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Overview

» Markov Decision Processes (MDPs) provide a framework
for modeling and guiding sequential decision making under
uncertainty.

» Application areas include Operations Research, Statistics,
Economics, Artificial Intelligence, and Finance.

> Recently, there has been renewed interest in the complexity
of algorithms that solve (i.e. find an optimal policy for)
MDPs with finite state and action sets.

» |n this talk, we
» survey what is known about the complexity of solution
algorithms, and
» outline directions for further work.
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Model Definition

> A finite state and action MDP is defined by
> a set of states X ={1,2,...,n},
> a set of actions A = {1,2,..., m} and sets of actions
A(x) C A available in each state x € X,
» one-step rewards r, where r(x, a) is the reward earned
whenever action a € A(x) is performed in state x, and
» transition probabilities p, where p(y|x, a) is the probability
that the process transitions to state y given that action
a € A(x) is performed in state x.
> At each time step t =0,1,...
the process is in some state x; € X,
an action a; € A(x;) is performed,
a reward r(x;, a;) is earned, and
the state at time t + 1 is y € X with probability p(y|x:, a;).

» For each time step t, a (randomized) policy 7 specifies the
probability with which each action a € A(x;) is performed,
given the history xpapxi1ai ... Xxt—1a:_1x: of the process up to
time t.

vV vyVvyy
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Optimization

» Given an MDP, we want to find a policy that is optimal over
the set of all policies M* in some sense.

> Most of the recent complexity results consider the
infinite-horizon total discounted reward criterion:
» Each initial state x and policy 7 defines a stochastic sequence
Xodpx1a1 - .. with associated expectation operator E7.
» Given a discount factor 3 € [0,1), the infinite-horizon
discounted total reward earned starting from state x under the
policy 7 is

o0
vs(x,m) £ ET Z Brr(xe, at)-
t=0
» A policy 7* is optimal under this criterion if

vg(x, ") = sup vg(x,m), forall xeX.
wenk

» Another commonly used criterion is the long-run expected
average reward per unit time (which we'll consider later).
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Finding an Optimal Policy

v

A policy ¢ is stationary if for each x € X it specifies the
action to be performed whenever the process is in state x,
regardless of how the process got there.

» The set I° of stationary policies can be identified with the set
of mappings ¢ : X — A satisfying ¢(x) € A(x) for all x € X.
It is well-known that, if the state & action sets are finite, then
there exists a stationary optimal policy.

Two classical algorithms that return a stationary optimal
policy after a finite number of iterations are value iteration
(Shapley 1953, Bellman 1957) and policy iteration (Howard
1960).

Linear programming can also be used (Manne 1960, de
Ghellinck 1960, d'Epenoux 1963).

» Policy iteration is equivalent to using the simplex method to
solve a certain linear program.



Complexity of Algorithms for MDPs

» An algorithm for solving an MDP is (weakly) polynomial if
the required number of arithmetic operations is bounded
above by a polynomial in the number of actions m (> n) and
the bit-size L of the input data.

» If the requisite number of iterations is bounded by a
polynomial in m only, the algorithm is strongly polynomial.
» We'll now consider both upper and lower bounds on the
number of arithmetic operations required in the worst case for
» value iteration,
» policy iteration, and
> the simplex method.
After that, we'll consider some recently proposed algorithms
that are strongly polynomial under certain conditions.

6
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Value lteration: Preliminaries

» A contraction mapping on a metric space (X, d) is a
mapping A : X — X such that for some 5 € [0, 1) every
u,v € X satisfies d(Au, Av) < Bd(u, v). Here [ is called the
modulus of the contraction mapping.

» A fixed point u of a mapping A satisfies u = Au.

» The Banach fixed-point theorem states that if (X, d) is
complete (i.e. every Cauchy sequence converges), then any
contraction mapping A on (X, d) has a unique fixed point u*,
and that for each v € X and natural number n,

B
1-p

d(u*,A"u) < d(Au, u).

This means that for any u € X, the sequence {A"u}%°
converges geometrically to u*.

~



Value lteration: Preliminaries

» Let B(X) be the set of real-valued functions on the state
space X, and let the max-norm be defined for u € B(X) by
Julloo = maxyes |u(x)].

> It's well-known that the mapping T : B(X) — B(X) defined
for u € B(X) by

Tu(x):max{ xa+ﬁZp ylx,a)u(y)}, xeX,
acA(x)
yeX
is a contraction mapping with modulus 8 on the complete
metric space (B(X), || - ||c), implying it has a unique fixed
point u* and that { T"u}%°, converges geometrically to u*
> It's also well-known that the value function

Vs(x) = sup vg(x,m), xé€X,
menRk

is a fixed point of T. Hence|u™ = Vj.




Value lteration

» For any stationary policy ¢, let T, : B(X) — B(X) be defined
for u € B(X) by

Tou(x) = r(x,6(x)) + 8> plylx, o(x))u(y), xeX.
yeX

» The value iteration algorithm

1. takes any initial estimate V4 of the value function at each
state x,

2. iteratively applies T to V (i.e. generates the terms of the
sequence { T"V}52,) N times, and

3. given the terminal estimate Viy £ TNV;, outputs a stationary
policy ¢ satisfying Ty Vy = TVy.

» The number of iterations N to perform is often determined by
a stopping rule that gives a lower bound on the performance
of ¢.

> It's well-known that when the state & action sets are finite,
then after some finite number of iterations the returned
stationary policy ¢ is optimal.

34



Value lteration: Upper Bound

» Let N* be the smallest number of iterations needed for value
iteration to return an optimal policy.

» Tseng (1990) showed that given rational input data with a
total bit-size of L,

NF < nL+nIog2(n)'
S~ 1.5

» This was done by deriving an upper bound for how small
[IVs — Vi|loo has to be in order for the returned policy ¢ to be
optimal, and using the fact that

6,\’
Vs = Vil < 5 1Vi — Vol

» This shows that for a fixed discount factor, value iteration
is weakly polynomial.
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Value lteration: Lower Bounds

» Littman, Dean, & Kaelbling (1995) exhibited a 3-state MDP

where ) ) )
N> == | — ).
=2'1-5 °g2<1—5)

> Feinberg & Huang (2014) exhibited a similar 3-state MDP
where if exact computations are allowed, then N* may grow
arbitrarily quickly with the number of actions.
» In particular, given the positive integer k, their example has
m = k + 3 actions. They show that given any increasing
sequence {M;}2; of natural numbers,

M
N* > .
— —In(B)
For example, if M; =2/ for i = 1,2, ..., then
2k 2m
N* > = .
= Zin(3)  —n(3)- 2
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Policy Iteration: Evaluating a Stationary Policy

» Under a stationary policy ¢, the MDP becomes a Markov
chain with rewards, where the probability that the process
transitions to state y from state x is p(y|x, ¢(x)).

> Let / be the n x n identity matrix, and let Py be the
transition matrix of the Markov chain associated with ¢.

> Let vy € B(X) be such that for x € X, vy(x) = va(x, ¢).
> Let ry € B(X) be such that for x € X, ry(x) = r(x, #(x)).
> It's well-known that

= B'Piry=|(I — BPy) try.
t=0

» Also, vy is the fixed point of the contraction mapping T.
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Policy Iteration: Improving a Stationary Policy

> Let ¢ be a stationary policy.
» Suppose there's a state x* and a stationary policy ¢ such that

Ty ve(X™) > vp(x™).

Then vy (x*) > vy (x*).

» Suppose ¢* satisfies
Tovg(x) < vge(x), forall ¢ €N, xeX.

Then vs(x) < vg(x) for all x € X and ¢ € M. Since there is
a stationary optimal policy, this means ¢* is optimal.
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Policy lteration

» Policy iteration (Pl) begins with any stationary policy ¢, and
proceeds as follows:
1. Calculate vy = (I — BPy) try.
2. Try to improve ¢ by checking, for each state x, whether
there’s an action a € A(x) satisfying

r(x,a)+ 83 plylx, a)valy) > vo(x). (1)
yex
3. If yes,

3.1 for each x™ € X where (1) holds for some action, let )(x™) be
any action satisfying (1) when x = x™. For all remaining
states x, let ¥(x) = ¢(x).

3.2 Replace ¢ with ¢ and go to step 1.

4. If no, then ¢ is optimal.

> In step 3.1, we may have a choice as to what action to switch
to in a given state x*.

» For any ¢ and its improvement v, v, > vy, since
IM°| < m" < oo, this means Pl terminates after a finite
number of iterations.
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Policy Iteration and Linear Programming

> Let e denote a vector of all ones, and let [r]., = r(x, a),
[Wxay £ xy, and [Plxay = p(y|x, a).
» Consider the linear program (LP)

max p'r

P
st. pT(J—pgP)=e', p>0. (Ps)

» It's well-known that there's a 1-1 correspondence between
stationary policies and basic feasible solutions to this LP.

> Using the simplex method to solve this LP corresponds to
applying policy iteration; note that the reduced “cost”
vector for any basis ¢ is

Fo=r—(J—BP)I —BPs) try = r+ BPvs — Juy,

and 74(x, a) > 0 iff. ¢ can be improved by using action a
instead of ¢(x) in state x.
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P1/Simplex: Pivoting Rules

» Each rule for updating the current policy’s selected actions
during Pl corresponds to a pivoting rule for the simplex
method applied to the LP (Pg).

» Two commonly used rules:

» Dantzig’'s (1947) rule, where the variable with the most
positive reduced cost enter the basis.

» Howard’s (1960) block pivoting rule, where for each state x*
such that 7, (x*, a) > 0 for some a € A(x), a variable p(x*, a*)
where

a* € argmaxTgy(x*, a)
acA(x*)
enters the basis. This rule
» corresponds to updating ¢ to some v satisfying Ty vy = Tvy,
> always pivots the variable Dantzig's rule would've selected into

the basis, but
> might not be justified for general LPs.

16
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P1/Simplex: Upper Bounds (Discount Factor Dependent)

» Let N* denote the number of iterations Pl/simplex needs to
return an optimal policy.

» Note that the number of arithmetic operations required for
each iteration of Pl/simplex is at most proportional to nm
(single pivot per iteration) or n?m (Howard's rule).

» Meister & Holzbaur (1986) showed that under Howard's rule,

. nL
— log(3)

for some constant C, and hence that for a fixed discount
factor, Pl/simplex with Howard's rule is weakly polynomial.

N* < C
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P1/Simplex: Upper Bounds (Discount Factor Dependent)

> Ye (2011) showed that under both Dantzig's and Howard’s

rule,
Vs lm=n) [1%'” <1rfﬁﬂ |

» Hansen, Miltersen, and Zwick (2013) improved Ye's bound for
Howard’s rule by a factor of n:

N*S(m—”)hiﬁln(lfﬁﬂ’

and extended it to strategy iteration for 2-player turn-based
stochastic games.

» Scherrer (2013) got rid of the In(n) term in the bound for
Howard’s rule:

N*S(m_”)[liﬁ'%liﬁﬂ'
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P1/Simplex: Upper Bounds (Discount Factor Dependent)

» Scherrer (2013) also showed that under Dantzig’s rule,

N*S(m_”)'”[lfﬁ'”@iﬁﬂ‘

» In summary, under Howard’s rule

. m 1
N _O<1—ﬁlog<1—ﬁ>>’

while under Dantzig’s rule

. nm 1
v-o(5(75)).
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P1/Simplex: Upper Bounds (Strongly Polynomial)

» Post & Ye (2013) showed that, if all transitions in the MDP
are deterministic, then under Dantzig's rule

N* < C - n*m?log?(n)

for some constant C.
» Hansen, Kaplan, and Zwick (2014) improved this bound by a
factor of n.

» Even & Zadorojniy (2012) showed that for MDPs satisfying a
coupling property (e.g. controlled discrete-time M/M/1
queues), then under the Gass-Saaty (1955) shadow vertex
pivoting rule

N* < m.

» Pl/simplex with the Gass-Saaty rule is equivalent to an

algorithm proposed by Zadorojniy, Even, and Schwartz (2009).
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P1/Simplex: Upper Bounds (Indep. of both 3 and L)

» Mansour & Singh (1999) showed that if m = max,cx |A(x)],
then under Howard’s rule

N*Sc.i
n

for some constant C.

» This is still the best known general upper bound for Howard's
rule that's independent of both the discount factor 8 and the
bit-size L of the data.
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P1/Simplex: Upper Bounds (Summary)

» Pl/simplex is strongly polynomial in the following cases:

» under both Howard's and Dantzig's rule for a fixed discount
factor, with complexity

O(n’m-m) = O(n*m?) and O((n*+nm)-nm) = O(n*m?),

respectively;
» under Dantzig's rule for deterministic MDPs, with complexity

O((n? 4+ nm) - n?m? log?(n)) = O(n*m?> log?(n));

» under the Gass-Saaty rule for controlled random walks, with
complexity

O((n* + nm) - m) = O(nm?).



Pl/Simplex: Polynomial Lower Bounds

» Andersson, Hansen, & Miltersen (2009) exhibited an MDP
with 2 actions per state where under Howard’s rule and for
any discount factor,

N*“>C-n

for some constant C.
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P1/Simplex: Exponential Lower Bounds

» Melekopoglou & Condon (1994) exhibited an MDP where,
under Bland’s (1977) anticycling rule,

N*>C.2"

for some constant C.

» Hollanders, Delvenne, & Jungers (2012) modified an example
of Fearnley (2010) to show that for a suitably large discount
factor, under Howard'’s rule

N*>C.2"

for some constant C.
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P1/Simplex: Subexponential Lower Bounds

» Friedmann (2011) exhibited an MDP where, for a suitably
large discount factor, under Zadeh’s (1980) least-entered rule

N* > 26vn

for some constant C.

» Friedmann (2012) exhibited an MDP where, for a suitably
large discount factor, under Cunningham’s (1979)

round-robin rule
N* > 2CVn

for some constant C.
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P1/Simplex: Subexponential Lower Bounds

» Friedmann, Hansen, and Zwick (2011) exhibited an MDP
where, for a certain discount factor, under Dantzig's (1963)
random-edge rule the expected number of iterations needed
is

pC-¥n
for some constant C.

» They also exhibited an MDP where, for a certain discount
factor, under Matou%ek, Sharir, & Welzl's (1996)
random-facet rule the expected number of iterations needed
is

2C-v/n/log(n)

for some constant C.
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PI/Simplex: Lower Bounds (Summary)

» Pl/simplex can be exponential in the following cases:

» under Bland’s rule;
» under Howard’s rule, for a large enough discount factor.

» Pl/simplex can be subexponential under the following
history-dependent pivoting rules:
» under Zadeh’s rule, for a large enough discount factor;
» under Cunningham’s rule, for a large enough discount factor.

» Pl/simplex can require an expected subexponential number
of arithmetic operations under the following randomized
pivoting rules:

» Dantzig's random-edge rule, for some discount factor;
» Matousek, Sharir, & Welzl's random-facet rule, for some
discount factor.
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New Strongly Polynomial Algorithms

» Before his 2011 result on PI, Ye (2005) presented an interior
point algorithm requiring

o(ron(i25)

arithmetic operations to return an optimal policy.
» This was the first algorithm shown to be strongly polynomial
for MDPs with a fixed discount factor.

» Zadorojniy, Even, and Schwartz (2009) gave a strongly
polynomial algorithm for controlled random walks, which
Even & Zadorojniy (2012) showed to be equivalent to simplex
with the Gass-Saaty rule. It requires

O((n* + nm) - m) = O(nm?)

arithmetic operations.
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New Strongly Polynomial Algorithms

» Andersson & Vorobyov (2006) proposed a strongly polynomial
algorithm that solves deterministic discounted MDPs using

O(n?m)

arithmetic operations.

» Madani, Thorup, & Zwick (2010) gave two new strongly
polynomial algorithms for deterministic discounted MDPs;
one requires

O(nm + n? log(n))

arithmetic operations, and the other requires
©(nm)
arithmetic operations.
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Future Directions

1. Consider the complexity of algorithms for average-reward
MDPs.

2. Exhibit LPs/MDPs on which the simplex method is not
strongly polynomial.

3. Develop sufficient conditions for the simplex method to be
strongly polynomial.
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Average-Reward MDPs

» The long-run expected average reward per unit time earned
under the policy w € MR starting from state x € X is

=
—

1
*N
t

glx,m) = I;Vm inf EX r(xe, at).

Il
o

» A policy 7* is optimal under the average-reward criterion if
g(x,7) = sup,cnr g(x, m) for all x € X.
» Similarly to the discounted case,

» stationary optimal policies exist when the state & action sets
are finite, and

» value iteration, policy iteration, and linear programming
methods exist.
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Average-Reward MDPs

> If the MDP is deterministic, then the average-reward
problem reduces to the classical problem of finding a
minimum mean weight cycle in a directed graph, which is
solvable in strongly polynomial time (e.g. Karp 1978; Young,
Tarjan, & Orlin 1991).

> For the stochastic average-reward case, there are relatively
few strong polynomiality results.

» The algorithm of Zadorojniy, Even, and Schwartz (2009) also
solves average-reward controlled random walks using O(nm?)
arithmetic operations.

» Feinberg & Huang (2013) showed that policy iteration is
strongly polynomial for MDPs modeling replacement &
mainteneance problems with a fixed failure probability.

» Akian & Gaubert (2013) showed that if there's a state that's
recurrent under all stationary policies, then policy iteration is
strongly polynomial.
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Examples Where Simplex Isn't Strongly Polynomial

» We conjecture that there is a unichain MDP, i.e. where the
Markov chain induced by every stationary policy has a single
recurrent class, on which Pl/simplex for average rewards will
perform badly (e.g. be exponential).

» There may also be an MDP with a majorant, i.e. where there
exists a number g(x) for each x € X satisfying

aly) > plylx,a) Vx,y e X & ac A(x) and Y qly) <2,
yeX

on which Pl/simplex for average rewards does badly.

» An MDP with a majorant can be reduced to a discounted
MDP with a negative discount factor. We conjecture that
P1/simplex for discounted rewards may not be strongly
polynomial for such MDPs either.
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Conditions Ensuring Simplex is Strongly Polynomial

» Kitahara & Mizuno (2011) used Ye's (2011) analysis to show
that if an LP with n constraints and m variables has an
optimal solution, and the values of all the positive elements of
any basic feasible solution are between § and +, then under
both Dantzig’s rule and the best-improvement rule, the
simplex method will generate at most

ol 3o )

distinct basic feasible solutions.
» For the LP (Pg), d =1and v =n/(1— ).
> Are there other conditions that imply the simplex method is
strongly polynomial?
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