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Definition

1. state space X
2. sets of available actions A(x) at each state x

3. one-step costs c(x , a): incurred whenever the state is x and
action a ∈ A(x) is performed

4. transition probabilities p(y |x , a): probability that the next
state is y , given that the current state is x & action a ∈ A(x)
is performed

Initial Distribution

State x0 x1 x2 x3 · · ·p(x1|x0,a0)
a0

p(x2|x1,a1)
a1

p(x3|x2,a2)
a2
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Policies & cost criteria

A policy ϕ prescribes an action for every state.

Common cost criteria:

I Total (discounted) costs: for β ∈ [0, 1],

vϕβ (x) := Eϕx
∞∑
n=0

βnc(xn, an)

I Average costs:

wϕ(x) := lim sup
N→∞

1

N
Eϕx

N∑
n=0

c(xn, an)

Optimal policy: minimizes the cost criterion for every initial state.
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Example: Gambling

You want to increase your fortune from s dollars to S dollars by
repeatedly playing this game:

I You can bet any amount a not exceeding your current fortune.

I If you win, your new fortune is s + a; if you lose, your new
fortune is s − a.

I You win with probability p, and lose with probability 1− p.

I Play stops when your fortune is 0 or S .

Goal: Maximize the probability that you get S dollars.
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Computing optimal policies

Solving an MDP = computing an (ε-)optimal policy

3 main approaches:

1. Value iteration (VI) (Shapley 1953)
I Iteratively approximate the optimal costs from each state.

2. Policy iteration (PI) (Howard 1960)
I Iteratively improve a starting policy.

3. Linear programming (LP) (early 1960s)
I Compute the optimal frequencies with which each state-action

pair should be used.

They’re closely related:

I PI is a simplex method for the LP (Mine & Osaki 1970)

I VI is a primal-dual method for the LP (Cogill 2016)
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Applications

First (?) application of MDPs: Sears mail-order catalogs (∼1958)

Ronald A. Howard (1978):

... my one successful application was the original
application that sparked my interest in this whole
research area.

Some others:

I Operations Research: inventory control, control of queues, vehicle
routing, job shop scheduling

I Power Systems: voltage & reactive power control, control of
storage devices, electric vehicle charging, bidding in electricity
markets

I Healthcare: medical decision making, epidemic control

I Finance: option pricing, portfolio selection, credit granting

I Computer Science: wireless sensor networks, cloud computing,
reinforcement learning
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MDPs & pure mathematics

Ronald A. Howard (1978):

The Markov decision process and its extensions have now
become principally the province of mathematicians.

Borel-space MDPs: Blackwell (1965), Strauch (1966)

→ connections to descriptive set theory: see e.g. Bertsekas
& Shreve (1978), Dynkin & Yushkevich (1979)

Motivated counterexamples on:

I theory of Borel sets, semicontinuity of minimum functions

and new results on:

I extensions of Berge’s Theorems & Fatou’s Lemma

I convergence of probability measures, solutions of
Kolmogorov’s equations

8 / 17



Application: Hamiltonian cycles

Problem: Is there a cycle that visits every vertex exactly once?

I One of Karp’s (1972) 21 NP-complete
problems.

I Can be formulated as a constrained
MDP (Filar & Krass 1994, Feinberg
2000).
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Application: Source coding

Problem: How to compress & de-compress data?

From Claude Shannon’s “A Mathematical Theory of Communication”.

I Can be formulated as an MDP (e.g. Linder & Yüksel 2014)
I Minimize average distortion between original and reconstructed

data.
I Related to approximating policies for MDPs with infinite state

spaces (Saldi Linder Yüksel 2015).
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Application: Reinforcement learning

Problem: How can an agent learn to perform well in an unfamiliar
environment?

I MDPs provide a modeling framework

I Use simulation to learn about the environment

I Function approximation is used to deal with complex
environments
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Application: Deep reinforcement learning

See Mnih et al. 2015.
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Research direction: NP-mightiness

Definition

An algorithm is NP-mighty if it can be used to solve any problem
in NP.

I The simplex, network simplex, and
successive shortest path algorithms
are NP-mighty (Disser & Skutella
SODA ’15).

I Stronger result using MDPs:
I Policy iteration (i.e. a simplex

method) can be used to solve
any problem in PSPACE ⊇ NP
(Fearnley & Savani STOC ’15).
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Research direction: Interior-point methods

They’ve played an important role in complexity theory:

I First practical polynomial-time algorithm for linear
programming (Karmarkar 1984).

I First strongly polynomial-time algorithm for MDPs (with a
fixed discount factor) (Ye 2005).

They seem to work well for MDPs:

I Outperformed policy iteration on
test problems and a real-life
healthcare problem (Alagoz Ayvaci
Linderoth 2015).

They can also be used to solve
stochastic games (Hansen &
Ibsen-Jensen 2013).
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Research direction: Primal-dual methods

An old approach to solving linear programs (Dantzig Ford
Fulkerson 1956).

Well-known in combinatorial optimization:

I Hungarian algorithm for the assignment problem

I Dijkstra’s algorithm for shortest paths

I Ford-Fulkerson algorithm for maximum flows

Recent work on discounted MDPs (Cogill 2016):

I Includes several forms of value iteration as special cases.

I Leads to an alternative finite algorithm for MDPs.
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