Recent Progress on the Complexity of Solving Markov Decision Processes

Jefferson Huang

Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794-3600, USA

January 24, 2014

Overview

- Markov Decision Processes (MDPs) provide a framework for modeling and guiding sequential decision making under uncertainty.
- Application areas include Operations Research, Statistics, Economics, Artificial Intelligence, and Finance.
- Recently, there has been renewed interest in the complexity of algorithms that solve (i.e. find an optimal policy for) MDPs with finite state and action sets.
- In this talk, we
- survey what is known about the complexity of solution algorithms, and
- outline directions for further work.

Model Definition

- A finite state and action MDP is defined by
- a set of states $\mathbb{X}=\{1,2, \ldots, n\}$,
- a set of actions $\mathbb{A}=\{1,2, \ldots, m\}$ and sets of actions $\mathbb{A}(x) \subseteq \mathbb{A}$ available in each state $x \in \mathbb{X}$,
- one-step rewards r, where $r(x, a)$ is the reward earned whenever action $a \in \mathbb{A}(x)$ is performed in state x, and
- transition probabilities p, where $p(y \mid x, a)$ is the probability that the process transitions to state y given that action $a \in \mathbb{A}(x)$ is performed in state x.
- At each time step $t=0,1, \ldots$
- the process is in some state $x_{t} \in \mathbb{X}$,
- an action $a_{t} \in \mathbb{A}\left(x_{t}\right)$ is performed,
- a reward $r\left(x_{t}, a_{t}\right)$ is earned, and
- the state at time $t+1$ is $y \in \mathbb{X}$ with probability $p\left(y \mid x_{t}, a_{t}\right)$.
- For each time step t, a (randomized) policy π specifies the probability with which each action $a \in \mathbb{A}\left(x_{t}\right)$ is performed, given the history $x_{0} a_{0} x_{1} a_{1} \ldots x_{t-1} a_{t-1} x_{t}$ of the process up to time t.

Optimization

- Given an MDP, we want to find a policy that is optimal over the set of all policies Π^{R} in some sense.
- Most of the recent complexity results consider the infinite-horizon total discounted reward criterion:
- Each initial state x and policy π defines a stochastic sequence $x_{0} a_{0} x_{1} a_{1} \ldots$ with associated expectation operator \mathbb{E}_{x}^{π}.
- Given a discount factor $\beta \in[0,1)$, the infinite-horizon discounted total reward earned starting from state x under the policy π is

$$
v_{\beta}(x, \pi) \triangleq \mathbb{E}_{x}^{\pi} \sum_{t=0}^{\infty} \beta^{t} r\left(x_{t}, a_{t}\right) .
$$

- A policy π^{*} is optimal under this criterion if

$$
v_{\beta}\left(x, \pi^{*}\right)=\sup _{\pi \in \Pi^{R}} v_{\beta}(x, \pi), \quad \text { for all } x \in \mathbb{X}
$$

- Another commonly used criterion is the long-run expected average reward per unit time (which we'll consider later).

Finding an Optimal Policy

- A policy ϕ is stationary if for each $x \in \mathbb{X}$ it specifies the action to be performed whenever the process is in state x, regardless of how the process got there.
- The set Π^{S} of stationary policies can be identified with the set of mappings $\phi: \mathbb{X} \rightarrow \mathbb{A}$ satisfying $\phi(x) \in \mathbb{A}(x)$ for all $x \in \mathbb{X}$.
- It is well-known that, if the state \& action sets are finite, then there exists a stationary optimal policy.
- Two classical algorithms that return a stationary optimal policy after a finite number of iterations are value iteration (Shapley 1953, Bellman 1957) and policy iteration (Howard 1960).
- Linear programming can also be used (Manne 1960, de Ghellinck 1960, d'Epenoux 1963).
- Policy iteration is equivalent to using the simplex method to solve a certain linear program.

Complexity of Algorithms for MDPs

- An algorithm for solving an MDP is (weakly) polynomial if the required number of arithmetic operations is bounded above by a polynomial in the number of actions $m(\geq n)$ and the bit-size L of the input data.
- If the requisite number of iterations is bounded by a polynomial in m only, the algorithm is strongly polynomial.
- We'll now consider both upper and lower bounds on the number of arithmetic operations required in the worst case for
- value iteration,
- policy iteration, and
- the simplex method.

After that, we'll consider some recently proposed algorithms that are strongly polynomial under certain conditions.

Value Iteration: Preliminaries

- A contraction mapping on a metric space (X, d) is a mapping $A: X \rightarrow X$ such that for some $\beta \in[0,1)$ every $u, v \in X$ satisfies $d(A u, A v) \leq \beta d(u, v)$. Here β is called the modulus of the contraction mapping.
- A fixed point u of a mapping A satisfies $u=A u$.
- The Banach fixed-point theorem states that if (X, d) is complete (i.e. every Cauchy sequence converges), then any contraction mapping A on (X, d) has a unique fixed point u^{*}, and that for each $u \in X$ and natural number n,

$$
d\left(u^{*}, A^{n} u\right) \leq \frac{\beta^{n}}{1-\beta} d(A u, u)
$$

This means that for any $u \in X$, the sequence $\left\{A^{n} u\right\}_{n=0}^{\infty}$ converges geometrically to u^{*}.

Value Iteration: Preliminaries

- Let $B(\mathbb{X})$ be the set of real-valued functions on the state space \mathbb{X}, and let the max-norm be defined for $u \in B(\mathbb{X})$ by $\|u\|_{\infty}=\max _{x \in \mathbb{X}}|u(x)|$.
- It's well-known that the mapping $T: B(\mathbb{X}) \rightarrow B(\mathbb{X})$ defined for $u \in B(\mathbb{X})$ by

$$
T u(x)=\max _{a \in \mathbb{A}(x)}\left\{r(x, a)+\beta \sum_{y \in \mathbb{X}} p(y \mid x, a) u(y)\right\}, \quad x \in \mathbb{X},
$$

is a contraction mapping with modulus β on the complete metric space $\left(B(\mathbb{X}),\|\cdot\|_{\infty}\right)$, implying it has a unique fixed point u^{*} and that $\left\{T^{n} u\right\}_{n=0}^{\infty}$ converges geometrically to u^{*}.

- It's also well-known that the value function

$$
V_{\beta}(x)=\sup _{\pi \in \Pi^{R}} v_{\beta}(x, \pi), \quad x \in \mathbb{X}
$$

is a fixed point of T. Hence $u^{*}=V_{\beta}$.

Value Iteration

- For any stationary policy ϕ, let $T_{\phi}: B(\mathbb{X}) \rightarrow B(\mathbb{X})$ be defined for $u \in B(\mathbb{X})$ by

$$
T_{\phi} u(x)=r(x, \phi(x))+\beta \sum_{y \in \mathbb{X}} p(y \mid x, \phi(x)) u(y), \quad x \in \mathbb{X}
$$

- The value iteration algorithm

1. takes any initial estimate V_{0} of the value function at each state x,
2. iteratively applies T to V_{0} (i.e. generates the terms of the sequence $\left.\left\{T^{n} V_{0}\right\}_{n=0}^{\infty}\right) N$ times, and
3. given the terminal estimate $V_{N} \triangleq T^{N} V_{0}$, outputs a stationary policy ϕ satisfying $T_{\phi} V_{N}=T V_{N}$.

- The number of iterations N to perform is often determined by a stopping rule that gives a lower bound on the performance of ϕ.
- It's well-known that when the state \& action sets are finite, then after some finite number of iterations the returned stationary policy ϕ is optimal.

Value Iteration: Upper Bound

- Let N^{*} be the smallest number of iterations needed for value iteration to return an optimal policy.
- Tseng (1990) showed that given rational input data with a total bit-size of L,

$$
N^{*} \leq \frac{n L+n \log _{2}(n)}{1-\beta}
$$

- This was done by deriving an upper bound for how small $\left\|V_{\beta}-V_{N}\right\|_{\infty}$ has to be in order for the returned policy ϕ to be optimal, and using the fact that

$$
\left\|V_{\beta}-V_{N}\right\|_{\infty} \leq \frac{\beta^{N}}{1-\beta}\left\|V_{1}-V_{0}\right\|_{\infty}
$$

- This shows that for a fixed discount factor, value iteration is weakly polynomial.

Value Iteration: Lower Bounds

- Littman, Dean, \& Kaelbling (1995) exhibited a 3-state MDP where

$$
N^{*} \geq \frac{1}{2} \cdot \frac{1}{1-\beta} \log _{2}\left(\frac{1}{1-\beta}\right)
$$

- Feinberg \& Huang (2014) exhibited a similar 3-state MDP where if exact computations are allowed, then N^{*} may grow arbitrarily quickly with the number of actions.
- In particular, given the positive integer k, their example has $m=k+3$ actions. They show that given any increasing sequence $\left\{M_{i}\right\}_{i=1}^{\infty}$ of natural numbers,

$$
N^{*} \geq \frac{M_{k}}{-\ln (\beta)}
$$

For example, if $M_{i}=2^{i}$ for $i=1,2, \ldots$, then

$$
N^{*} \geq \frac{2^{k}}{-\ln (\beta)}=\frac{2^{m}}{-\ln (\beta) \cdot 2^{3}}
$$

Policy Iteration: Evaluating a Stationary Policy

- Under a stationary policy ϕ, the MDP becomes a Markov chain with rewards, where the probability that the process transitions to state y from state x is $p(y \mid x, \phi(x))$.
- Let I be the $n \times n$ identity matrix, and let P_{ϕ} be the transition matrix of the Markov chain associated with ϕ.
- Let $v_{\phi} \in B(\mathbb{X})$ be such that for $x \in \mathbb{X}, v_{\phi}(x)=v_{\beta}(x, \phi)$.
- Let $r_{\phi} \in B(\mathbb{X})$ be such that for $x \in \mathbb{X}, r_{\phi}(x)=r(x, \phi(x))$.
- It's well-known that

$$
v_{\phi}=\sum_{t=0}^{\infty} \beta^{t} P_{\phi}^{t} r_{\phi}=\left(I-\beta P_{\phi}\right)^{-1} r_{\phi}
$$

- Also, v_{ϕ} is the fixed point of the contraction mapping T_{ϕ}.

Policy Iteration: Improving a Stationary Policy

- Let ϕ be a stationary policy.
- Suppose there's a state x^{*} and a stationary policy ψ such that

$$
T_{\psi} v_{\phi}\left(x^{*}\right)>v_{\phi}\left(x^{*}\right)
$$

Then $v_{\psi}\left(x^{*}\right)>v_{\phi}\left(x^{*}\right)$.

- Suppose ϕ^{*} satisfies

$$
T_{\phi} v_{\phi^{*}}(x) \leq v_{\phi^{*}}(x), \quad \text { for all } \phi \in \Pi^{S}, x \in \mathbb{X}
$$

Then $v_{\phi}(x) \leq v_{\phi^{*}}(x)$ for all $x \in \mathbb{X}$ and $\phi \in \Pi^{S}$. Since there is a stationary optimal policy, this means ϕ^{*} is optimal.

Policy Iteration

- Policy iteration (PI) begins with any stationary policy ϕ, and proceeds as follows:

1. Calculate $v_{\phi}=\left(I-\beta P_{\phi}\right)^{-1} r_{\phi}$.
2. Try to improve ϕ by checking, for each state x, whether there's an action $a \in \mathbb{A}(x)$ satisfying

$$
\begin{equation*}
r(x, a)+\beta \sum_{y \in \mathbb{X}} p(y \mid x, a) v_{\phi}(y)>v_{\phi}(x) . \tag{1}
\end{equation*}
$$

3. If yes,
3.1 for each $x^{*} \in \mathbb{X}$ where (1) holds for some action, let $\psi\left(x^{*}\right)$ be any action satisfying (1) when $x=x^{*}$. For all remaining states x, let $\psi(x)=\phi(x)$.
3.2 Replace ϕ with ψ and go to step 1.
4. If no, then ϕ is optimal.

- In step 3.1, we may have a choice as to what action to switch to in a given state x^{*}.
- For any ϕ and its improvement $\psi, v_{\psi}>v_{\phi}$; since $\left|\Pi^{S}\right| \leq m^{n}<\infty$, this means PI terminates after a finite number of iterations.

Policy Iteration and Linear Programming

- Let e denote a vector of all ones, and let $[r]_{x a} \triangleq r(x, a)$, $[J]_{x a, y} \triangleq \delta_{x y}$, and $[P]_{x a, y} \triangleq p(y \mid x, a)$.
- Consider the linear program (LP)

$$
\begin{align*}
\max & \rho^{T} r \\
\text { s.t. } & \rho^{T}(J-\beta P)=e^{T}, \rho \geq 0
\end{align*}
$$

- It's well-known that there's a 1-1 correspondence between stationary policies and basic feasible solutions to this LP.
- Using the simplex method to solve this LP corresponds to applying policy iteration; note that the reduced "cost" vector for any basis ϕ is

$$
\bar{r}_{\phi}=r-(J-\beta P)\left(I-\beta P_{\phi}\right)^{-1} r_{\phi}=r+\beta P v_{\phi}-J v_{\phi}
$$

and $\bar{r}_{\phi}(x, a)>0$ iff. ϕ can be improved by using action a instead of $\phi(x)$ in state x.

PI/Simplex: Pivoting Rules

- Each rule for updating the current policy's selected actions during PI corresponds to a pivoting rule for the simplex method applied to the LP $\left(P_{\beta}\right)$.
- Two commonly used rules:
- Dantzig's (1947) rule, where the variable with the most positive reduced cost enter the basis.
- Howard's (1960) block pivoting rule, where for each state x^{*} such that $\bar{r}_{\phi}\left(x^{*}, a\right)>0$ for some $a \in \mathbb{A}(x)$, a variable $\rho\left(x^{*}, a^{*}\right)$ where

$$
a^{*} \in \underset{a \in \mathbb{A}\left(x^{*}\right)}{\arg \max } \bar{r}_{\phi}\left(x^{*}, a\right)
$$

enters the basis. This rule

- corresponds to updating ϕ to some ψ satisfying $T_{\psi} v_{\phi}=T v_{\phi}$,
- always pivots the variable Dantzig's rule would've selected into the basis, but
- might not be justified for general LPs.

PI/Simplex: Upper Bounds (Discount Factor Dependent)

- Let N^{*} denote the number of iterations $\mathrm{PI} /$ simplex needs to return an optimal policy.
- Note that the number of arithmetic operations required for each iteration of $\mathrm{Pl} /$ simplex is at most proportional to $n m$ (single pivot per iteration) or $n^{2} m$ (Howard's rule).
- Meister \& Holzbaur (1986) showed that under Howard's rule,

$$
N^{*} \leq C \cdot \frac{n L}{-\log (\beta)}
$$

for some constant C, and hence that for a fixed discount factor, $\mathrm{PI} /$ simplex with Howard's rule is weakly polynomial.

PI/Simplex: Upper Bounds (Discount Factor Dependent)

- Ye (2011) showed that under both Dantzig's and Howard's rule,

$$
N^{*} \leq(m-n)\left\lceil\frac{n}{1-\beta} \ln \left(\frac{n^{2}}{1-\beta}\right)\right\rceil .
$$

- Hansen, Miltersen, and Zwick (2013) improved Ye's bound for Howard's rule by a factor of n :

$$
N^{*} \leq(m-n)\left\lceil\frac{1}{1-\beta} \ln \left(\frac{n}{1-\beta}\right)\right\rceil
$$

and extended it to strategy iteration for 2-player turn-based stochastic games.

- Scherrer (2013) got rid of the $\ln (n)$ term in the bound for Howard's rule:

$$
N^{*} \leq(m-n)\left\lceil\frac{1}{1-\beta} \ln \left(\frac{1}{1-\beta}\right)\right\rceil
$$

PI/Simplex: Upper Bounds (Discount Factor Dependent)

- Scherrer (2013) also showed that under Dantzig's rule,

$$
N^{*} \leq(m-n) \cdot n\left\lceil\frac{2}{1-\beta} \ln \left(\frac{1}{1-\beta}\right)\right\rceil .
$$

- In summary, under Howard's rule

$$
N^{*}=O\left(\frac{m}{1-\beta} \log \left(\frac{1}{1-\beta}\right)\right)
$$

while under Dantzig's rule

$$
N^{*}=O\left(\frac{n m}{1-\beta} \log \left(\frac{1}{1-\beta}\right)\right) .
$$

PI/Simplex: Upper Bounds (Strongly Polynomial)

- Post \& Ye (2013) showed that, if all transitions in the MDP are deterministic, then under Dantzig's rule

$$
N^{*} \leq C \cdot n^{3} m^{2} \log ^{2}(n)
$$

for some constant C.

- Hansen, Kaplan, and Zwick (2014) improved this bound by a factor of n.
- Even \& Zadorojniy (2012) showed that for MDPs satisfying a coupling property (e.g. controlled discrete-time $M / M / 1$ queues), then under the Gass-Saaty (1955) shadow vertex pivoting rule

$$
N^{*} \leq m .
$$

- $\mathrm{Pl} /$ simplex with the Gass-Saaty rule is equivalent to an algorithm proposed by Zadorojniy, Even, and Schwartz (2009).

$\mathrm{PI} /$ Simplex: Upper Bounds (Indep. of both β and L)

- Mansour \& Singh (1999) showed that if $\bar{m} \triangleq \max _{x \in \mathbb{X}}|\mathbb{A}(x)|$, then under Howard's rule

$$
N^{*} \leq C \cdot \frac{\bar{m}^{n}}{n}
$$

for some constant C.

- This is still the best known general upper bound for Howard's rule that's independent of both the discount factor β and the bit-size L of the data.

PI/Simplex: Upper Bounds (Summary)

- $\mathrm{PI} /$ simplex is strongly polynomial in the following cases:
- under both Howard's and Dantzig's rule for a fixed discount factor, with complexity

$$
O\left(n^{2} m \cdot m\right)=O\left(n^{2} m^{2}\right) \quad \text { and } \quad O\left(\left(n^{2}+n m\right) \cdot n m\right)=O\left(n^{2} m^{2}\right)
$$

respectively;

- under Dantzig's rule for deterministic MDPs, with complexity

$$
O\left(\left(n^{2}+n m\right) \cdot n^{2} m^{2} \log ^{2}(n)\right)=O\left(n^{3} m^{3} \log ^{2}(n)\right)
$$

- under the Gass-Saaty rule for controlled random walks, with complexity

$$
O\left(\left(n^{2}+n m\right) \cdot m\right)=O\left(n m^{2}\right)
$$

PI/Simplex: Polynomial Lower Bounds

- Andersson, Hansen, \& Miltersen (2009) exhibited an MDP with 2 actions per state where under Howard's rule and for any discount factor,

$$
N^{*} \geq C \cdot n
$$

for some constant C.

PI/Simplex: Exponential Lower Bounds

- Melekopoglou \& Condon (1994) exhibited an MDP where, under Bland's (1977) anticycling rule,

$$
N^{*} \geq C \cdot 2^{n}
$$

for some constant C.

- Hollanders, Delvenne, \& Jungers (2012) modified an example of Fearnley (2010) to show that for a suitably large discount factor, under Howard's rule

$$
N^{*} \geq C \cdot 2^{n}
$$

for some constant C.

PI/Simplex: Subexponential Lower Bounds

- Friedmann (2011) exhibited an MDP where, for a suitably large discount factor, under Zadeh's (1980) least-entered rule

$$
N^{*} \geq 2^{C \cdot \sqrt{n}}
$$

for some constant C.

- Friedmann (2012) exhibited an MDP where, for a suitably large discount factor, under Cunningham's (1979) round-robin rule

$$
N^{*} \geq 2^{C \cdot \sqrt{n}}
$$

for some constant C.

PI/Simplex: Subexponential Lower Bounds

- Friedmann, Hansen, and Zwick (2011) exhibited an MDP where, for a certain discount factor, under Dantzig's (1963) random-edge rule the expected number of iterations needed is

$$
2^{C \cdot \sqrt[4]{n}}
$$

for some constant C.

- They also exhibited an MDP where, for a certain discount factor, under Matoušek, Sharir, \& Welzl's (1996) random-facet rule the expected number of iterations needed is

$$
2^{C \cdot \sqrt{n} / \log ^{c}(n)}
$$

for some constant C.

PI/Simplex: Lower Bounds (Summary)

- $\mathrm{PI} /$ simplex can be exponential in the following cases:
- under Bland's rule;
- under Howard's rule, for a large enough discount factor.
- $\mathrm{PI} /$ simplex can be subexponential under the following history-dependent pivoting rules:
- under Zadeh's rule, for a large enough discount factor;
- under Cunningham's rule, for a large enough discount factor.
- $\mathrm{PI} /$ simplex can require an expected subexponential number of arithmetic operations under the following randomized pivoting rules:
- Dantzig's random-edge rule, for some discount factor;
- Matoušek, Sharir, \& Welzl's random-facet rule, for some discount factor.

New Strongly Polynomial Algorithms

- Before his 2011 result on PI, Ye (2005) presented an interior point algorithm requiring

$$
O\left(m^{4} \log \left(\frac{m}{1-\beta}\right)\right)
$$

arithmetic operations to return an optimal policy.

- This was the first algorithm shown to be strongly polynomial for MDPs with a fixed discount factor.
- Zadorojniy, Even, and Schwartz (2009) gave a strongly polynomial algorithm for controlled random walks, which Even \& Zadorojniy (2012) showed to be equivalent to simplex with the Gass-Saaty rule. It requires

$$
O\left(\left(n^{2}+n m\right) \cdot m\right)=O\left(n m^{2}\right)
$$

arithmetic operations.

New Strongly Polynomial Algorithms

- Andersson \& Vorobyov (2006) proposed a strongly polynomial algorithm that solves deterministic discounted MDPs using

$$
O\left(n^{2} m\right)
$$

arithmetic operations.

- Madani, Thorup, \& Zwick (2010) gave two new strongly polynomial algorithms for deterministic discounted MDPs; one requires

$$
O\left(n m+n^{2} \log (n)\right)
$$

arithmetic operations, and the other requires

$$
\Theta(n m)
$$

arithmetic operations.

Future Directions

1. Consider the complexity of algorithms for average-reward MDPs.
2. Exhibit LPs/MDPs on which the simplex method is not strongly polynomial.
3. Develop sufficient conditions for the simplex method to be strongly polynomial.

Average-Reward MDPs

- The long-run expected average reward per unit time earned under the policy $\pi \in \Pi^{R}$ starting from state $x \in \mathbb{X}$ is

$$
g(x, \pi) \triangleq \liminf _{N \rightarrow \infty} \mathbb{E}_{x}^{\pi} \frac{1}{N} \sum_{t=0}^{N-1} r\left(x_{t}, a_{t}\right)
$$

- A policy π^{*} is optimal under the average-reward criterion if $g\left(x, \pi^{*}\right)=\sup _{\pi \in \Pi^{R}} g(x, \pi)$ for all $x \in \mathbb{X}$.
- Similarly to the discounted case,
- stationary optimal policies exist when the state \& action sets are finite, and
- value iteration, policy iteration, and linear programming methods exist.

Average-Reward MDPs

- If the MDP is deterministic, then the average-reward problem reduces to the classical problem of finding a minimum mean weight cycle in a directed graph, which is solvable in strongly polynomial time (e.g. Karp 1978; Young, Tarjan, \& Orlin 1991).
- For the stochastic average-reward case, there are relatively few strong polynomiality results.
- The algorithm of Zadorojniy, Even, and Schwartz (2009) also solves average-reward controlled random walks using $O\left(n m^{2}\right)$ arithmetic operations.
- Feinberg \& Huang (2013) showed that policy iteration is strongly polynomial for MDPs modeling replacement \& mainteneance problems with a fixed failure probability.
- Akian \& Gaubert (2013) showed that if there's a state that's recurrent under all stationary policies, then policy iteration is strongly polynomial.

Examples Where Simplex Isn't Strongly Polynomial

- We conjecture that there is a unichain MDP, i.e. where the Markov chain induced by every stationary policy has a single recurrent class, on which $\mathrm{PI} /$ simplex for average rewards will perform badly (e.g. be exponential).
- There may also be an MDP with a majorant, i.e. where there exists a number $q(x)$ for each $x \in \mathbb{X}$ satisfying $q(y) \geq p(y \mid x, a) \forall x, y \in \mathbb{X} \& a \in \mathbb{A}(x) \quad$ and $\quad \sum_{y \in \mathbb{X}} q(y)<2$, on which $\mathrm{PI} /$ simplex for average rewards does badly.
- An MDP with a majorant can be reduced to a discounted MDP with a negative discount factor. We conjecture that $\mathrm{Pl} /$ simplex for discounted rewards may not be strongly polynomial for such MDPs either.

Conditions Ensuring Simplex is Strongly Polynomial

- Kitahara \& Mizuno (2011) used Ye's (2011) analysis to show that if an LP with n constraints and m variables has an optimal solution, and the values of all the positive elements of any basic feasible solution are between δ and γ, then under both Dantzig's rule and the best-improvement rule, the simplex method will generate at most

$$
m\left\lceil n \cdot \frac{\gamma}{\delta} \ln \left(n \cdot \frac{\gamma}{\delta}\right)\right\rceil
$$

distinct basic feasible solutions.

- For the LP $\left(P_{\beta}\right), \delta=1$ and $\gamma=n /(1-\beta)$.
- Are there other conditions that imply the simplex method is strongly polynomial?

