 0. Let 1 < j < m, and suppose that d, I, d, | satisfy:

d= ( L g2 1 >
ran” "\ F@n T m =iy 029)

for a scalar a > mri;l. If v;(d, 1) > (A, u), then

!

<
—~
fa

1) < exp < 2(ml+1)> w(d, D).

Proof: The proof follows that of Lemma 7.1 of [10] (which proves a similar result for
¢ instead of v), using

vi(d) := max {%(d, ), mTi lT(A,u)}

11



instead of

di —1/2 m
wi(d) == maX{(f(d,l)) ,MT(A,U)}.

That proof is quite technical, and its details are not important to the rest of this paper.
We therefore just highlight the differences when using the modified potential function .
First note that (with B as usual denoting (ADAT)~1)

1 ~ 1 2 1
L ADAT = ADAT 4 2L a7
7@ @D ( T a?Baf”aJ)
so that
FdabATY = Lrany (B- —2— 1 Baa? (20)
9 - a ) m _|_ 1 CL;FBG]‘ eyl .
It follows that N
- 1m-—1
o_1m—1 2 , 2
(@0 = (< ()

. 2 < A 2 < 7 A 2
7i(d,1)” < a%(d’ )< m2 — 1%(de)

for i # j. With a few extra arguments to take care of the maxima in the definition of v,
these inequalities yield the desired result as in the proof of Lemma 7.1 in [10], using the

inequality
m—1
m m? \ % < 1
m+1\m?—1 =P\ o+ 1))
a

We conclude this section by giving some geometric intuition regarding these potential
functions, or rather their versions without taking the maxima,

&(d,1) = ﬁ <f(ilzi, Z)>1/2

i=1

and

$(d,1) = [ [l D). (21)
=1

As the product of m terms, these seem to be related to volumes of m-dimensional objects.
This is true for the first, but not quite for the second.

Recall that E(d,!) is an ellipsoid in R™ containing all feasible y’s. Let us view this in
the space of the slacks s := ATy € R™, assuming d > 0. Note that a feasible s satisfies
r—ov <s<7r-+wv,so lies in the ellipsoid

El:={seR™: (s—r)I'D(s —r) <o Dv}.
The volume of this m-dimensional ellipsoid is the volume of the m-dimensional ball times

m d; —1/2
H (vTDv> ’

i=1
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which differs from ¢(d,1) by replacing f(d,1) = vTDv — "Dt (from (14)) by vT Do.
However, note that we are interested in slacks of the form ATy, so we can take a slice of
this ellipsoid of the form

{ATy e R™: (ATy — (ATy - 1))"D(ATy — (ATy — 1)) < v Do},

But since AD? = 0, this quadratic inequality simplifies to (ATy — ATH)TD(ATy — ATg) <
vI'Dv — t1' Dt, so that all feasible slack vectors s = ATy lie in the ellipsoid

E2:={seR™: (s — ATp)TD(s — ATp) < f(d, 1)},

whose volume is exactly <Z>(d, l) times that of the m-dimensional ball.

We remark that these two m-dimensional ellipsoids, E! centered at r and the similar
but smaller one E? centered at AT, are analogous to a globe and the smaller globe
enclosing all points of a given latitude. We also see that f(d,l) < 0 corresponds to the
case that the subspace {ATy} completely misses the ellipsoid centered at r. Finally, if
d has some zero components, then the two m-dimensional ellipsoids become ellipsoidal
cylinders, of infinite volume, while if ADAT is positive definite, their intersection with
the subspace {A”y} is an n-dimensional ellipsoid embedded in R™.

The other (perturbed) potential function, @(d, l), does not appear to be the volume of
an m-dimensional object, but as the product of the semi-widths 7;(d, 1), it can be viewed
as an m-dimensional measure of the n-dimensional ellipsoid E(d, ).

5 The ellipsoid method as coordinate descent and
decrease steps

Let us suppose we have some nonnegative d with ADA”T positive definite and some lower
bounds [ certified by A as in (1). We can then define g, and we stop if this is feasible. So
assume not. Then if f(d,1) < 0, we can construct a certificate of infeasibility as in Section
2. In fact, we may as well also check whether Dt provides a certificate of infeasibility, and
then stop; this may happen even if f(d,1) is positive.

We therefore assume that g is not feasible, and that f(d,l) > 0, so we can scale d to
make f(d,l) equal to 1. We now have an ellipsoid E := F(d,[) that contains P. Standard
ellipsoid methods proceed as follows. First, an index j is chosen so that g violates the jth
constraint: a;‘rﬂ > u;. Then the new ellipsoid is chosen by adjusting d; and possibly [;. We
have seen how to choose the “best” possible value for /;. In this section we concentrate on
updating d; in order to decrease g in (15) (and/or possibly ¢ or ¢). Since we are changing
a single component of d, this can be viewed as coordinate descent, and then we may want
to consider decreasing d; as well as increasing it if this leads to good progress. It turns
out that this is possible if § satisfies the jth constraint handily.

5.1 Decrease steps
Assume we have chosen a particular index j and we have scaled d so that f(d,l) = 1. For

simplicity, we write ~; for v;(d,1). We consider the implications of updating d to

g

dy :=d =d+ —¢€;
+ +(U) + (1 o O—)')’jze'],

(22)
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with o0 < 1. This form is chosen to mesh with previous work: if 0 < ¢ < 1, the resulting
ellipsoid is defined by a quadratic inequality that is a linear combination of that defining
the old ellipsoid (with a weight of 1 — o), and that defining the slice I; < ajTy < wu; (with
a weight of a/’yjz). Now we consider also the possibility of choosing a negative value of
0. Of course, in this case the containment of the intersection of the current ellipsoid and
the slice within the new ellipsoid is not guaranteed, but the containment of the feasible
region is guaranteed as long as d remains nonnegative.

If we choose a negative value of o, there are three particular values we need to consider:
one that reduces d; to zero, one that makes f(d,) equal to zero, and one that minimizes
g(d,l). Note that as o goes from 0 to —oo, o/[(1 — a)yjz] goes from 0 to —7;2, but this is
no great limitation, since by Proposition 4.1 of [3], d; < 7;2, with equality only if making
d; zero makes ADAT singular; moreover, the proposition assures that AD, AT is positive
definite.

Let us determine the effects on g, f and p of making such a change, where o < 1
can be positive or negative. This result is similar to those obtained in [20] and [3], and a
restatement of Proposition D.1 of [10] in our notation.

Proposition 2 Suppose f(d,l) =1 and d; is as given in (22) above. Let

4 Y~ Y tj —vj

T7 —
Gy -l ti+v

o= : = —, B = : : (23)
’YJ 7] 7] ’YJ
Then
Ba;af'B
By = (ADyAT) =B —o—p—, =B ADr =7~ UO;LPBGJ7 (24)
a;j Baj i
and
(8—a) o?

((0) = f(ds,1) = 1 - afo + 7(0)) := plds) = p(d) + (1 — o). (25)

4 1-0’
Note that o and § are convenient measures for the depths of the cuts. The jth constraint
can be written as a < —a]T(y —9)/v; < B. We always have o < 3, while o > 0 signifies
that y violates the jth (upper-bound) constraint. If o« > 1 then the jth constraint fails
to intersect the ellipsoid, and a certificate of infeasibility can be constructed. If a < —1,
then all the points in the ellipsoid satisfy the jth constraint. Similar statements apply to
B with respect to the jth lower-bound constraint.

Proof: First note that AD; AT = ADAT +[o/(1 —a)]ajajT/a]TBaj, so the formula for
By follows from the rank-one update formula, as does the equation det By = (1—o)det B,
which leads to the formula for 7 (o).

Next,
o o
j. = (B-— —BajalB)(ADr + ———rja;
Y+ ( ,ng J%5 ) (1_0)531)
1 o
_ _9 T_
= y—ov; Bajla;y— 1—0Tj+1—arj)
_ _ _ _ _o- _ a+p
= y—ov Z(QJTy—Tj)Baj:y—U’yj *tjBaj =7 — 0o 2 Ba;.
J
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Then
UL (ADL AT )y, = ylAD.r
- —27 T o

J

2
_T T~ —27 T o T~ o y
= y (ADA")y —ov; “tja; §+ ————=rja; § — ———7jt;
e ] (1_0)712]] (1_0,)7?]]
_ _ g _ _ _
= yT(ADAT)y + m(—[l —oltj(t; +rj) + ity + ;) —orjty)
_T TN~ g 2 12 72 _T T\~ o 2
= y (ADA ) g+ ———(r; —t5 +ot;) =y (ADA" ) g+ ———7r
(I=op; /7 7 (1—o)7
Finally,
T _ T g TN, _ 4T g T g 2 2
l D+’U,—l (D—f—me]ej )U—l DU—FWZJUJ—Z DU—FW(T]—’U]),

so that

((0) = FL(AD4AT)gy —1"Dyu

_ _ o _ _ o°
= 7 (ADAT)g — 1T Du + T4 21)]2» — 07, 275? =1-o0v; 2(75? - 1132) + pal 21;32-.

This gives the desired result on noting that 7;2(1?? - sz) = 'yj_l(tj - vj)wj_l(fj +vj) = aff
and 'y;lvj =(f—a)/2. O

5.2 Critical values of o

Now we identify the three critical values of o. First, the value at which the jth component
of d4 (o) hits zero is
d;

oy = ——"—5.
1—d;v;

Second, the value (if it exists) where (o) hits zero, by the proposition above, is a root

of the quadratic
(B —a)? +4af)o? —4(1 + af)o +4 =0,

or

2(1+af) £ VA1 +0p)? —4(a+p)? _ 1+af+/(1-0”)(1-F)
(a+ )2 B (a+p)?

if a+ 0 #0, and
(I+af) ' =1-a)"=01-p)"

if a+ 8 = 0. Note that, if a+ 8 = 0 and o > —1, then this last expression is undefined or
greater than 1 and is not a valid value for o. Similarly, if &+ 8 # 0, we must have |«| and
|B] both at most 1 or both greater than one for the square root to exist. In the former
case 1 + af > 0 and by the arithmetic-geometric mean inequality, the smaller root is at
least 2[1 + a8 — (1 — a?/2 — 32/2)]/(a + B)? = 1. Thus the only time that a meaningful

15
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value of o can give a zero value of ( is when a < —1 and § > 1, and then the root closest

to zero is
1taB+y/(1-a?)(1-5%) .
o¢ = 2 (a+B)? if a+pB#0, .
(1-a?)~! it a+p=0
The last critical value is where n(o) := g(d4 (o)) attains its minimum. Note that

n(o) =nln((o) + n(o), so that

(o) = (1—01)C(U) [n(l —0) (—aﬂ+ < _404)2 (210__:)22> - (1 —afo+ Wﬁi)} '

We see that 7/(0) is negative if a8 > —1/n (so that o should be increased to a positive
value) and positive if af < —1/n (so that o should be decreased to a negative value. We
are interested in values of o less than 1 with {(o) positive, and then 7/(c) is a positive
multiple (1/[4(1 — 0)2¢(0)]) of the quadratic

—(n+ D)o+ B)20% + (2n(a+ B) + 4(1 + aB))o — 4(1 + naf).
If a4+ 8 =0, this is in fact linear, with a root at

_1+naf  1-—np?
T v 1-p7

(26)

Otherwise, if 1 + naf is positive, it has two positive roots, and we would like to increase
o to the smaller, which is

214 naf) +nla+B)*—p
on = (n+1)(a + B)? ’ (21)

with
pi=(4(1 — a®)(1 — B%) + n*(B* — a2)2)1/2 .

These are exactly the formulae given in Todd [20]. If 1 + na/3 is negative, the quadratic
has one positive and one negative root, and we would like to decrease o to the negative
root, which is given by exactly the same formula o, given above.

In the case that 1 + naf is positive, the ellipsoid F(d4(0y)) is the minimum-volume
ellipsoid containing a slice of the current ellipsoid E(d,[), A similar statement is true when
1+ napf is negative, but now involving the two end-pieces of the current ellipsoid.

Theorem 2 Suppose —1 < a < 3 <1, with a > —1 and/or 5 < 1, and let
E.5:={y € E(d,1I): fa]Ty < —a]Tg + aryj or — a]Ty > —a?g + By}

Then if 1 +nafB is nonnegative, the minimum-volume ellipsoid containing Ea[g is E(d,1),
while if 1 +naf <0, it is E(dy(op),1).

Proof: We follow exactly the proof technique in [20]. We first transform to a situation
where E(d,[) is the unit ball and —a; becomes the first unit vector. Then the very same
arguments of Proposition 1 and Theorem 1 of [20] provide lower bounds on the volumes
of containing ellipsoids, since the 2n + 1 or 4n points used in those proofs also lie in the
(transformed) set Ey,g.
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Next, we construct ellipsoids achieving these bounds exactly as in Theorem 2 of [20].
The only difference is that now, if y lies in the (transformed) set E,g, it satisfies yTy <1
and (ely —a)(eTy — B) > 0. We take 1 — o, times the first and add o, times the second
and add. But since the second multiplier is negative, it reverses the sense of the second
inequality and we get a valid less-than-or-equal-to inequality. The rest of the proof is the
same. 0O

Our strategy is now clear. If we choose j giving a8 > —1/n, we should increase o to
oy as given by (26) or (27) above. This is like the usual deep-cut ellipsoid method. On the
other hand, if a8 < —1/n, we should decrease 0. If & < —1 and 8 > 1, we can compute
o¢. If this is at least og, we should decrease o to o¢, and the resulting value of f(d, 1) will
be zero, allowing us to deduce the feasibility or infeasibility of the problem. If this does
not occur, either because o > 1 or 8 < 1 or o¢ < 09, we decrease o to the maximum of
oo and o, as given by (26) or (27) above.

5.3 Guaranteed reduction of volume but not potential

We now give conditions under which a decrease step can guarantee a reduction in the
volume of the ellipsoid.

Theorem 3 Suppose n > 2. Then, if

2 2
af < ——  and max{a,—f} < ——,
n n

there 1s some 6 < 0 with )

g(dJr(&)?l) < f](d, l) - E’

where g is defined in (16). Moreover, either
(a) dy(o¢) >0 and f(di(o¢),l) <0; or
(b) f(ds(o9),l) >0 and vol(E(d4(o¢,l) < vol(E(d,l)); or
(¢) dy(oy) > 0 with f(dy(op),l) >0 and

vol(E(d.(0),1) < exp <—81n> vol(E(d, 1)),

Proof: We will be working with g(d, ), which is twice the logarithm of the volume of
E(d,l), and its upper bound g(d,l). Recall that g(d,l) = nf(d,l) + p(d) — n, so that by
Proposition 2

(6—a) o°
4 1—0

+In(1—0) < —(naﬁ—i—l)a—i—nWaQ

Ag:= g(d4(0),1)—g(d,l) = —nafBo+n

for negative 0. We now distinguish three cases.

If a > —1 and B < 1, then naf +1 < —1 and the last term on the right-hand side
is at most no?, so that the right-hand-side above is at most o + no?, and by choosing
6 = —1/(2n) we see that we can achieve the desired decrease.

Next, if =1 < a < —2/n and 8 > 1 (the argument is analogous if @ < —1 and
2/n<B<1),thennaf+1< -28+1< —Band (8 —a)? < (B+1)% <452, so that
the right-hand side is at most So + nB3%02%, and by choosing 6 = —1/(2n3) we see that
we can again achieve a decrease of at least 1/(4n).
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Finally, if « < —1 and § > 1 and 8 > —a« (the argument is analogous if —a > 3), then
nafB+1<-nB+1and (B—a)? < (28)% = 452, so that the right-hand side is at most
(nfB—1)o +npB%0?, and by choosing & = —(nf3 —1)/(2nB3?), we see that we can achieve a
decrease of at least (n8 — 1)2/(4nB?) = (n —1/8)?/(4n) > (n — 1)2/(4n) > 1/(4n). This
proves the first part.

Next, if o¢ is well-defined and at least o, then (a) holds, and we can establish feasibility
or infeasibility. So assume not. Then if 6 < g, an upper bound on g, and hence one on
g, is decreasing as we move from o = 0 down to g, and it is tight at o = 0, so case (b)
holds. Lastly, assume o is not well-defined or is less than oy, and that & > 0¢. Then
either o, < 09, so that the volume of E(d.(0),[) is decreasing as we move from o = 0
down to oy, and so case (b) holds, or o, > 09, and then

1 1

g(d+(0n),l) < g(d_,_(&),l) < g(d+(&)7l) < g(d’l) - % = g(d,l) - E’

so that case (c) holds. O
Unfortunately, we cannot guarantee a suitable decrease in the potential functions ¢
and 1 for negative o. Indeed, let us suppose all terms p; and v; are defined by their first
arguments. Then to first order, f(d4(0),l) is 1 — afo. All components d;, i # j, are
unchanged, while
(@) _, o
d; (1—0)djv;
and since d; can be arbitrarily close to zero, this ratio can decrease arbitrarily fast as o
decreases. This implies that we cannot control ¢. By Proposition 2, we know

v(di(0),1)? = (1 —0o)3,

However, the best we can achieve for i # j, using the Cauchy-Schwarz inequality, is

%i(d1(0), 1) < (1= o),

and since there are m such terms we cannot guarantee a decrease in v either. Hence
decrease steps do not seem to be possible in the OEA while maintaining complexity
guarantees for the infeasible case.

Suppose we only try decrease steps when the conditions of Theorem 3 hold. Then
the ellipsoid method in the feasible case will enjoy similar theoretical guarantees to those
without such steps. Indeed, in a decrease step, either case (a) holds and we establish
feasibility or infeasibility; or case (b) holds (we call this a drop step) and the volume of
the ellipsoid does not increase; or case (c) holds, and the volume decreases by a factor
similar to that for a “normal” step. Thus we only need to bound the drop steps. But if
d; decreases to zero, it must have been positive because it was one of the original at most
m components of d, or because it was increased from 0 in a previous step (we call these
add steps). Hence the iteration bound is at most multiplied by eight (four because of the
less significant volume reduction, and two because each drop step must be paired with an
earlier increase or add step) and incremented by m.

6 Improving an iteration

In this section we see how the ideas of the previous sections can be incorporated into the
iterations of the SEA and the OEA. Note that both of these include some counter-intuitive
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steps. In the SEA, we first decrease d; to zero before updating the lower bound and then
increasing d; again. In the OEA, we first decrease the lower bound used in the ellipsoid
before updating the ellipsoid, and the value of I; used in the ellipsoid is not necessarily
the best available. Here we remedy these drawbacks and possibly improve the efficiency
of the algorithms without sacrificing any theoretical guarantees.

Note that most ellipsoid updating steps perform a balancing act: the ellipsoid is
squeezed in one direction while growing in other directions, so that the parameters must
be appropriately chosen to obtain an overall decrease in the appropriate measure. This
is doubly so for the OEA, since it seeks to simultaneously decrease the volume of the
ellipsoid and the potential function ¢. However, some changes (analogous to masking in
crowded indoor spaces and getting vaccinated in the time of COVID) are unequivocally
beneficial, involving no trade-offs.

Definition 1 A move from (d,1) to (d,1) is a Pareto-improving step if d > d and f(d,1) <
f(d,1), with at least one inequality strict.

Of course, we are interested in the case that both [ and [ are vectors of valid lower
bounds, and that d > 0.

Let us examine the effect of such a step. By (25), possibly applied repeatedly, p(d)
is reduced, so that g(d,l) is decreased. By its definition, ¢(d,!) is (maybe not strictly)
decreased. And since (24), possibly applied repeatedly, shows that aiTBai decreases for
each 7, ¥(d, 1) is (maybe not strictly) decreased.

Here are some examples of Pareto-improving steps:

a) Increasing d; if v;(d,1) < |t;(d,1)| (ie., if aJTy > uj or a]ng < 1), by (42) in [10];

)

b)

c) Increasing [; if a]ng < uj, also by (48) in [10];
)
)

—~~ o~

Decreasing [; if a]Tg > u; by (48) in [10];

—~ o~

d

[§]

Increasing both d; and [; while keeping a]Tg = u;; and

—

Taking a minimum-volume ellipsoid updating step if 0 in (3.7) of [20] is at most 1,

e.g.,if « > 1/n and =1 (d increases while f(d,[) remains 1).
The only one of these cases that requires proof is (d), but it is crucial to our improve-
ments. Case (b) corresponds to the first step in an iteration of the OEA in [10]; case (c),
completely analogous, could be applied at the end of such an iteration, either increasing /;
to the best certified lower bound or increasing a;‘-ij to u;. Case (e) is included to illustrate
that certain minimum-volume ellipsoid updates, if the parameters are suitable, involve no
trade-offs and will simultaneously decrease the potential functions ¢ and 1. Now let us
examine case (d) in detail.

Proposition 3 Suppose d > 0, with ADAT positive definite, and | is a vector of lower
bounds for the constraints of P. Let the center y of E(d,l) satisfy a?g = u;j where d; > 0,

and let l~j, with [; < l~] < uy, also be a valid lower bound for a?y fory € P. Define

=1

o= dj.

uj—lj

Then, with d:=d+ pe;, I=1+ (l} —1j)ej, E(d,l) also has center § and the move from

(d,1) to (d,l) is a Pareto-improving step.
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(Note that if dj = 0, ¢ = 0 and d is unchanged. Since the ellipsoid does not depend on
the jth constraint, it is unchanged when [ replaces [, so that g and f(d,[) are unchanged
and the conclusion is true except that no inequality in the definition of Pareto-improving
steps is strict.)

Proof: The inequality defining E(d,[) can be written

dj(a]y —uj)(ay —1;) + > di(aly — wi)(aly — 1) <0. (28)
i#j
If we add to this p times
(afy —uj)(afy —uj) <0, (29)
we obtain
(dj + m)(ajy —uy)aly — 1)+ dilaly — wi)(af y = 1;) <0,
i#j
since d
7. 7. K .
J dj—i-,ujerj—F/,Lu]

from the definition of . This is the inequality defining F (cz7 lN) Since § minimizes both the
left-hand side of (28) (uniquely) and the left-hand side of (29), it also minimizes uniquely
the left-hand side of the final inequality, implying that it is the center of E(cz, l~)

It remains to show that f(d,[) is not increased. But using the equation (14), we see
that

£(d, 1) = djv} — d;t5 + > (div] — dify),
i#]

and only the terms indexed by j change. But since aJT;U = uj, we find that v; = ¢; both
before and after the change, and thus in both cases, the two terms cancel and hence f(d, 1)
is unchanged. O

We now outline improvements to the SEA and the OEA. First, we choose the index
j as either one that is maximally violated (maximum (a9 — u;)/7:(d,1) in the SEA or
(aTy — u;)/||a;|| in the OEA), or, for the SEA, an index for which a decrease or drop
step (Section 5) would be worthwhile. Next, if we choose a violated constraint, we can
use the technique of Section 3 to either generate a lower bound at least as good as those
in previous algorithms, or obtain a certificate of infeasibility. We can then proceed as
follows.

For the SEA, instead of decreasing d; to zero, we first take a Pareto-improving step
of type (a) to decrease ajng to uj. Using (24), we see that we should replace d by d (o),
where

T_
U':Qajy—uj
(a+ B)v;

Next we can take a Pareto-improving step of type (d) to increase both d; and [}, increasing
the latter to the bound found in the previous paragraph. Finally, we take a usual ellipsoid-
updating step from the current ellipsoid, increasing d; to minimize the volume of the new
ellipsoid.

It is worth noting that exactly the same ellipsoid would have been obtained by first
decreasing d; to zero, then updating [; to the “best” lower bound, and then taking a
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usual ellipsoid-updating step, since with the same updated [;, there is only one volume-
minimizing d;. However, we find the three-step procedure described above more intuitive,
and it paves the way for our improvement of the OEA.

In [10], the first step of the OEA is to decrease [; until a]ng = uj, and then take an
ellipsoid-updating step, finally adjusting /; to correspond to the final ellipsoid. The result
is that [; will rarely be the best lower bound found. As an alternative, we can perform the
first two steps of the modified SEA described above, resulting in [; being the best lower
bound found and the equality a?g = u;j. (An alternative, which will lead to exactly the
same ellipsoid, is to decrease [; until a?g = u;, and then take a Pareto-improving step of
type (d), increasing both d; and [;, until /; reaches the best lower bound, but we prefer
the first motivation.) We can then replace d by d (o), where

2
m+1

Since a = 0 and 5 < 1 (we use a bound no less than that given by the current ellipsoid)
(24) gives

m2

1
f(d-i-vl)él—i_mz_l - m2_17
and so Lemma 7.1 of [10] and Lemma 1 above assure us that we obtain a suitable decrease
in ¢ and 9. Indeed, we can do slightly better. Note that In ¢(d(c),1) is bounded by an
expression like g(dy(0),1), but with m replacing n. We can therefore use a value for o

that is like o, in (27), but with m replacing n, and then we get a reduction at least as
good as that from o = 2/(m+1) as above. The proof parallels that of Lemma 7.2 in [10].

7 Computational results

Here we give the results of some preliminary computational testing.

7.1 Problem generation

We consider problems of sixteen different sizes. The number of variables, n, is 60, 125,
250, or 500; the number of inequalities, m, is either 1.4, 2, 2.8, or 4 times n (photographers
of a certain age may recognize these numbers). For each such pair n, m, we generate ten
feasible problems and ten infeasible problems as follows.

For feasible problems, we first generate A as an n X m matrix with independent stan-
dard Gaussian entries. We then generate an n-vector yo whose entries are each 100 times
a standard Gaussian random variable, again all independent. Finally, we set u as ATyq
plus a vector of ones, so that yq is feasible.

For infeasible problems, we start by generating A and yo as above. We then generate
a vector x of m independent uniform random variables in [0, 1], and replace A by A —
(1/eTx)AxeT | with e an n-vector of ones, so that Az = 0. We set u equal to Ayg plus
an n-vector of independent standard Gaussian random variables, and then replace u by
—u if uTx > 0. Then x certifies the infeasibility of the system ATy < u, but the (now
infeasible) region is again somewhat centered about yg (or the similarly distributed —yg).

In either case, we apply our algorithms to the system ATy < wu, without knowing
whether or not it is feasible, hoping to generate either a feasible solution or a certificate
of infeasibility.
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7.2 Obtaining the initial system

We investigated three ways to convert a problem generated as above to a form suitable
for our algorithms, hence with bounds on the variables.

7.2.1 Big M initialization

The simplest method is just to augment the constraints A7y < u with bounds —Me < y <
Me, where e is an n-vector of ones and M is a large constant. While this method has no
theoretical justification, we include it to compare our other methods to, and also because
it serves as the basis for the two-phase method below. We typically use M = 10,000
which is large compared to the expected size of a component of y, of the order of 100
for problems generated as above. Hence we do not expect to render feasible problems
infeasible by adding these bounds. Similarly, if we generate a certificate of infeasibility,
we expect it to involve only the original constraints of the system, not the added bounds.
These expectations held true in our experiments. We also tried other values of M to
determine how it affected the performance of the algorithms.

7.2.2 Freund-Vera initialization

The second method is to introduce an additional variable to homogenize the problem, as
in Freund and Vera [5] . Thus we replace ATy < u by

ATy —un<0, -n<o.

(We actually want a solution with 7 positive, so that y/n will solve the original system.)
With this homogeneous system, we can add arbitrary bounds, so we require —e <y < e,
with e as above, and n < 1 (we already have a lower bound of 0 on 7). Note that the
system above is always feasible, with y and 1 both zero. If we happen to hit this solution,
we do not terminate, but continue, pretending the constraint —n < 0 is violated. If we
find a feasible solution with 7 positive, we have a feasible solution to the original system.
We could also find a weak infeasibility certificate, a vector satisfying all the requirements
except that the strict inequality is satisfied weakly, at equality. Then, since all the added
upper bounds (y < e, —y < e, n < 1) have right-hand sides 1, the weights on all of these
must be zero. It follows that we have x, £ satisfying

Ar =0, —ulz—£=0, >0,£>0.

If in fact ¢ is positive, then Az = 0, ulz = —¢ < 0, and = > 0, so we have a certificate
of infeasibility for the original system. (In addition, the system above with £ > 0 is the
alternative system for the homogeneous system with —n < 0.) If not, at least we have a
weak infeasibility certificate.

Use of a homogeneous system is very attractive in eliminating the need to add artificial
bounds and determine appropriate values to be used, but the approach also has disadvan-
tages. If the original system is infeasible, then the corresponding homogeneous system is
on the boundary between feasible and infeasible systems, so its condition number is in-
finite. More practically, it is clearly necessary computationally to choose tolerances very
carefully, to estimate whether an inexact solution is close enough to feasibility and has 7
sufficiently positive to claim we have found a feasible solution to the original system, and
to estimate whether an inexact infeasibility certificate has £ sufficiently positive to claim

22



we have determined infeasibility of the original system. This caused very few problems for
the algorithms where decrease of weights d; was allowed, but if not, it was obviously hard
to generate certificates with zero or close to zero weights on the added bounds, since these
are obtained from Theorem 1 or from lower bound weights and usually involve constraints
with positive d;’s. Hence a number of infeasible instances mistakenly were judged feasible.

7.2.3 Two-phase method

Finally, we discuss a technique that is based on the fact that we really want to let our
big M tend to infinity, and the observation that the algorithms are quite insensitive to
its size. What happens as M grows to infinity? Scaling and then taking the limit, we are
led to the phase-1 problem

ATySO, —e<y<e.

We can apply the SEA or the OEA to this system. If we find a point with ATy < 0, we
can scale it to find a point satisfying ATy < w, our original system. If instead, ATy < 0
but with equality in at least one component, we choose such an index j and continue
the iterations as if the constraint were strictly violated. Finally, we may obtain a weak
certificate of infeasibility, that is, a vector (z,Z, ) satisfying (x,Z,%) > 0, Az + & — & =
0, e’# +eT2 < 0. Then it is easy to see that the weights (,#) on the added bounds are
zero, so that Az = 0, z > 0. However, this does not give a weak certificate of infeasibility
for the original system, because u has been ignored. By examining the different cases of
infeasibility certificates in Sections 2 and 3, we see that x; being zero usually implies that
d; is zero, unless either an unlikely coincidence occurs, like ajng = r; in Theorem 1, or
xj is zero because of our search of the piecewise-linear function #()) in Section 3. In the
latter cases, if d; is positive and j corresponds to a bound, we ignore the certificate and
continue the iterations. However, if all positive d;’s correspond to original constraints
with x; positive, then we can use this d to generate a starting ellipsoid for the original
system. Indeed, we can use Az = 0, z > 0 to generate lower bounds /; for every j with x;
positive. We then have upper and lower bounds for every constraint with d; positive, and
this gives our ellipsoid F(d,[). We do not have lower bounds for the remaining constraints,
but these can be generated when such a constraint is chosen as violated. We now move to
phase 2, applying the algorithm to the original system starting with E(d,[). Notice that
again we have to be careful in setting our tolerances in order to recognize weak certificates
of infeasibility, and we might occasionally obtain false indications of (in)feasibility due to
numerical inaccuracies.

For phase 1 to terminate, we need to be able to reduce the weights d; on the added
bounds to zero or to negligible values compared to the rest. This is very hard for algorithms
that never decrease weights, and so we only use this method for variants of the SEA that
allow decrease and drop steps.

7.3 Experimental results

We ran several versions of our algorithms to investigate the separate effects of our new
lower bounds and of allowing decrease and drop steps. We give detailed results for three
versions of the SEA and one version of the OEA, and make some comments about our
other findings.

For the OEA, to maintain the theoretical guarantees of [10], we need to choose the
violated constraint j with the largest (a?g — uj)/||la;||. Having chosen j, we perform the
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iteration as described at the end of Section 6, including the acceleration in the last para-
graph. For the SEA, we compute jyax and juin maximizing and minimizing (a]ng—uj) /5
respectively, with the second search confined to those j’s with positive d;. We first consider
J = Jmin. If the resulting aupin and By from (23) satisfy a5 < —2/n and dropping j would
keep ADAT positive definite and not increase the volume of the ellipsoid, we perform a
drop step with this j. We prioritize drop steps to remove redundant constraints and, in
the case of the big M or 2-phase methods, to remove bounds. If we cannot use a drop
step, we calculate auax and Bpax from (23) for j = jmax and then choose an add/increase
step for jmax or a decrease step for jyin according as min(1, amayx) min(1, Smax) is further
from or closer to —1/n than max(—1, i) min(1, Smin). Having chosen j, we complete
the iteration as described in Section 6.

The average numbers of iterations for the SEA are given in Table 1. Several obser-
vations can be made. For all the initialization methods, the lightly constrained feasible
problems were the easiest to solve, followed by the infeasible problems and then the more
highly constrained feasible problems. For some reason, for the big-M and two-phase
methods, the feasible problems with m = 2n were harder to solve than the more highly
constrained problems. For infeasible problems, all methods were comparable, with the
number of iterations very highly correlated with the dimension n but seemingly indepen-
dent of the number m of constraints. For feasible problems, the methods differed quite a
bit, but there was no clear winner. These observations are confirmed by fitting power laws
to the data. For example, for the Freund-Vera initialization on feasible problems, the best
fit was .08m!' 2, while for infeasible problems it was .19n!"®. The combination of deep
cuts, improved lower bounds, and decrease and drop steps seems to have dropped the
exponent from the worst case quadratic level to between 1.7 and 1.8, but this is nowhere
near the linear rate necessary to compete with pivoting (or interior-point) methods. To
highlight this, Table 1 also includes the average number of iterations required on the same
problems by the linprog routine in MATLAB, using the dual simplex option and solving
max{fTy : ATy < u} with f identically zero. These are better by a considerable factor,
particularly on the larger problems, and the iterations are no more costly.

When we modified the SEA to use the lower bound suggested in [3], the results varied
from 3% faster to 50% slower; the geometric mean of the ratios was 1.20. The results are
given in Table 2. Next we used the best bound, but eliminated decrease and drop steps.
For this comparison, we restricted ourselves to the Freund-Vera and big M methods. The
increase-only algorithm varied from 7% faster to 249% slower, with a geometric mean of
the ratios of 1.93. The full results appear in Table 3. We conclude that the improved
lower bound had only a slightly beneficial effect, but that decrease and drop stops are
very advantageous.

We also investigated the effect of the value of M in the big M method. We only looked
at the problems with n equal to 60, 125, or 250. Since theory suggests that the number of
iterations might grow linearly with log M, we might expect a growth of 33% if we increase
M from 1000 to 10,000, and 25% more if we further increase it to 100,000. However, the
number of iterations for M = 10,000 ranged from 2% faster to 15% slower compared to
that for M = 1,000 for feasible problems, with a geometric mean of the ratios of 1.06,
while for M = 100,000, the algorithm ranged from 1% faster to 16% slower, with the
geometric mean of the ratios still 1.06. For the infeasible problems, the effect was even
smaller: all the numbers were within 3%. We conclude that the effect of M is marginal,
at least when using the SEA with its decrease and drop steps.
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The average numbers of iterations for the OEA are given in Table 4. We see that
these are distinctly worse than those for the SEA, although given the compromises made
in the original OEA we feel that the fact that results are of the same order as for the
SEA shows the value of the improvements described in Section 6. Some runs terminated
with numerical problems: either the lower-triangular Cholesky factor of ADAT became
close to singular, or ADAT itself was judged not sufficiently positive definite during a
refactorization, called for when inaccuracies in updated quantities became noticeable.
Here we make two comparisons. The first is with the increase-only variant of the SEA
of the previous paragraph. We find that the OEA results are between 7% faster and
207% slower (discounting the runs that terminated with numerical problems), with the
geometric mean of the ratios being 1.97. Secondly, we wondered whether part of the poor
performance of the OEA was due to its selecting the index j based on scaling by the norm
of a;, rather than by its ellipsoidal norm «;, which would lead to a deeper cut. So we
changed to selecting j in the latter way. Compared to this variant, the OEA results varied
from 5% faster to 18% slower (ignoring the runs that terminated with numerical problems
or that ran into the iteration limit). We conclude tentatively (due to the numerical
problems) that choosing j to maintain theoretical guarantees has only a small effect.

Overall, we feel we have given ellipsoid algorithms for linear inequalities that iterate
a sequence of containing ellipsoids, choosing one index j and only updating the corre-
sponding weight d; and lower bound [;, the very best chance to show their potential,
and they have come up wanting. Even the most sophisticated coordinate-descent method
must suffer compared to a gradient- or higher-order-based algorithm, and the speed of
the resulting iterations due to simpler linear algebra is unable to compensate. In high
dimensions, the decrease in the volume of the ellipsoid (and of the potential function) is
just too slow to be competitive. One might hope that the sequence of ellipsoids generated
would resemble a balloon blown up and then released, rushing round the room and rapidly
reducing its volume; instead, one is left with the image of a large soap bubble blown to
amuse a child, which vibrates charmingly in one direction and then another, but seems
not to get smaller — until it pops!

Acknowledgement The author would like to thank Jourdain Lamperski and Rob
Freund for very helpful conversations, and two anonymous referees for their detailed and
constructive comments.

25



SEA Freund-Vera Big M Two-Phase Dual Simplex
Initialization Initialization Method Algorithm

n \ m | Feasible \ Infeasible | Feasible \ Infeasible | Feasible \ Infeasible | Feasible \ Infeasible
60 84 168.1 294.4 223.4 293.4 230.1 298.6 44.2 73.4
60 | 120 448.7 283.0 589.2 283.5 587.0 283.5 62.0 83.9
60 | 168 575.1 291.7 569.7 290.1 422.5 289.9 73.3 83.2
60 | 240 574.6 298.4 587.3 302.3 426.3 301.3 83.2 86.3
125 | 175 477.5 1012.5 566.7 1029.6 565.9 1044.9 103.2 165.2
125 | 250 1690.2 1020.2 | 2076.9 1017.2 | 21424 1011.7 146.4 190.3
125 | 350 | 2334.0 1031.3 1648.3 1039.3 1384.2 1032.8 172.5 196.2
125 | 500 | 2209.8 1082.3 1661.7 1079.4 1415.1 1080.4 206.1 206.4
250 | 350 1143.8 3571.5 1224.3 3551.1 1256.1 3567.1 236.4 360.9
250 | 500 | 7216.6 3473.3 | 6848.7 3468.2 | T424.4 3468.2 329.6 417.8
250 | 700 | 8766.8 3547.2 | 4819.0 3537.8 | 4518.0 3545.2 397.9 446.9
250 | 1000 7647.5 3736.0 | 4888.8 3728.3 | 4561.9 3732.1 476.3 455.2
500 | 700 | 2521.9 12951.1 2648.3 12941.7 | 2602.3 12977.2 535.7 769.6
500 | 1000 | 26069.4 12487.0 | 30432.2 12460.8 | 31015.1 12495.3 736.7 906.6
500 | 1400 | 31222.7 12627.1 | 15896.6 12633.9 | 15805.4 12632.8 899.8 923.8
500 | 2000 | 30540.2 13128.0 | 15958.0 13144.6 | 15675.3 13139.8 1139.3 985.4

Table 1: Average Number of Iterations for the Standard Ellipsoid and Dual Simplex Algorithms.
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OEA Freund-Vera Big M
Initialization Initialization
n \ m | Feasible \ Infeasible | Feasible \ Infeasible

60 84 155.3 1938.9 302.8 1530.6
60 | 120 545.6 1920.77 | 2417.4 1513.3
60 | 168 621.6 kx| 99935 1661.5
60 | 240 623.8 2424.6 | 2331.7 1936.9
125 | 175 476.9 6927.4 681.3 5752.7
125 250 | 2640.8 6775.7 | 9939.3 5553.1
125 350 | 3212.9 7190.6 | 8119.6 5943.0
125 | 500 | 3632.7 8170.7 | 8334.9 6900.5
250 | 350 | 1060.6 | 24583.9" | 1335.9 | 20656.7
250 | 500 | 10656.3 | 22527.6 | 35910.7 | 19230.9
250 | 700 | 13255.5 | 23553.7 | 28108.1 | 20433.9
250 | 1000 | 14967.7 | 26418.2 | 28531.3 | 23466.8
500 | 700 | 2220.8 ik | 96255 | 74527.0
500 | 1000 | 39625.3 | 76003.3" | 89640.3 | 67401.3
500 | 1400 | 53417.8 | 79077.7" | 98419.0 | 70930.6
500 | 2000 | 61351.9 | 88321.6 | 98719.9 | 80721.8

Table 4: Average Number of Iterations for the Oblivious Ellipsoid Algorithm. * At least one
run terminated for numerical reasons.  One or two runs gave false indications of feasibility.
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