
Recent Progress on the Complexity of Solving
Markov Decision Processes

Jefferson Huang

Department of Applied Mathematics and Statistics, Stony Brook University,
Stony Brook, NY 11794-3600, USA

January 24, 2014

1 / 34

Overview

I Markov Decision Processes (MDPs) provide a framework
for modeling and guiding sequential decision making under
uncertainty.

I Application areas include Operations Research, Statistics,
Economics, Artificial Intelligence, and Finance.

I Recently, there has been renewed interest in the complexity
of algorithms that solve (i.e. find an optimal policy for)
MDPs with finite state and action sets.

I In this talk, we
I survey what is known about the complexity of solution

algorithms, and
I outline directions for further work.

2 / 34

Model Definition

I A finite state and action MDP is defined by
I a set of states X = {1, 2, . . . , n},
I a set of actions A = {1, 2, . . . ,m} and sets of actions

A(x) ⊆ A available in each state x ∈ X,
I one-step rewards r , where r(x , a) is the reward earned

whenever action a ∈ A(x) is performed in state x , and
I transition probabilities p, where p(y |x , a) is the probability

that the process transitions to state y given that action
a ∈ A(x) is performed in state x .

I At each time step t = 0, 1, . . .
I the process is in some state xt ∈ X,
I an action at ∈ A(xt) is performed,
I a reward r(xt , at) is earned, and
I the state at time t + 1 is y ∈ X with probability p(y |xt , at).

I For each time step t, a (randomized) policy π specifies the
probability with which each action a ∈ A(xt) is performed,
given the history x0a0x1a1 . . . xt−1at−1xt of the process up to
time t.

3 / 34

Optimization

I Given an MDP, we want to find a policy that is optimal over
the set of all policies ΠR in some sense.

I Most of the recent complexity results consider the
infinite-horizon total discounted reward criterion:

I Each initial state x and policy π defines a stochastic sequence
x0a0x1a1 . . . with associated expectation operator Eπ

x .
I Given a discount factor β ∈ [0, 1), the infinite-horizon

discounted total reward earned starting from state x under the
policy π is

vβ(x , π) , Eπ
x

∞∑
t=0

βtr(xt , at).

I A policy π∗ is optimal under this criterion if

vβ(x , π∗) = sup
π∈ΠR

vβ(x , π), for all x ∈ X.

I Another commonly used criterion is the long-run expected
average reward per unit time (which we’ll consider later).

4 / 34

Finding an Optimal Policy

I A policy φ is stationary if for each x ∈ X it specifies the
action to be performed whenever the process is in state x ,
regardless of how the process got there.

I The set ΠS of stationary policies can be identified with the set
of mappings φ : X→ A satisfying φ(x) ∈ A(x) for all x ∈ X.

I It is well-known that, if the state & action sets are finite, then
there exists a stationary optimal policy.

I Two classical algorithms that return a stationary optimal
policy after a finite number of iterations are value iteration
(Shapley 1953, Bellman 1957) and policy iteration (Howard
1960).

I Linear programming can also be used (Manne 1960, de
Ghellinck 1960, d’Epenoux 1963).

I Policy iteration is equivalent to using the simplex method to
solve a certain linear program.

5 / 34

Complexity of Algorithms for MDPs

I An algorithm for solving an MDP is (weakly) polynomial if
the required number of arithmetic operations is bounded
above by a polynomial in the number of actions m (≥ n) and
the bit-size L of the input data.

I If the requisite number of iterations is bounded by a
polynomial in m only, the algorithm is strongly polynomial.

I We’ll now consider both upper and lower bounds on the
number of arithmetic operations required in the worst case for

I value iteration,
I policy iteration, and
I the simplex method.

After that, we’ll consider some recently proposed algorithms
that are strongly polynomial under certain conditions.

6 / 34

Value Iteration: Preliminaries

I A contraction mapping on a metric space (X , d) is a
mapping A : X → X such that for some β ∈ [0, 1) every
u, v ∈ X satisfies d(Au,Av) ≤ βd(u, v). Here β is called the
modulus of the contraction mapping.

I A fixed point u of a mapping A satisfies u = Au.

I The Banach fixed-point theorem states that if (X , d) is
complete (i.e. every Cauchy sequence converges), then any
contraction mapping A on (X , d) has a unique fixed point u∗,
and that for each u ∈ X and natural number n,

d(u∗,Anu) ≤ βn

1− β
d(Au, u).

This means that for any u ∈ X , the sequence {Anu}∞n=0

converges geometrically to u∗.

7 / 34

Value Iteration: Preliminaries

I Let B(X) be the set of real-valued functions on the state
space X, and let the max-norm be defined for u ∈ B(X) by
‖u‖∞ = maxx∈X |u(x)|.

I It’s well-known that the mapping T : B(X)→ B(X) defined
for u ∈ B(X) by

Tu(x) = max
a∈A(x)

{r(x , a) + β
∑
y∈X

p(y |x , a)u(y)}, x ∈ X,

is a contraction mapping with modulus β on the complete
metric space (B(X), ‖ · ‖∞), implying it has a unique fixed
point u∗ and that {T nu}∞n=0 converges geometrically to u∗.

I It’s also well-known that the value function

Vβ(x) = sup
π∈ΠR

vβ(x , π), x ∈ X,

is a fixed point of T . Hence u∗ = Vβ.

8 / 34

Value Iteration

I For any stationary policy φ, let Tφ : B(X)→ B(X) be defined
for u ∈ B(X) by

Tφu(x) = r(x , φ(x)) + β
∑
y∈X

p(y |x , φ(x))u(y), x ∈ X.

I The value iteration algorithm
1. takes any initial estimate V0 of the value function at each

state x ,
2. iteratively applies T to V0 (i.e. generates the terms of the

sequence {T nV0}∞n=0) N times, and
3. given the terminal estimate VN , TNV0, outputs a stationary

policy φ satisfying TφVN = TVN .
I The number of iterations N to perform is often determined by

a stopping rule that gives a lower bound on the performance
of φ.

I It’s well-known that when the state & action sets are finite,
then after some finite number of iterations the returned
stationary policy φ is optimal.

9 / 34

Value Iteration: Upper Bound

I Let N∗ be the smallest number of iterations needed for value
iteration to return an optimal policy.

I Tseng (1990) showed that given rational input data with a
total bit-size of L,

N∗ ≤ nL + n log2(n)

1− β
.

I This was done by deriving an upper bound for how small
‖Vβ − VN‖∞ has to be in order for the returned policy φ to be
optimal, and using the fact that

‖Vβ − VN‖∞ ≤
βN

1− β
‖V1 − V0‖∞.

I This shows that for a fixed discount factor, value iteration
is weakly polynomial.

10 / 34

Value Iteration: Lower Bounds

I Littman, Dean, & Kaelbling (1995) exhibited a 3-state MDP
where

N∗ ≥ 1

2
· 1

1− β
log2

(
1

1− β

)
.

I Feinberg & Huang (2014) exhibited a similar 3-state MDP
where if exact computations are allowed, then N∗ may grow
arbitrarily quickly with the number of actions.

I In particular, given the positive integer k , their example has
m = k + 3 actions. They show that given any increasing
sequence {Mi}∞i=1 of natural numbers,

N∗ ≥ Mk

− ln(β)
.

For example, if Mi = 2i for i = 1, 2, . . . , then

N∗ ≥ 2k

− ln(β)
=

2m

− ln(β) · 23
.

11 / 34

Policy Iteration: Evaluating a Stationary Policy

I Under a stationary policy φ, the MDP becomes a Markov
chain with rewards, where the probability that the process
transitions to state y from state x is p(y |x , φ(x)).

I Let I be the n × n identity matrix, and let Pφ be the
transition matrix of the Markov chain associated with φ.

I Let vφ ∈ B(X) be such that for x ∈ X, vφ(x) = vβ(x , φ).

I Let rφ ∈ B(X) be such that for x ∈ X, rφ(x) = r(x , φ(x)).

I It’s well-known that

vφ =
∞∑
t=0

βtPt
φrφ = (I − βPφ)−1rφ.

I Also, vφ is the fixed point of the contraction mapping Tφ.

12 / 34

Policy Iteration: Improving a Stationary Policy

I Let φ be a stationary policy.

I Suppose there’s a state x∗ and a stationary policy ψ such that

Tψvφ(x∗) > vφ(x∗).

Then vψ(x∗) > vφ(x∗).

I Suppose φ∗ satisfies

Tφvφ∗(x) ≤ vφ∗(x), for all φ ∈ ΠS , x ∈ X.

Then vφ(x) ≤ vφ∗(x) for all x ∈ X and φ ∈ ΠS . Since there is
a stationary optimal policy, this means φ∗ is optimal.

13 / 34

Policy Iteration

I Policy iteration (PI) begins with any stationary policy φ, and
proceeds as follows:

1. Calculate vφ = (I − βPφ)−1rφ.
2. Try to improve φ by checking, for each state x , whether

there’s an action a ∈ A(x) satisfying

r(x , a) + β
∑
y∈X

p(y |x , a)vφ(y) > vφ(x). (1)

3. If yes,
3.1 for each x∗ ∈ X where (1) holds for some action, let ψ(x∗) be

any action satisfying (1) when x = x∗. For all remaining
states x , let ψ(x) = φ(x).

3.2 Replace φ with ψ and go to step 1.

4. If no, then φ is optimal.
I In step 3.1, we may have a choice as to what action to switch

to in a given state x∗.
I For any φ and its improvement ψ, vψ > vφ; since
|ΠS | ≤ mn <∞, this means PI terminates after a finite
number of iterations.

14 / 34

Policy Iteration and Linear Programming

I Let e denote a vector of all ones, and let [r]xa , r(x , a),
[J]xa,y , δxy , and [P]xa,y , p(y |x , a).

I Consider the linear program (LP)

max ρT r

s.t. ρT (J − βP) = eT , ρ ≥ 0.
(Pβ)

I It’s well-known that there’s a 1-1 correspondence between
stationary policies and basic feasible solutions to this LP.

I Using the simplex method to solve this LP corresponds to
applying policy iteration; note that the reduced “cost”
vector for any basis φ is

rφ = r − (J − βP)(I − βPφ)−1rφ = r + βPvφ − Jvφ,

and rφ(x , a) > 0 iff. φ can be improved by using action a
instead of φ(x) in state x .

15 / 34

PI/Simplex: Pivoting Rules

I Each rule for updating the current policy’s selected actions
during PI corresponds to a pivoting rule for the simplex
method applied to the LP (Pβ).

I Two commonly used rules:
I Dantzig’s (1947) rule, where the variable with the most

positive reduced cost enter the basis.
I Howard’s (1960) block pivoting rule, where for each state x∗

such that rφ(x∗, a) > 0 for some a ∈ A(x), a variable ρ(x∗, a∗)
where

a∗ ∈ arg max
a∈A(x∗)

rφ(x∗, a)

enters the basis. This rule
I corresponds to updating φ to some ψ satisfying Tψvφ = Tvφ,
I always pivots the variable Dantzig’s rule would’ve selected into

the basis, but
I might not be justified for general LPs.

16 / 34

PI/Simplex: Upper Bounds (Discount Factor Dependent)

I Let N∗ denote the number of iterations PI/simplex needs to
return an optimal policy.

I Note that the number of arithmetic operations required for
each iteration of PI/simplex is at most proportional to nm
(single pivot per iteration) or n2m (Howard’s rule).

I Meister & Holzbaur (1986) showed that under Howard’s rule,

N∗ ≤ C · nL

− log(β)

for some constant C , and hence that for a fixed discount
factor, PI/simplex with Howard’s rule is weakly polynomial.

17 / 34

PI/Simplex: Upper Bounds (Discount Factor Dependent)

I Ye (2011) showed that under both Dantzig’s and Howard’s
rule,

N∗ ≤ (m − n)

⌈
n

1− β
ln

(
n2

1− β

)⌉
.

I Hansen, Miltersen, and Zwick (2013) improved Ye’s bound for
Howard’s rule by a factor of n:

N∗ ≤ (m − n)

⌈
1

1− β
ln

(
n

1− β

)⌉
,

and extended it to strategy iteration for 2-player turn-based
stochastic games.

I Scherrer (2013) got rid of the ln(n) term in the bound for
Howard’s rule:

N∗ ≤ (m − n)

⌈
1

1− β
ln

(
1

1− β

)⌉
.

18 / 34

PI/Simplex: Upper Bounds (Discount Factor Dependent)

I Scherrer (2013) also showed that under Dantzig’s rule,

N∗ ≤ (m − n) · n
⌈

2

1− β
ln

(
1

1− β

)⌉
.

I In summary, under Howard’s rule

N∗ = O

(
m

1− β
log

(
1

1− β

))
,

while under Dantzig’s rule

N∗ = O

(
nm

1− β
log

(
1

1− β

))
.

19 / 34

PI/Simplex: Upper Bounds (Strongly Polynomial)

I Post & Ye (2013) showed that, if all transitions in the MDP
are deterministic, then under Dantzig’s rule

N∗ ≤ C · n3m2 log2(n)

for some constant C .
I Hansen, Kaplan, and Zwick (2014) improved this bound by a

factor of n.

I Even & Zadorojniy (2012) showed that for MDPs satisfying a
coupling property (e.g. controlled discrete-time M/M/1
queues), then under the Gass-Saaty (1955) shadow vertex
pivoting rule

N∗ ≤ m.

I PI/simplex with the Gass-Saaty rule is equivalent to an
algorithm proposed by Zadorojniy, Even, and Schwartz (2009).

20 / 34

PI/Simplex: Upper Bounds (Indep. of both β and L)

I Mansour & Singh (1999) showed that if m , maxx∈X |A(x)|,
then under Howard’s rule

N∗ ≤ C · m
n

n

for some constant C .

I This is still the best known general upper bound for Howard’s
rule that’s independent of both the discount factor β and the
bit-size L of the data.

21 / 34

PI/Simplex: Upper Bounds (Summary)

I PI/simplex is strongly polynomial in the following cases:
I under both Howard’s and Dantzig’s rule for a fixed discount

factor, with complexity

O(n2m ·m) = O(n2m2) and O((n2 +nm) ·nm) = O(n2m2),

respectively;
I under Dantzig’s rule for deterministic MDPs, with complexity

O((n2 + nm) · n2m2 log2(n)) = O(n3m3 log2(n));

I under the Gass-Saaty rule for controlled random walks, with
complexity

O((n2 + nm) ·m) = O(nm2).

22 / 34

PI/Simplex: Polynomial Lower Bounds

I Andersson, Hansen, & Miltersen (2009) exhibited an MDP
with 2 actions per state where under Howard’s rule and for
any discount factor,

N∗ ≥ C · n

for some constant C .

23 / 34

PI/Simplex: Exponential Lower Bounds

I Melekopoglou & Condon (1994) exhibited an MDP where,
under Bland’s (1977) anticycling rule,

N∗ ≥ C · 2n

for some constant C .

I Hollanders, Delvenne, & Jungers (2012) modified an example
of Fearnley (2010) to show that for a suitably large discount
factor, under Howard’s rule

N∗ ≥ C · 2n

for some constant C .

24 / 34

PI/Simplex: Subexponential Lower Bounds

I Friedmann (2011) exhibited an MDP where, for a suitably
large discount factor, under Zadeh’s (1980) least-entered rule

N∗ ≥ 2C ·
√
n

for some constant C .

I Friedmann (2012) exhibited an MDP where, for a suitably
large discount factor, under Cunningham’s (1979)
round-robin rule

N∗ ≥ 2C ·
√
n

for some constant C .

25 / 34

PI/Simplex: Subexponential Lower Bounds

I Friedmann, Hansen, and Zwick (2011) exhibited an MDP
where, for a certain discount factor, under Dantzig’s (1963)
random-edge rule the expected number of iterations needed
is

2C ·
4√n

for some constant C .

I They also exhibited an MDP where, for a certain discount
factor, under Matoušek, Sharir, & Welzl’s (1996)
random-facet rule the expected number of iterations needed
is

2C ·
√
n/ logc (n)

for some constant C .

26 / 34

PI/Simplex: Lower Bounds (Summary)

I PI/simplex can be exponential in the following cases:
I under Bland’s rule;
I under Howard’s rule, for a large enough discount factor.

I PI/simplex can be subexponential under the following
history-dependent pivoting rules:

I under Zadeh’s rule, for a large enough discount factor;
I under Cunningham’s rule, for a large enough discount factor.

I PI/simplex can require an expected subexponential number
of arithmetic operations under the following randomized
pivoting rules:

I Dantzig’s random-edge rule, for some discount factor;
I Matoušek, Sharir, & Welzl’s random-facet rule, for some

discount factor.

27 / 34

New Strongly Polynomial Algorithms

I Before his 2011 result on PI, Ye (2005) presented an interior
point algorithm requiring

O

(
m4 log

(
m

1− β

))
arithmetic operations to return an optimal policy.

I This was the first algorithm shown to be strongly polynomial
for MDPs with a fixed discount factor.

I Zadorojniy, Even, and Schwartz (2009) gave a strongly
polynomial algorithm for controlled random walks, which
Even & Zadorojniy (2012) showed to be equivalent to simplex
with the Gass-Saaty rule. It requires

O((n2 + nm) ·m) = O(nm2)

arithmetic operations.

28 / 34

New Strongly Polynomial Algorithms

I Andersson & Vorobyov (2006) proposed a strongly polynomial
algorithm that solves deterministic discounted MDPs using

O(n2m)

arithmetic operations.

I Madani, Thorup, & Zwick (2010) gave two new strongly
polynomial algorithms for deterministic discounted MDPs;
one requires

O(nm + n2 log(n))

arithmetic operations, and the other requires

Θ(nm)

arithmetic operations.

29 / 34

Future Directions

1. Consider the complexity of algorithms for average-reward
MDPs.

2. Exhibit LPs/MDPs on which the simplex method is not
strongly polynomial.

3. Develop sufficient conditions for the simplex method to be
strongly polynomial.

30 / 34

Average-Reward MDPs

I The long-run expected average reward per unit time earned
under the policy π ∈ ΠR starting from state x ∈ X is

g(x , π) , lim inf
N→∞

Eπx
1

N

N−1∑
t=0

r(xt , at).

I A policy π∗ is optimal under the average-reward criterion if
g(x , π∗) = supπ∈ΠR g(x , π) for all x ∈ X.

I Similarly to the discounted case,
I stationary optimal policies exist when the state & action sets

are finite, and
I value iteration, policy iteration, and linear programming

methods exist.

31 / 34

Average-Reward MDPs

I If the MDP is deterministic, then the average-reward
problem reduces to the classical problem of finding a
minimum mean weight cycle in a directed graph, which is
solvable in strongly polynomial time (e.g. Karp 1978; Young,
Tarjan, & Orlin 1991).

I For the stochastic average-reward case, there are relatively
few strong polynomiality results.

I The algorithm of Zadorojniy, Even, and Schwartz (2009) also
solves average-reward controlled random walks using O(nm2)
arithmetic operations.

I Feinberg & Huang (2013) showed that policy iteration is
strongly polynomial for MDPs modeling replacement &
mainteneance problems with a fixed failure probability.

I Akian & Gaubert (2013) showed that if there’s a state that’s
recurrent under all stationary policies, then policy iteration is
strongly polynomial.

32 / 34

Examples Where Simplex Isn’t Strongly Polynomial

I We conjecture that there is a unichain MDP, i.e. where the
Markov chain induced by every stationary policy has a single
recurrent class, on which PI/simplex for average rewards will
perform badly (e.g. be exponential).

I There may also be an MDP with a majorant, i.e. where there
exists a number q(x) for each x ∈ X satisfying

q(y) ≥ p(y |x , a) ∀ x , y ∈ X & a ∈ A(x) and
∑
y∈X

q(y) < 2,

on which PI/simplex for average rewards does badly.

I An MDP with a majorant can be reduced to a discounted
MDP with a negative discount factor. We conjecture that
PI/simplex for discounted rewards may not be strongly
polynomial for such MDPs either.

33 / 34

Conditions Ensuring Simplex is Strongly Polynomial

I Kitahara & Mizuno (2011) used Ye’s (2011) analysis to show
that if an LP with n constraints and m variables has an
optimal solution, and the values of all the positive elements of
any basic feasible solution are between δ and γ, then under
both Dantzig’s rule and the best-improvement rule, the
simplex method will generate at most

m
⌈
n · γ

δ
ln
(
n · γ

δ

)⌉
distinct basic feasible solutions.

I For the LP (Pβ), δ = 1 and γ = n/(1− β).

I Are there other conditions that imply the simplex method is
strongly polynomial?

34 / 34

