
Solving Markov Decision Processes

Jefferson Huang

School of Operations Research and Information Engineering

Cornell University

February 8, 2018

Naval Postgraduate School

Monterey, CA

Searching for a Hidden Hostage

A hostage is known to be hidden
somewhere in the city.

Objective: Find the hostage as quickly as possible.

1/32

Searching for a Hidden Hostage

A hostage is known to be hidden
somewhere in the city.

Objective: Find the hostage as quickly as possible.

1/32

Searching for a Hidden Hostage

A hostage is known to be hidden
somewhere in the city.

Objective: Find the hostage as quickly as possible.

1/32

Triaging & Treating Patients on a Battlefield

An explosion has left many people with
severe injuries.

I You are the only medical provider on
the scene.

I For each patient, you can perform
triage to roughly assess their
condition, or perform treatment.

Objective: Save as many lives as possible.

2/32

Triaging & Treating Patients on a Battlefield

An explosion has left many people with
severe injuries.

I You are the only medical provider on
the scene.

I For each patient, you can perform
triage to roughly assess their
condition, or perform treatment.

Objective: Save as many lives as possible.

2/32

Triaging & Treating Patients on a Battlefield

An explosion has left many people with
severe injuries.

I You are the only medical provider on
the scene.

I For each patient, you can perform
triage to roughly assess their
condition, or perform treatment.

Objective: Save as many lives as possible.

2/32

Managing Blood Inventory

A blood bank serves several military
hospitals.

I Random demand and donations.

I 8 blood types, some can substitute for
others.

I Blood can only be stored for a few
weeks.

Objective: Find the best way to use available blood to satisfy demand.

3/32

Managing Blood Inventory

A blood bank serves several military
hospitals.

I Random demand and donations.

I 8 blood types, some can substitute for
others.

I Blood can only be stored for a few
weeks.

Objective: Find the best way to use available blood to satisfy demand.

3/32

Managing Blood Inventory

A blood bank serves several military
hospitals.

I Random demand and donations.

I 8 blood types, some can substitute for
others.

I Blood can only be stored for a few
weeks.

Objective: Find the best way to use available blood to satisfy demand.

3/32

Common Features of the Problems

1. Decisions are made over time.

2. Decisions can be based on observations.

3. Depending on the observations, certain actions make more
sense than others.

4. Each action has a cost.

5. Taking an action will affect what you observe next.

4/32

Common Features of the Problems

1. Decisions are made over time.

2. Decisions can be based on observations.

3. Depending on the observations, certain actions make more
sense than others.

4. Each action has a cost.

5. Taking an action will affect what you observe next.

4/32

Common Features of the Problems

1. Decisions are made over time.

2. Decisions can be based on observations.

3. Depending on the observations, certain actions make more
sense than others.

4. Each action has a cost.

5. Taking an action will affect what you observe next.

4/32

Common Features of the Problems

1. Decisions are made over time.

2. Decisions can be based on observations.

3. Depending on the observations, certain actions make more
sense than others.

4. Each action has a cost.

5. Taking an action will affect what you observe next.

4/32

Common Features of the Problems

1. Decisions are made over time.

2. Decisions can be based on observations.

3. Depending on the observations, certain actions make more
sense than others.

4. Each action has a cost.

5. Taking an action will affect what you observe next.

4/32

Common Features of the Problems

1. Decisions are made over time.

2. Decisions can be based on observations.

3. Depending on the observations, certain actions make more
sense than others.

4. Each action has a cost.

5. Taking an action will affect what you observe next.

4/32

Part 1

MDPs: Modeling Decision-Making

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 5/32

Modeling the Common Features

1. Decisions are made over time, at discrete decision epochs

t = 0, 1, 2, 3, . . . ,T

2. Decisions can be based on observations of the system state

x

3. Depending on the observations, certain actions make more
sense than others

a

4. Each action has a cost that depends on the current state:

c(x , a)

5. Taking an action will affect what you observe next

via a probability distribution p(·|x , a)

An MDP is defined by defining:

I the state set X;

I the action set A(x) for each state x ;
I for each state x and action a,

I the one-step cost c(x , a), and
I the transition probability distribution p(·|x , a) on the next

state.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 6/32

Modeling the Common Features

1. Decisions are made over time

, at discrete decision epochs

t = 0, 1, 2, 3, . . . ,T

2. Decisions can be based on observations of the system state

x

3. Depending on the observations, certain actions make more
sense than others

a

4. Each action has a cost that depends on the current state:

c(x , a)

5. Taking an action will affect what you observe next

via a probability distribution p(·|x , a)

An MDP is defined by defining:

I the state set X;

I the action set A(x) for each state x ;
I for each state x and action a,

I the one-step cost c(x , a), and
I the transition probability distribution p(·|x , a) on the next

state.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 6/32

Modeling the Common Features

1. Decisions are made over time, at discrete decision epochs

t = 0, 1, 2, 3, . . . ,T

2. Decisions can be based on observations of the system state

x

3. Depending on the observations, certain actions make more
sense than others

a

4. Each action has a cost that depends on the current state:

c(x , a)

5. Taking an action will affect what you observe next

via a probability distribution p(·|x , a)

An MDP is defined by defining:

I the state set X;

I the action set A(x) for each state x ;
I for each state x and action a,

I the one-step cost c(x , a), and
I the transition probability distribution p(·|x , a) on the next

state.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 6/32

Modeling the Common Features

1. Decisions are made over time, at discrete decision epochs

t = 0, 1, 2, 3, . . . ,T

2. Decisions can be based on observations

of the system state

x

3. Depending on the observations, certain actions make more
sense than others

a

4. Each action has a cost that depends on the current state:

c(x , a)

5. Taking an action will affect what you observe next

via a probability distribution p(·|x , a)

An MDP is defined by defining:

I the state set X;

I the action set A(x) for each state x ;
I for each state x and action a,

I the one-step cost c(x , a), and
I the transition probability distribution p(·|x , a) on the next

state.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 6/32

Modeling the Common Features

1. Decisions are made over time, at discrete decision epochs

t = 0, 1, 2, 3, . . . ,T

2. Decisions can be based on observations of the system state

x

3. Depending on the observations, certain actions make more
sense than others

a

4. Each action has a cost that depends on the current state:

c(x , a)

5. Taking an action will affect what you observe next

via a probability distribution p(·|x , a)

An MDP is defined by defining:

I the state set X;

I the action set A(x) for each state x ;
I for each state x and action a,

I the one-step cost c(x , a), and
I the transition probability distribution p(·|x , a) on the next

state.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 6/32

Modeling the Common Features

1. Decisions are made over time, at discrete decision epochs

t = 0, 1, 2, 3, . . . ,T

2. Decisions can be based on observations of the system state

x

3. Depending on the observations, certain actions make more
sense than others

a

4. Each action has a cost that depends on the current state:

c(x , a)

5. Taking an action will affect what you observe next

via a probability distribution p(·|x , a)

An MDP is defined by defining:

I the state set X;

I the action set A(x) for each state x ;
I for each state x and action a,

I the one-step cost c(x , a), and
I the transition probability distribution p(·|x , a) on the next

state.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 6/32

Modeling the Common Features

1. Decisions are made over time, at discrete decision epochs

t = 0, 1, 2, 3, . . . ,T

2. Decisions can be based on observations of the system state

x

3. Depending on the observations, certain actions make more
sense than others

a

4. Each action has a cost that depends on the current state:

c(x , a)

5. Taking an action will affect what you observe next

via a probability distribution p(·|x , a)

An MDP is defined by defining:

I the state set X;

I the action set A(x) for each state x ;
I for each state x and action a,

I the one-step cost c(x , a), and
I the transition probability distribution p(·|x , a) on the next

state.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 6/32

Modeling the Common Features

1. Decisions are made over time, at discrete decision epochs

t = 0, 1, 2, 3, . . . ,T

2. Decisions can be based on observations of the system state

x

3. Depending on the observations, certain actions make more
sense than others

a

4. Each action has a cost

that depends on the current state:

c(x , a)

5. Taking an action will affect what you observe next

via a probability distribution p(·|x , a)

An MDP is defined by defining:

I the state set X;

I the action set A(x) for each state x ;
I for each state x and action a,

I the one-step cost c(x , a), and
I the transition probability distribution p(·|x , a) on the next

state.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 6/32

Modeling the Common Features

1. Decisions are made over time, at discrete decision epochs

t = 0, 1, 2, 3, . . . ,T

2. Decisions can be based on observations of the system state

x

3. Depending on the observations, certain actions make more
sense than others

a

4. Each action has a cost that depends on the current state:

c(x , a)

5. Taking an action will affect what you observe next

via a probability distribution p(·|x , a)

An MDP is defined by defining:

I the state set X;

I the action set A(x) for each state x ;
I for each state x and action a,

I the one-step cost c(x , a), and
I the transition probability distribution p(·|x , a) on the next

state.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 6/32

Modeling the Common Features

1. Decisions are made over time, at discrete decision epochs

t = 0, 1, 2, 3, . . . ,T

2. Decisions can be based on observations of the system state

x

3. Depending on the observations, certain actions make more
sense than others

a

4. Each action has a cost that depends on the current state:

c(x , a)

5. Taking an action will affect what you observe next

via a probability distribution p(·|x , a)

An MDP is defined by defining:

I the state set X;

I the action set A(x) for each state x ;
I for each state x and action a,

I the one-step cost c(x , a), and
I the transition probability distribution p(·|x , a) on the next

state.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 6/32

Modeling the Common Features

1. Decisions are made over time, at discrete decision epochs

t = 0, 1, 2, 3, . . . ,T

2. Decisions can be based on observations of the system state

x

3. Depending on the observations, certain actions make more
sense than others

a

4. Each action has a cost that depends on the current state:

c(x , a)

5. Taking an action will affect what you observe next

via a probability distribution p(·|x , a)

An MDP is defined by defining:

I the state set X;

I the action set A(x) for each state x ;
I for each state x and action a,

I the one-step cost c(x , a), and
I the transition probability distribution p(·|x , a) on the next

state.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 6/32

Modeling the Common Features

1. Decisions are made over time, at discrete decision epochs

t = 0, 1, 2, 3, . . . ,T

2. Decisions can be based on observations of the system state

x

3. Depending on the observations, certain actions make more
sense than others

a

4. Each action has a cost that depends on the current state:

c(x , a)

5. Taking an action will affect what you observe next

via a probability distribution p(·|x , a)

An MDP is defined by defining:

I the state set X;

I the action set A(x) for each state x ;
I for each state x and action a,

I the one-step cost c(x , a), and
I the transition probability distribution p(·|x , a) on the next

state.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 6/32

Searching for a Hidden Hostage: MDP

State = (

Action =

1/43/101/81/61 1/41/101/81/60 1/43/103/81/20 1/43/103/81/60)

/,
↑↑ ↑↑

Time Elapsed: 01245 hours

Only 1 location can be searched at a time.

1. Pi = posterior probability that the hostage is in location i

2. Ci = time needed to search location i

3. αi = probability that search of location i gives a true positive

4. No false positives.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 7/32

Searching for a Hidden Hostage: MDP

State = (

Action =

1/43/101/81/61 1/41/101/81/60 1/43/103/81/20 1/43/103/81/60)

/,
↑↑ ↑↑

Time Elapsed: 01245 hours

Only 1 location can be searched at a time.

1. Initially, P1 = P2 = P3 = P4 = 1/4.

2. Times to Search: C1 = 1, C2 = 1, C3 = 3, C4 = 2

3. True Positive Chances: α1 = α2 = α3 = α4 = 2/3

4. No false positives.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 7/32

Searching for a Hidden Hostage: MDP

State = (

Action =

1/43/101/81/61 1/41/101/81/60 1/43/103/81/20 1/43/103/81/60)

/,
↑↑ ↑↑

Time Elapsed: 01245 hours

Only 1 location can be searched at a time.

1. Initially, P1 = P2 = P3 = P4 = 1/4.

2. Times to Search: C1 = 1, C2 = 1, C3 = 3, C4 = 2

3. True Positive Chances: α1 = α2 = α3 = α4 = 2/3

4. No false positives.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 7/32

Searching for a Hidden Hostage: MDP

State = (

Action =

1/43/101/81/61 1/41/101/81/60 1/43/103/81/20 1/43/103/81/60)

/,
↑↑ ↑↑

Time Elapsed: 01245 hours

Only 1 location can be searched at a time.

1. Initially, P1 = P2 = P3 = P4 = 1/4.

2. Times to Search: C1 = 1, C2 = 1, C3 = 3, C4 = 2

3. True Positive Chances: α1 = α2 = α3 = α4 = 2/3

4. No false positives.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 7/32

Searching for a Hidden Hostage: MDP

State = (

Action =

1/43/101/81/61 1/41/101/81/60 1/43/103/81/20 1/43/103/81/60)

/,
↑↑ ↑↑

Time Elapsed: 01245 hours

Only 1 location can be searched at a time.

1. Initially, P1 = P2 = P3 = P4 = 1/4.

2. Times to Search: C1 = 1, C2 = 1, C3 = 3, C4 = 2

3. True Positive Chances: α1 = α2 = α3 = α4 = 2/3

4. No false positives.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 7/32

Searching for a Hidden Hostage: MDP

State = (

Action =

1/43/101/81/61 1/41/101/81/60 1/43/103/81/20 1/43/103/81/60)

/,
↑↑ ↑↑

Time Elapsed: 01245 hours

Only 1 location can be searched at a time.

1. Initially, P1 = P2 = P3 = P4 = 1/4.

2. Times to Search: C1 = 1, C2 = 1, C3 = 3, C4 = 2

3. True Positive Chances: α1 = α2 = α3 = α4 = 2/3

4. No false positives.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 7/32

Searching for a Hidden Hostage: MDP

State = (

Action =

1/43/101/81/61 1/41/101/81/60 1/43/103/81/20 1/43/103/81/60)

/,
↑↑ ↑↑

Time Elapsed: 01245 hours

Only 1 location can be searched at a time.

1. Initially, P1 = P2 = P3 = P4 = 1/4.

2. Times to Search: C1 = 1, C2 = 1, C3 = 3, C4 = 2

3. True Positive Chances: α1 = α2 = α3 = α4 = 2/3

4. No false positives.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 7/32

Searching for a Hidden Hostage: MDP

State = (

Action =

1/43/101/81/61 1/41/101/81/60 1/43/103/81/20 1/43/103/81/60)

/,
↑↑ ↑↑

Time Elapsed: 01245 hours

Only 1 location can be searched at a time.

1. Initially, P1 = P2 = P3 = P4 = 1/4.

2. Times to Search: C1 = 1, C2 = 1, C3 = 3, C4 = 2

3. True Positive Chances: α1 = α2 = α3 = α4 = 2/3

4. No false positives.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 7/32

Searching for a Hidden Hostage: MDP

State = (

Action =

1/43/101/81/61 1/41/101/81/60 1/43/103/81/20 1/43/103/81/60)

/,
↑↑ ↑↑

Time Elapsed: 01245 hours

Only 1 location can be searched at a time.

1. Initially, P1 = P2 = P3 = P4 = 1/4.

2. Times to Search: C1 = 1, C2 = 1, C3 = 3, C4 = 2

3. True Positive Chances: α1 = α2 = α3 = α4 = 2/3

4. No false positives.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 7/32

Searching for a Hidden Hostage: MDP

State = (

Action =

1/43/101/81/61 1/41/101/81/60 1/43/103/81/20 1/43/103/81/60)

/,
↑↑ ↑↑

Time Elapsed: 01245 hours

Only 1 location can be searched at a time.

1. Initially, P1 = P2 = P3 = P4 = 1/4.

2. Times to Search: C1 = 1, C2 = 1, C3 = 3, C4 = 2

3. True Positive Chances: α1 = α2 = α3 = α4 = 2/3

4. No false positives.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 7/32

Searching for a Hidden Hostage: MDP

State = (

Action =

1/43/101/81/61 1/41/101/81/60 1/43/103/81/20 1/43/103/81/60)

/,
↑↑ ↑↑

Time Elapsed: 01245 hours

MDP Formulation:

1. Decision Epoch = end of a search

2. State = (P1,P2,P3,P4) = P

3. Action = location to search

4. c(P, i) = Ci

5. p(·|P, i) :

{
find hostage with probability αiPi

update P with Bayes’ Rule with probability 1 − αiPi

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 7/32

Control via a Policy

Q: Given the state, what action should be taken?

A: Act according to a policy ϕ.

i.e., at each decision epoch t,

specify which action ϕt(x) to take if state x is observed.

e.g., in the hostage search problem,

search the location i maximizing αiPi
Ci

.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 8/32

Control via a Policy

Q: Given the state, what action should be taken?

A: Act according to a policy ϕ.

i.e., at each decision epoch t,

specify which action ϕt(x) to take if state x is observed.

e.g., in the hostage search problem,

search the location i maximizing αiPi
Ci

.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 8/32

Control via a Policy

Q: Given the state, what action should be taken?

A: Act according to a policy ϕ.

i.e., at each decision epoch t,

specify which action ϕt(x) to take if state x is observed.

e.g., in the hostage search problem,

search the location i maximizing αiPi
Ci

.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 8/32

Control via a Policy

Q: Given the state, what action should be taken?

A: Act according to a policy ϕ.

i.e., at each decision epoch t,

specify which action ϕt(x) to take if state x is observed.

e.g., in the hostage search problem,

search the location i maximizing αiPi
Ci

.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 8/32

Optimal Policies

Q: Which policy should be followed?

A: Follow an optimal policy.

Initial State: x

Expected total cost of a policy ϕ:

vT (x ,ϕ) = E

[
T−1∑
t=0

c(xt ,ϕt(xt))

]

A policy is optimal if, for every initial state x , it

minimizes vT (x ,ϕ) over all policies ϕ.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 9/32

Optimal Policies

Q: Which policy should be followed?

A: Follow an optimal policy.

Initial State: x

Expected total cost of a policy ϕ:

vT (x ,ϕ) = E

[
T−1∑
t=0

c(xt ,ϕt(xt))

]

A policy is optimal if, for every initial state x , it

minimizes vT (x ,ϕ) over all policies ϕ.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 9/32

Optimal Policies

Q: Which policy should be followed?

A: Follow an optimal policy.

Initial State: x

Expected total cost of a policy ϕ:

vT (x ,ϕ) = E

[
T−1∑
t=0

c(xt ,ϕt(xt))

]

A policy is optimal if, for every initial state x , it

minimizes vT (x ,ϕ) over all policies ϕ.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 9/32

Optimal Policies

Q: Which policy should be followed?

A: Follow an optimal policy.

Initial State: x

Expected total cost of a policy ϕ:

vT (x ,ϕ) = E

[
T−1∑
t=0

c(xt ,ϕt(xt))

]

A policy is optimal if, for every initial state x , it

minimizes vT (x ,ϕ) over all policies ϕ.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 9/32

Optimal Policies

Q: Which policy should be followed?

A: Follow an optimal policy.

Initial State: x

Expected total cost of a policy ϕ:

vT (x ,ϕ) = E

[
T−1∑
t=0

c(xt ,ϕt(xt))

]

A policy is optimal if, for every initial state x , it

minimizes vT (x ,ϕ) over all policies ϕ.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 9/32

Computing an Optimal Policy

Assume:

I number of states is finite

I planning horizon T is finite

(for now)

Q: How can an optimal policy be obtained?

A: Value Iteration:

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . . ,T ,

ϕ∗T−t(x) = arg min
a∈A(x)

c(x , a) +
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = min

a∈A(x)

c(x , a) +
∑
y∈X

p(y |x , a)Vt−1(y)



Theorem:

The policy ϕ∗ is optimal for the planning horizon T .

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 10/32

Computing an Optimal Policy

Assume:

I number of states is finite

I planning horizon T is finite (for now)

Q: How can an optimal policy be obtained?

A: Value Iteration:

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . . ,T ,

ϕ∗T−t(x) = arg min
a∈A(x)

c(x , a) +
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = min

a∈A(x)

c(x , a) +
∑
y∈X

p(y |x , a)Vt−1(y)



Theorem:

The policy ϕ∗ is optimal for the planning horizon T .

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 10/32

Computing an Optimal Policy

Assume:

I number of states is finite

I planning horizon T is finite (for now)

Q: How can an optimal policy be obtained?

A: Value Iteration:

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . . ,T ,

ϕ∗T−t(x) = arg min
a∈A(x)

c(x , a) +
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = min

a∈A(x)

c(x , a) +
∑
y∈X

p(y |x , a)Vt−1(y)



Theorem:

The policy ϕ∗ is optimal for the planning horizon T .

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 10/32

Computing an Optimal Policy

Assume:

I number of states is finite

I planning horizon T is finite (for now)

Q: How can an optimal policy be obtained?

A: Value Iteration:

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . . ,T ,

ϕ∗T−t(x) = arg min
a∈A(x)

c(x , a) +
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = min

a∈A(x)

c(x , a) +
∑
y∈X

p(y |x , a)Vt−1(y)



Theorem:

The policy ϕ∗ is optimal for the planning horizon T .

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 10/32

Computing an Optimal Policy

Assume:

I number of states is finite

I planning horizon T is finite (for now)

Q: How can an optimal policy be obtained?

A: Value Iteration:

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . . ,T ,

ϕ∗T−t(x) = arg min
a∈A(x)

c(x , a) +
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = min

a∈A(x)

c(x , a) +
∑
y∈X

p(y |x , a)Vt−1(y)



Theorem:

The policy ϕ∗ is optimal for the planning horizon T .

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 10/32

Computing an Optimal Policy

Assume:

I number of states is finite

I planning horizon T is finite (for now)

Q: How can an optimal policy be obtained?

A: Value Iteration:

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . . ,T ,

ϕ∗T−t(x) = arg min
a∈A(x)

c(x , a) +
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = min

a∈A(x)

c(x , a) +
∑
y∈X

p(y |x , a)Vt−1(y)



Theorem:

The policy ϕ∗ is optimal for the planning horizon T .

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 10/32

Computing an Optimal Policy

Assume:

I number of states is finite

I planning horizon T is finite (for now)

Q: How can an optimal policy be obtained?

A: Value Iteration:

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . . ,T ,

ϕ∗T−t(x) = arg min
a∈A(x)

c(x , a) +
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = min

a∈A(x)

c(x , a) +
∑
y∈X

p(y |x , a)Vt−1(y)



Theorem:

The policy ϕ∗ is optimal for the planning horizon T .

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 10/32

Infinite Horizon with Discounting

Q: What should the planning horizon be?

A: Assume that it is infinite. (a simplification)

Introduce a fixed discount factor β (to ensure finiteness):

v(x ,ϕ) = E

[∞∑
t=0

βtc(xt ,ϕt(xt))

]

Possible Interpretations of β:

1. Reflects time-value of money.

2. After each decision, the problem terminates with probability (1−β).

Theorem:

There exists an optimal policy that is station-
ary (doesn’t depend on what epoch t it is).

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 11/32

Infinite Horizon with Discounting

Q: What should the planning horizon be?

A: Assume that it is infinite.

(a simplification)

Introduce a fixed discount factor β (to ensure finiteness):

v(x ,ϕ) = E

[∞∑
t=0

βtc(xt ,ϕt(xt))

]

Possible Interpretations of β:

1. Reflects time-value of money.

2. After each decision, the problem terminates with probability (1−β).

Theorem:

There exists an optimal policy that is station-
ary (doesn’t depend on what epoch t it is).

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 11/32

Infinite Horizon with Discounting

Q: What should the planning horizon be?

A: Assume that it is infinite. (a simplification)

Introduce a fixed discount factor β (to ensure finiteness):

v(x ,ϕ) = E

[∞∑
t=0

βtc(xt ,ϕt(xt))

]

Possible Interpretations of β:

1. Reflects time-value of money.

2. After each decision, the problem terminates with probability (1−β).

Theorem:

There exists an optimal policy that is station-
ary (doesn’t depend on what epoch t it is).

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 11/32

Infinite Horizon with Discounting

Q: What should the planning horizon be?

A: Assume that it is infinite. (a simplification)

Introduce a fixed discount factor β

(to ensure finiteness):

v(x ,ϕ) = E

[∞∑
t=0

βtc(xt ,ϕt(xt))

]

Possible Interpretations of β:

1. Reflects time-value of money.

2. After each decision, the problem terminates with probability (1−β).

Theorem:

There exists an optimal policy that is station-
ary (doesn’t depend on what epoch t it is).

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 11/32

Infinite Horizon with Discounting

Q: What should the planning horizon be?

A: Assume that it is infinite. (a simplification)

Introduce a fixed discount factor β (to ensure finiteness):

v(x ,ϕ) = E

[∞∑
t=0

βtc(xt ,ϕt(xt))

]

Possible Interpretations of β:

1. Reflects time-value of money.

2. After each decision, the problem terminates with probability (1−β).

Theorem:

There exists an optimal policy that is station-
ary (doesn’t depend on what epoch t it is).

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 11/32

Infinite Horizon with Discounting

Q: What should the planning horizon be?

A: Assume that it is infinite. (a simplification)

Introduce a fixed discount factor β (to ensure finiteness):

v(x ,ϕ) = E

[∞∑
t=0

βtc(xt ,ϕt(xt))

]

Possible Interpretations of β:

1. Reflects time-value of money.

2. After each decision, the problem terminates with probability (1−β).

Theorem:

There exists an optimal policy that is station-
ary (doesn’t depend on what epoch t it is).

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 11/32

Infinite Horizon with Discounting

Q: What should the planning horizon be?

A: Assume that it is infinite. (a simplification)

Introduce a fixed discount factor β (to ensure finiteness):

v(x ,ϕ) = E

[∞∑
t=0

βtc(xt ,ϕt(xt))

]

Possible Interpretations of β:

1. Reflects time-value of money.

2. After each decision, the problem terminates with probability (1−β).

Theorem:

There exists an optimal policy that is station-
ary (doesn’t depend on what epoch t it is).

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 11/32

Infinite Horizon with Discounting

Q: What should the planning horizon be?

A: Assume that it is infinite. (a simplification)

Introduce a fixed discount factor β (to ensure finiteness):

v(x ,ϕ) = E

[∞∑
t=0

βtc(xt ,ϕt(xt))

]

Possible Interpretations of β:

1. Reflects time-value of money.

2. After each decision, the problem terminates with probability (1−β).

Theorem:

There exists an optimal policy that is station-
ary (doesn’t depend on what epoch t it is).

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 11/32

Computing an Optimal Policy: Infinite Horizon

Q: How can a stationary optimal policy be computed?

A: Value Iteration:

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = min

a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)



Theorem:

For some finite T , the stationary policy that al-
ways takes actions according to ϕ∗T (·) is optimal.

Question:

Are there any guarantees on when value it-
eration will produce an optimal policy?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 12/32

Computing an Optimal Policy: Infinite Horizon

Q: How can a stationary optimal policy be computed?

A: Value Iteration:

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = min

a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)



Theorem:

For some finite T , the stationary policy that al-
ways takes actions according to ϕ∗T (·) is optimal.

Question:

Are there any guarantees on when value it-
eration will produce an optimal policy?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 12/32

Computing an Optimal Policy: Infinite Horizon

Q: How can a stationary optimal policy be computed?

A: Value Iteration:

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = min

a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)



Theorem:

For some finite T , the stationary policy that al-
ways takes actions according to ϕ∗T (·) is optimal.

Question:

Are there any guarantees on when value it-
eration will produce an optimal policy?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 12/32

Computing an Optimal Policy: Infinite Horizon

Q: How can a stationary optimal policy be computed?

A: Value Iteration:

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = min

a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)



Theorem:

For some finite T , the stationary policy that al-
ways takes actions according to ϕ∗T (·) is optimal.

Question:

Are there any guarantees on when value it-
eration will produce an optimal policy?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 12/32

Computing an Optimal Policy: Infinite Horizon

Q: How can a stationary optimal policy be computed?

A: Value Iteration:

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = min

a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)



Theorem:

For some finite T , the stationary policy that al-
ways takes actions according to ϕ∗T (·) is optimal.

Question:

Are there any guarantees on when value it-
eration will produce an optimal policy?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 12/32

Computing an Optimal Policy: Infinite Horizon

Q: How can a stationary optimal policy be computed?

A: Value Iteration:

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = min

a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)



Theorem:

For some finite T , the stationary policy that al-
ways takes actions according to ϕ∗T (·) is optimal.

Question:

Are there any guarantees on when value it-
eration will produce an optimal policy?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 12/32

Part 2

Efficiency of Computing Optimal Policies

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 13/32

Assessing the Efficiency of Algorithms

Q: How can the efficiency of an algorithm be measured?

Example: Find the word “abalone” in a dictionary.

aardvark aardwolf aaron aback abacus abaft abalone abandon abandoned

↑ ↑ ↑ ↑ ↑ ↑ ↑↑ ↑↑

Which is better?

I “Linear Search”:

7 steps.

I “Binary Search”:

3 steps.

What if we were searching for “aardvark”?

What if the computer is very fast? Very slow?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 14/32

Assessing the Efficiency of Algorithms

Q: How can the efficiency of an algorithm be measured?

Example: Find the word “abalone” in a dictionary.

aardvark aardwolf aaron aback abacus abaft abalone abandon abandoned

↑ ↑ ↑ ↑ ↑ ↑ ↑↑ ↑↑

Which is better?

I “Linear Search”:

7 steps.

I “Binary Search”:

3 steps.

What if we were searching for “aardvark”?

What if the computer is very fast? Very slow?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 14/32

Assessing the Efficiency of Algorithms

Q: How can the efficiency of an algorithm be measured?

Example: Find the word “abalone” in a dictionary.

aardvark aardwolf aaron aback abacus abaft abalone abandon abandoned

↑ ↑ ↑ ↑ ↑ ↑ ↑↑ ↑↑

Which is better?

I “Linear Search”:

7 steps.

I “Binary Search”:

3 steps.

What if we were searching for “aardvark”?

What if the computer is very fast? Very slow?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 14/32

Assessing the Efficiency of Algorithms

Q: How can the efficiency of an algorithm be measured?

Example: Find the word “abalone” in a dictionary.

aardvark aardwolf aaron aback abacus abaft abalone abandon abandoned

↑ ↑ ↑ ↑ ↑ ↑ ↑↑ ↑↑

Which is better?

I “Linear Search”:

7 steps.

I “Binary Search”:

3 steps.

What if we were searching for “aardvark”?

What if the computer is very fast? Very slow?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 14/32

Assessing the Efficiency of Algorithms

Q: How can the efficiency of an algorithm be measured?

Example: Find the word “abalone” in a dictionary.

aardvark aardwolf aaron aback abacus abaft abalone abandon abandoned

↑ ↑ ↑ ↑ ↑ ↑ ↑↑ ↑↑

Which is better?

I “Linear Search”:

7 steps.

I “Binary Search”:

3 steps.

What if we were searching for “aardvark”?

What if the computer is very fast? Very slow?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 14/32

Assessing the Efficiency of Algorithms

Q: How can the efficiency of an algorithm be measured?

Example: Find the word “abalone” in a dictionary.

aardvark aardwolf aaron aback abacus abaft abalone abandon abandoned

↑ ↑ ↑ ↑ ↑ ↑ ↑↑ ↑↑

Which is better?

I “Linear Search”:

7 steps.

I “Binary Search”:

3 steps.

What if we were searching for “aardvark”?

What if the computer is very fast? Very slow?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 14/32

Assessing the Efficiency of Algorithms

Q: How can the efficiency of an algorithm be measured?

Example: Find the word “abalone” in a dictionary.

aardvark aardwolf aaron aback abacus abaft abalone abandon abandoned

↑ ↑ ↑ ↑ ↑ ↑ ↑↑ ↑↑

Which is better?

I “Linear Search”:

7 steps.

I “Binary Search”:

3 steps.

What if we were searching for “aardvark”?

What if the computer is very fast? Very slow?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 14/32

Assessing the Efficiency of Algorithms

Q: How can the efficiency of an algorithm be measured?

Example: Find the word “abalone” in a dictionary.

aardvark aardwolf aaron aback abacus abaft abalone abandon abandoned

↑ ↑ ↑ ↑ ↑ ↑ ↑↑ ↑↑

Which is better?

I “Linear Search”:

7 steps.

I “Binary Search”:

3 steps.

What if we were searching for “aardvark”?

What if the computer is very fast? Very slow?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 14/32

Assessing the Efficiency of Algorithms

Q: How can the efficiency of an algorithm be measured?

Example: Find the word “abalone” in a dictionary.

aardvark aardwolf aaron aback abacus abaft abalone abandon abandoned

↑ ↑ ↑ ↑ ↑ ↑ ↑↑ ↑↑

Which is better?

I “Linear Search”:

7 steps.

I “Binary Search”:

3 steps.

What if we were searching for “aardvark”?

What if the computer is very fast? Very slow?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 14/32

Assessing the Efficiency of Algorithms

Q: How can the efficiency of an algorithm be measured?

Example: Find the word “abalone” in a dictionary.

aardvark aardwolf aaron aback abacus abaft abalone abandon abandoned

↑ ↑ ↑ ↑ ↑ ↑ ↑↑ ↑↑

Which is better?

I “Linear Search”:

7 steps.

I “Binary Search”:

3 steps.

What if we were searching for “aardvark”?

What if the computer is very fast? Very slow?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 14/32

Assessing the Efficiency of Algorithms

Q: How can the efficiency of an algorithm be measured?

Example: Find the word “abalone” in a dictionary.

aardvark aardwolf aaron aback abacus abaft abalone abandon abandoned

↑ ↑ ↑ ↑ ↑ ↑ ↑↑ ↑↑

Which is better?

I “Linear Search”:

7 steps.

I “Binary Search”:

3 steps.

What if we were searching for “aardvark”?

What if the computer is very fast? Very slow?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 14/32

Assessing the Efficiency of Algorithms

Q: How can the efficiency of an algorithm be measured?

Example: Find the word “abalone” in a dictionary.

aardvark aardwolf aaron aback abacus abaft abalone abandon abandoned

↑ ↑ ↑ ↑ ↑ ↑ ↑↑ ↑↑

Which is better?

I “Linear Search”: 7 steps.

I “Binary Search”:

3 steps.

What if we were searching for “aardvark”?

What if the computer is very fast? Very slow?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 14/32

Assessing the Efficiency of Algorithms

Q: How can the efficiency of an algorithm be measured?

Example: Find the word “abalone” in a dictionary.

aardvark aardwolf aaron aback abacus abaft abalone abandon abandoned

↑ ↑ ↑ ↑ ↑ ↑ ↑↑ ↑↑

Which is better?

I “Linear Search”: 7 steps.

I “Binary Search”:

3 steps.

What if we were searching for “aardvark”?

What if the computer is very fast? Very slow?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 14/32

Assessing the Efficiency of Algorithms

Q: How can the efficiency of an algorithm be measured?

Example: Find the word “abalone” in a dictionary.

aardvark aardwolf aaron aback abacus abaft abalone abandon abandoned

↑ ↑ ↑ ↑ ↑ ↑ ↑↑ ↑↑

Which is better?

I “Linear Search”: 7 steps.

I “Binary Search”:

3 steps.

What if we were searching for “aardvark”?

What if the computer is very fast? Very slow?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 14/32

Assessing the Efficiency of Algorithms

Q: How can the efficiency of an algorithm be measured?

Example: Find the word “abalone” in a dictionary.

aardvark aardwolf aaron aback abacus abaft abalone abandon abandoned

↑ ↑ ↑ ↑ ↑ ↑ ↑↑ ↑↑

Which is better?

I “Linear Search”: 7 steps.

I “Binary Search”:

3 steps.

What if we were searching for “aardvark”?

What if the computer is very fast? Very slow?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 14/32

Assessing the Efficiency of Algorithms

Q: How can the efficiency of an algorithm be measured?

Example: Find the word “abalone” in a dictionary.

aardvark aardwolf aaron aback abacus abaft abalone abandon abandoned

↑ ↑ ↑ ↑ ↑ ↑ ↑↑ ↑↑

Which is better?

I “Linear Search”: 7 steps.

I “Binary Search”: 3 steps.

What if we were searching for “aardvark”?

What if the computer is very fast? Very slow?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 14/32

Assessing the Efficiency of Algorithms

Q: How can the efficiency of an algorithm be measured?

Example: Find the word “abalone” in a dictionary.

aardvark aardwolf aaron aback abacus abaft abalone abandon abandoned

↑ ↑ ↑ ↑ ↑ ↑ ↑↑ ↑↑

Which is better?

I “Linear Search”: 7 steps.

I “Binary Search”: 3 steps.

What if we were searching for “aardvark”?

What if the computer is very fast? Very slow?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 14/32

Assessing the Efficiency of Algorithms

Q: How can the efficiency of an algorithm be measured?

Example: Find the word “abalone” in a dictionary.

aardvark aardwolf aaron aback abacus abaft abalone abandon abandoned

↑ ↑ ↑ ↑ ↑ ↑ ↑↑ ↑↑

Which is better?

I “Linear Search”: 7 steps.

I “Binary Search”: 3 steps.

What if we were searching for “aardvark”?

What if the computer is very fast? Very slow?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 14/32

Assessing the Efficiency of Algorithms

A1: Look at the number of steps needed in the worst case.

Example: Finding a word in a dictionary of length N = 9.

aardvark aardwolf aaron aback abacus abaft abalone abandon abandoned

I Linear Search: at worst N steps.

I Binary Search: at worst ≈ log2 N steps

If N is large, Linear Search may need many more steps.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 15/32

Assessing the Efficiency of Algorithms

A1: Look at the number of steps needed in the worst case.

Example: Finding a word in a dictionary of length N = 9.

aardvark aardwolf aaron aback abacus abaft abalone abandon abandoned

I Linear Search: at worst N steps.

I Binary Search: at worst ≈ log2 N steps

If N is large, Linear Search may need many more steps.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 15/32

Assessing the Efficiency of Algorithms

A1: Look at the number of steps needed in the worst case.

Example: Finding a word in a dictionary of length N = 9.

aardvark aardwolf aaron aback abacus abaft abalone abandon abandoned

I Linear Search: at worst N steps.

I Binary Search: at worst ≈ log2 N steps

If N is large, Linear Search may need many more steps.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 15/32

Assessing the Efficiency of Algorithms

A1: Look at the number of steps needed in the worst case.

Example: Finding a word in a dictionary of length N = 9.

aardvark aardwolf aaron aback abacus abaft abalone abandon abandoned

I Linear Search: at worst N steps.

I Binary Search: at worst ≈ log2 N steps

If N is large, Linear Search may need many more steps.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 15/32

Assessing the Efficiency of Algorithms

A1: Look at the number of steps needed in the worst case.

Example: Finding a word in a dictionary of length N = 9.

aardvark aardwolf aaron aback abacus abaft abalone abandon abandoned

I Linear Search: at worst N steps.

I Binary Search: at worst ≈ log2 N steps

If N is large, Linear Search may need many more steps.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 15/32

Assessing the Efficiency of Algorithms

A1: Look at the number of steps needed in the worst case.

Example: Finding a word in a dictionary of length N = 9.

aardvark aardwolf aaron aback abacus abaft abalone abandon abandoned

I Linear Search: at worst N steps.

I Binary Search: at worst ≈ log2 N steps

If N is large, Linear Search may need many more steps.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 15/32

Assessing the Efficiency of Algorithms

A2: Look at the growth rate of the number of steps needed in the worst
case.

Example (Cont.): As the dictionary size N grows, the worst case
number of steps of Linear Search grows much faster than that of Binary
Search.

N

Steps (Worst Case) Linear Search

Binary Search

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 16/32

Assessing the Efficiency of Algorithms

A2: Look at the growth rate of the number of steps needed in the worst
case.

Example (Cont.): As the dictionary size N grows, the worst case
number of steps of Linear Search grows much faster than that of Binary
Search.

N

Steps (Worst Case) Linear Search

Binary Search

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 16/32

Assessing the Efficiency of Algorithms

A2: Look at the growth rate of the number of steps needed in the worst
case.

Example (Cont.): As the dictionary size N grows, the worst case
number of steps of Linear Search grows much faster than that of Binary
Search.

N

Steps (Worst Case) Linear Search

Binary Search

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 16/32

Assessing the Efficiency of Algorithms

A2: Look at the growth rate of the number of steps needed in the worst
case.

Example (Cont.): As the dictionary size N grows, the worst case
number of steps of Linear Search grows much faster than that of Binary
Search.

N

Steps (Worst Case) Linear Search

Binary Search

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 16/32

Assessing the Efficiency of Algorithms

A2: Look at the growth rate of the number of steps needed in the worst
case.

Example (Cont.): As the dictionary size N grows, the worst case
number of steps of Linear Search grows much faster than that of Binary
Search.

N

Steps (Worst Case) Linear Search

Binary Search

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 16/32

Complexity of Algorithms for MDPs

I m = number of states in the MDP

I L = number of bits needed to encode the MDP data

I S(m, L) = number of arithmetic operations that a given
algorithm needs to return an optimal policy for the MDP

Definition: An algorithm for computing an optimal policy is

1. weakly polynomial if S(m, L) can be bounded above by a
polynomial function of m and L;

2. strongly polynomial if S(m, L) can be bounded above by a
polynomial function of m only.

What happens as L→∞? (e.g., costs get large)

1. weakly polynomial =⇒ bound goes to ∞
2. strongly polynomial. =⇒ bound is unchanged

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 17/32

Complexity of Algorithms for MDPs

I m = number of states in the MDP

I L = number of bits needed to encode the MDP data

I S(m, L) = number of arithmetic operations that a given
algorithm needs to return an optimal policy for the MDP

Definition: An algorithm for computing an optimal policy is

1. weakly polynomial if S(m, L) can be bounded above by a
polynomial function of m and L;

2. strongly polynomial if S(m, L) can be bounded above by a
polynomial function of m only.

What happens as L→∞? (e.g., costs get large)

1. weakly polynomial =⇒ bound goes to ∞
2. strongly polynomial. =⇒ bound is unchanged

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 17/32

Complexity of Algorithms for MDPs

I m = number of states in the MDP

I L = number of bits needed to encode the MDP data

I S(m, L) = number of arithmetic operations that a given
algorithm needs to return an optimal policy for the MDP

Definition: An algorithm for computing an optimal policy is

1. weakly polynomial if S(m, L) can be bounded above by a
polynomial function of m and L;

2. strongly polynomial if S(m, L) can be bounded above by a
polynomial function of m only.

What happens as L→∞? (e.g., costs get large)

1. weakly polynomial =⇒ bound goes to ∞
2. strongly polynomial. =⇒ bound is unchanged

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 17/32

Complexity of Algorithms for MDPs

I m = number of states in the MDP

I L = number of bits needed to encode the MDP data

I S(m, L) = number of arithmetic operations that a given
algorithm needs to return an optimal policy for the MDP

Definition: An algorithm for computing an optimal policy is

1. weakly polynomial if S(m, L) can be bounded above by a
polynomial function of m and L;

2. strongly polynomial if S(m, L) can be bounded above by a
polynomial function of m only.

What happens as L→∞? (e.g., costs get large)

1. weakly polynomial =⇒ bound goes to ∞
2. strongly polynomial. =⇒ bound is unchanged

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 17/32

Complexity of Algorithms for MDPs

I m = number of states in the MDP

I L = number of bits needed to encode the MDP data

I S(m, L) = number of arithmetic operations that a given
algorithm needs to return an optimal policy for the MDP

Definition: An algorithm for computing an optimal policy is

1. weakly polynomial if S(m, L) can be bounded above by a
polynomial function of m and L;

2. strongly polynomial if S(m, L) can be bounded above by a
polynomial function of m only.

What happens as L→∞? (e.g., costs get large)

1. weakly polynomial =⇒ bound goes to ∞
2. strongly polynomial. =⇒ bound is unchanged

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 17/32

Complexity of Algorithms for MDPs

I m = number of states in the MDP

I L = number of bits needed to encode the MDP data

I S(m, L) = number of arithmetic operations that a given
algorithm needs to return an optimal policy for the MDP

Definition: An algorithm for computing an optimal policy is

1. weakly polynomial if S(m, L) can be bounded above by a
polynomial function of m and L;

2. strongly polynomial if S(m, L) can be bounded above by a
polynomial function of m only.

What happens as L→∞? (e.g., costs get large)

1. weakly polynomial =⇒ bound goes to ∞

2. strongly polynomial. =⇒ bound is unchanged

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 17/32

Complexity of Algorithms for MDPs

I m = number of states in the MDP

I L = number of bits needed to encode the MDP data

I S(m, L) = number of arithmetic operations that a given
algorithm needs to return an optimal policy for the MDP

Definition: An algorithm for computing an optimal policy is

1. weakly polynomial if S(m, L) can be bounded above by a
polynomial function of m and L;

2. strongly polynomial if S(m, L) can be bounded above by a
polynomial function of m only.

What happens as L→∞? (e.g., costs get large)

1. weakly polynomial =⇒ bound goes to ∞
2. strongly polynomial. =⇒ bound is unchanged

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 17/32

Efficiency of Value Iteration

Assume the discount factor β is a constant.

Q: Is value iteration weakly polynomial?

Each iteration:

ϕ∗t (x) = arg min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)

 ∼ m3 steps

Vt(x) = min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)

 ∼ m3 steps

Theorem: (Tseng, 1990)
Value iteration needs at mosta

O (m[log(m) + L])

iterations to return an optimal policy.

af (x) = O(g(x)) if lim supx→∞
∣∣∣ f (x)g(x)

∣∣∣ <∞
Conclusion:

Value iteration is weakly polynomial.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 18/32

Efficiency of Value Iteration

Assume the discount factor β is a constant.

Q: Is value iteration weakly polynomial?

Each iteration:

ϕ∗t (x) = arg min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)

 ∼ m3 steps

Vt(x) = min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)

 ∼ m3 steps

Theorem: (Tseng, 1990)
Value iteration needs at mosta

O (m[log(m) + L])

iterations to return an optimal policy.

af (x) = O(g(x)) if lim supx→∞
∣∣∣ f (x)g(x)

∣∣∣ <∞
Conclusion:

Value iteration is weakly polynomial.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 18/32

Efficiency of Value Iteration

Assume the discount factor β is a constant.

Q: Is value iteration weakly polynomial?

Each iteration:

ϕ∗t (x) = arg min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)

 ∼ m3 steps

Vt(x) = min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)

 ∼ m3 steps

Theorem: (Tseng, 1990)
Value iteration needs at mosta

O (m[log(m) + L])

iterations to return an optimal policy.

af (x) = O(g(x)) if lim supx→∞
∣∣∣ f (x)g(x)

∣∣∣ <∞
Conclusion:

Value iteration is weakly polynomial.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 18/32

Efficiency of Value Iteration

Assume the discount factor β is a constant.

Q: Is value iteration weakly polynomial?

Each iteration:

ϕ∗t (x) = arg min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)

 ∼ m3 steps

Vt(x) = min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)

 ∼ m3 steps

Theorem: (Tseng, 1990)
Value iteration needs at mosta

O (m[log(m) + L])

iterations to return an optimal policy.

af (x) = O(g(x)) if lim supx→∞
∣∣∣ f (x)g(x)

∣∣∣ <∞

Conclusion:
Value iteration is weakly polynomial.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 18/32

Efficiency of Value Iteration

Assume the discount factor β is a constant.

Q: Is value iteration weakly polynomial?

Each iteration:

ϕ∗t (x) = arg min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)

 ∼ m3 steps

Vt(x) = min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)

 ∼ m3 steps

Theorem: (Tseng, 1990)
Value iteration needs at mosta

O (m[log(m) + L])

iterations to return an optimal policy.

af (x) = O(g(x)) if lim supx→∞
∣∣∣ f (x)g(x)

∣∣∣ <∞
Conclusion:

Value iteration is weakly polynomial.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 18/32

Efficiency of Value Iteration

Assume the discount factor β is a constant.

Q: Is value iteration strongly polynomial?

Each iteration needs O(m3) steps.

To answer Q, it suffices to answer Q’:

Q’: Can the number of iterations needed to return an optimal
policy be bounded by a polynomial in m only?

Theorem: (H. et al, 2014)

Value iteration is not strongly polynomial.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 19/32

Efficiency of Value Iteration

Assume the discount factor β is a constant.

Q: Is value iteration strongly polynomial?

Each iteration needs O(m3) steps.

To answer Q, it suffices to answer Q’:

Q’: Can the number of iterations needed to return an optimal
policy be bounded by a polynomial in m only?

Theorem: (H. et al, 2014)

Value iteration is not strongly polynomial.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 19/32

Efficiency of Value Iteration

Assume the discount factor β is a constant.

Q: Is value iteration strongly polynomial?

Each iteration needs O(m3) steps.

To answer Q, it suffices to answer Q’:

Q’: Can the number of iterations needed to return an optimal
policy be bounded by a polynomial in m only?

Theorem: (H. et al, 2014)

Value iteration is not strongly polynomial.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 19/32

Efficiency of Value Iteration

Assume the discount factor β is a constant.

Q: Is value iteration strongly polynomial?

Each iteration needs O(m3) steps.

To answer Q, it suffices to answer Q’:

Q’: Can the number of iterations needed to return an optimal
policy be bounded by a polynomial in m only?

Theorem: (H. et al, 2014)

Value iteration is not strongly polynomial.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 19/32

Efficiency of Value Iteration

Assume the discount factor β is a constant.

Q: Is value iteration strongly polynomial?

Each iteration needs O(m3) steps.

To answer Q, it suffices to answer Q’:

Q’: Can the number of iterations needed to return an optimal
policy be bounded by a polynomial in m only?

Theorem: (H. et al, 2014)

Value iteration is not strongly polynomial.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 19/32

Efficiency of Value Iteration

Assume the discount factor β is a constant.

Q: Is value iteration strongly polynomial?

Each iteration needs O(m3) steps.

To answer Q, it suffices to answer Q’:

Q’: Can the number of iterations needed to return an optimal
policy be bounded by a polynomial in m only?

Theorem: (H. et al, 2014)

Value iteration is not strongly polynomial.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 19/32

Proof that Value Iteration is Not Strongly Polynomial

Discount Factor: β < 1.

2 1 3
C 0

0 −1
Value Iteration:

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

{
c(x , a) + β

∑
y∈X

p(y |x , a)Vt−1(y)

}

Vt(x) = min
a∈A(x)

[
c(x , a) + β

∑
y∈X

p(y |x , a)Vt−1(y)

]
Iteration 1: V1(1) = min{C , 0}

Iteration 2: V2(1) = min{C ,βV1(3)}

Iteration 3: V3(1) = min{C ,βV2(3)}

...
...

Iteration t: Vt(1) = min{C ,βVt−1(3)}

Observations:

1. Vt(3) = −(1 + β+ β2 + · · ·+ βt−1) = −1−βt

1−β

2. Once “right” is selected, “left” will never again be
selected.

Idea: Given N > 1, select C so that:

1. “right” is optimal, and “left” is not.

2. On iterations t = 1, . . . ,N , “left” is selected.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 20/32

Proof that Value Iteration is Not Strongly Polynomial

Discount Factor: β < 1.

2 1 3
C 0

0 −1

Value Iteration:

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

{
c(x , a) + β

∑
y∈X

p(y |x , a)Vt−1(y)

}

Vt(x) = min
a∈A(x)

[
c(x , a) + β

∑
y∈X

p(y |x , a)Vt−1(y)

]
Iteration 1: V1(1) = min{C , 0}

Iteration 2: V2(1) = min{C ,βV1(3)}

Iteration 3: V3(1) = min{C ,βV2(3)}

...
...

Iteration t: Vt(1) = min{C ,βVt−1(3)}

Observations:

1. Vt(3) = −(1 + β+ β2 + · · ·+ βt−1) = −1−βt

1−β

2. Once “right” is selected, “left” will never again be
selected.

Idea: Given N > 1, select C so that:

1. “right” is optimal, and “left” is not.

2. On iterations t = 1, . . . ,N , “left” is selected.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 20/32

Proof that Value Iteration is Not Strongly Polynomial

Discount Factor: β < 1.

2 1 3
C 0

0 −1
Value Iteration:

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

{
c(x , a) + β

∑
y∈X

p(y |x , a)Vt−1(y)

}

Vt(x) = min
a∈A(x)

[
c(x , a) + β

∑
y∈X

p(y |x , a)Vt−1(y)

]
Iteration 1: V1(1) = min{C , 0}

Iteration 2: V2(1) = min{C ,βV1(3)}

Iteration 3: V3(1) = min{C ,βV2(3)}

...
...

Iteration t: Vt(1) = min{C ,βVt−1(3)}

Observations:

1. Vt(3) = −(1 + β+ β2 + · · ·+ βt−1) = −1−βt

1−β

2. Once “right” is selected, “left” will never again be
selected.

Idea: Given N > 1, select C so that:

1. “right” is optimal, and “left” is not.

2. On iterations t = 1, . . . ,N , “left” is selected.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 20/32

Proof that Value Iteration is Not Strongly Polynomial

Discount Factor: β < 1.

2 1 3
C 0

0 −1
Value Iteration:

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

{
c(x , a) + β

∑
y∈X

p(y |x , a)Vt−1(y)

}

Vt(x) = min
a∈A(x)

[
c(x , a) + β

∑
y∈X

p(y |x , a)Vt−1(y)

]
Iteration 1: V1(1) = min{C , 0}

Iteration 2: V2(1) = min{C ,βV1(3)}

Iteration 3: V3(1) = min{C ,βV2(3)}

...
...

Iteration t: Vt(1) = min{C ,βVt−1(3)}

Observations:

1. Vt(3) = −(1 + β+ β2 + · · ·+ βt−1) = −1−βt

1−β

2. Once “right” is selected, “left” will never again be
selected.

Idea: Given N > 1, select C so that:

1. “right” is optimal, and “left” is not.

2. On iterations t = 1, . . . ,N , “left” is selected.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 20/32

Proof that Value Iteration is Not Strongly Polynomial

Discount Factor: β < 1.

2 1 3
C 0

0 −1
Value Iteration:

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

{
c(x , a) + β

∑
y∈X

p(y |x , a)Vt−1(y)

}

Vt(x) = min
a∈A(x)

[
c(x , a) + β

∑
y∈X

p(y |x , a)Vt−1(y)

]
Iteration 1: V1(1) = min{C , 0}

Iteration 2: V2(1) = min{C ,βV1(3)}

Iteration 3: V3(1) = min{C ,βV2(3)}

...
...

Iteration t: Vt(1) = min{C ,βVt−1(3)}

Observations:

1. Vt(3) = −(1 + β+ β2 + · · ·+ βt−1) = −1−βt

1−β

2. Once “right” is selected, “left” will never again be
selected.

Idea: Given N > 1, select C so that:

1. “right” is optimal, and “left” is not.

2. On iterations t = 1, . . . ,N , “left” is selected.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 20/32

Proof that Value Iteration is Not Strongly Polynomial

Discount Factor: β < 1.

2 1 3
C 0

0 −1
Value Iteration:

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

{
c(x , a) + β

∑
y∈X

p(y |x , a)Vt−1(y)

}

Vt(x) = min
a∈A(x)

[
c(x , a) + β

∑
y∈X

p(y |x , a)Vt−1(y)

]
Iteration 1: V1(1) = min{C , 0}

Iteration 2: V2(1) = min{C ,βV1(3)}

Iteration 3: V3(1) = min{C ,βV2(3)}

...
...

Iteration t: Vt(1) = min{C ,βVt−1(3)}

Observations:

1. Vt(3) = −(1 + β+ β2 + · · ·+ βt−1) = −1−βt

1−β

2. Once “right” is selected, “left” will never again be
selected.

Idea: Given N > 1, select C so that:

1. “right” is optimal, and “left” is not.

2. On iterations t = 1, . . . ,N , “left” is selected.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 20/32

Proof that Value Iteration is Not Strongly Polynomial

Discount Factor: β < 1.

2 1 3
C 0

0 −1
Value Iteration:

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

{
c(x , a) + β

∑
y∈X

p(y |x , a)Vt−1(y)

}

Vt(x) = min
a∈A(x)

[
c(x , a) + β

∑
y∈X

p(y |x , a)Vt−1(y)

]
Iteration 1: V1(1) = min{C , 0}

Iteration 2: V2(1) = min{C ,βV1(3)}

Iteration 3: V3(1) = min{C ,βV2(3)}

...
...

Iteration t: Vt(1) = min{C ,βVt−1(3)}

Observations:

1. Vt(3) = −(1 + β+ β2 + · · ·+ βt−1) = −1−βt

1−β

2. Once “right” is selected, “left” will never again be
selected.

Idea: Given N > 1, select C so that:

1. “right” is optimal, and “left” is not.

2. On iterations t = 1, . . . ,N , “left” is selected.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 20/32

Proof that Value Iteration is Not Strongly Polynomial

Discount Factor: β < 1.

2 1 3
C 0

0 −1
Value Iteration:

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

{
c(x , a) + β

∑
y∈X

p(y |x , a)Vt−1(y)

}

Vt(x) = min
a∈A(x)

[
c(x , a) + β

∑
y∈X

p(y |x , a)Vt−1(y)

]
Iteration 1: V1(1) = min{C , 0}

Iteration 2: V2(1) = min{C ,βV1(3)}

Iteration 3: V3(1) = min{C ,βV2(3)}

...
...

Iteration t: Vt(1) = min{C ,βVt−1(3)}

Observations:

1. Vt(3) = −(1 + β+ β2 + · · ·+ βt−1) = −1−βt

1−β

2. Once “right” is selected, “left” will never again be
selected.

Idea: Given N > 1, select C so that:

1. “right” is optimal, and “left” is not.

2. On iterations t = 1, . . . ,N , “left” is selected.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 20/32

Proof that Value Iteration is Not Strongly Polynomial

Discount Factor: β < 1.

2 1 3
C 0

0 −1
Value Iteration:

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

{
c(x , a) + β

∑
y∈X

p(y |x , a)Vt−1(y)

}

Vt(x) = min
a∈A(x)

[
c(x , a) + β

∑
y∈X

p(y |x , a)Vt−1(y)

]
Iteration 1: V1(1) = min{C , 0}

Iteration 2: V2(1) = min{C ,βV1(3)}

Iteration 3: V3(1) = min{C ,βV2(3)}

...
...

Iteration t: Vt(1) = min{C ,βVt−1(3)}

Observations:

1. Vt(3) = −(1 + β+ β2 + · · ·+ βt−1) = −1−βt

1−β

2. Once “right” is selected, “left” will never again be
selected.

Idea: Given N > 1, select C so that:

1. “right” is optimal, and “left” is not.

2. On iterations t = 1, . . . ,N , “left” is selected.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 20/32

Proof that Value Iteration is Not Strongly Polynomial

Discount Factor: β < 1.

2 1 3
C 0

0 −1
Value Iteration:

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

{
c(x , a) + β

∑
y∈X

p(y |x , a)Vt−1(y)

}

Vt(x) = min
a∈A(x)

[
c(x , a) + β

∑
y∈X

p(y |x , a)Vt−1(y)

]
Iteration 1: V1(1) = min{C , 0}

Iteration 2: V2(1) = min{C ,βV1(3)}

Iteration 3: V3(1) = min{C ,βV2(3)}

...
...

Iteration t: Vt(1) = min{C ,βVt−1(3)}

Observations:

1. Vt(3) = −(1 + β+ β2 + · · ·+ βt−1) = −1−βt

1−β

2. Once “right” is selected, “left” will never again be
selected.

Idea: Given N > 1, select C so that:

1. “right” is optimal, and “left” is not.

2. On iterations t = 1, . . . ,N , “left” is selected.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 20/32

Proof that Value Iteration is Not Strongly Polynomial

Discount Factor: β < 1.

2 1 3
C 0

0 −1
Value Iteration:

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

{
c(x , a) + β

∑
y∈X

p(y |x , a)Vt−1(y)

}

Vt(x) = min
a∈A(x)

[
c(x , a) + β

∑
y∈X

p(y |x , a)Vt−1(y)

]
Iteration 1: V1(1) = min{C , 0}

Iteration 2: V2(1) = min{C ,βV1(3)}

Iteration 3: V3(1) = min{C ,βV2(3)}

...
...

Iteration t: Vt(1) = min{C ,βVt−1(3)}

Observations:

1. Vt(3) = −(1 + β+ β2 + · · ·+ βt−1) = −1−βt

1−β

2. Once “right” is selected, “left” will never again be
selected.

Idea: Given N > 1, select C so that:

1. “right” is optimal, and “left” is not.

2. On iterations t = 1, . . . ,N , “left” is selected.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 20/32

Proof that Value Iteration is Not Strongly Polynomial

Discount Factor: β < 1.

2 1 3
C 0

0 −1
Value Iteration:

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

{
c(x , a) + β

∑
y∈X

p(y |x , a)Vt−1(y)

}

Vt(x) = min
a∈A(x)

[
c(x , a) + β

∑
y∈X

p(y |x , a)Vt−1(y)

]
Iteration 1: V1(1) = min{C , 0}

Iteration 2: V2(1) = min{C ,βV1(3)}

Iteration 3: V3(1) = min{C ,βV2(3)}

...
...

Iteration t: Vt(1) = min{C ,βVt−1(3)}

Observations:

1. Vt(3) = −(1 + β+ β2 + · · ·+ βt−1) = −1−βt

1−β

2. Once “right” is selected, “left” will never again be
selected.

Idea: Given N > 1, select C so that:

1. “right” is optimal, and “left” is not.

2. On iterations t = 1, . . . ,N , “left” is selected.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 20/32

Proof that Value Iteration is Not Strongly Polynomial

Discount Factor: β < 1.

2 1 3
C 0

0 −1
Value Iteration:

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

{
c(x , a) + β

∑
y∈X

p(y |x , a)Vt−1(y)

}

Vt(x) = min
a∈A(x)

[
c(x , a) + β

∑
y∈X

p(y |x , a)Vt−1(y)

]
Iteration 1: V1(1) = min{C , 0}

Iteration 2: V2(1) = min{C ,βV1(3)}

Iteration 3: V3(1) = min{C ,βV2(3)}

...
...

Iteration t: Vt(1) = min{C ,βVt−1(3)}

Observations:

1. Vt(3) = −(1 + β+ β2 + · · ·+ βt−1) = −1−βt

1−β

2. Once “right” is selected, “left” will never again be
selected.

Idea: Given N > 1, select C so that:

1. “right” is optimal, and “left” is not.

2. On iterations t = 1, . . . ,N , “left” is selected.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 20/32

Proof that Value Iteration is Not Strongly Polynomial

Discount Factor: β < 1.

2 1 3
C 0

0 −1
Value Iteration:

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

{
c(x , a) + β

∑
y∈X

p(y |x , a)Vt−1(y)

}

Vt(x) = min
a∈A(x)

[
c(x , a) + β

∑
y∈X

p(y |x , a)Vt−1(y)

]
Iteration 1: V1(1) = min{C , 0}

Iteration 2: V2(1) = min{C ,βV1(3)}

Iteration 3: V3(1) = min{C ,βV2(3)}

...
...

Iteration t: Vt(1) = min{C ,βVt−1(3)}

Observations:

1. Vt(3) = −(1 + β+ β2 + · · ·+ βt−1) = −1−βt

1−β

2. Once “right” is selected, “left” will never again be
selected.

Idea: Given N > 1, select C so that:

1. “right” is optimal, and “left” is not.

2. On iterations t = 1, . . . ,N , “left” is selected.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 20/32

Proof that Value Iteration is Not Strongly Polynomial

Given N > 1,

select any C on the interval
(
− β

1−β ,−β(1−βN−1)
1−β

)
.

2 1 3
C 0

0 −1

Iteration 1: V1(1) = min{C , 0}, ϕ∗1(1) = “left”

Iteration 2: V2(1) = min{C ,−β}, ϕ∗2(1) = “left”

...
...

Iteration N: VN(1) = min
{
C ,−β(1−βN−1)

1−β

}
, ϕ∗N(1) = “left”

Iteration N + 1: VN+1(1) = min
{
C ,−β(1−βN)

1−β

}
, ϕ∗N+1(1) = “right”

Theorem: (H., 2016)

For every N > 1, there is an MDP with m = 4
state-action pairs for which value iteration needs
at least N iterations to return the optimal policy.

Conclusion:

Value iteration is not strongly polynomial.

Conclusion:

Value iteration is not strongly polynomial.

(If it were, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Stronger Conclusion:

The number of iterations needed by value it-
eration to return an optimal policy cannot be

bounded above by any function of m only.

(If it cound, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 21/32

Proof that Value Iteration is Not Strongly Polynomial

Given N > 1, select any C on the interval
(
− β

1−β ,−β(1−βN−1)
1−β

)
.

2 1 3
C 0

0 −1

Iteration 1: V1(1) = min{C , 0}, ϕ∗1(1) = “left”

Iteration 2: V2(1) = min{C ,−β}, ϕ∗2(1) = “left”

...
...

Iteration N: VN(1) = min
{
C ,−β(1−βN−1)

1−β

}
, ϕ∗N(1) = “left”

Iteration N + 1: VN+1(1) = min
{
C ,−β(1−βN)

1−β

}
, ϕ∗N+1(1) = “right”

Theorem: (H., 2016)

For every N > 1, there is an MDP with m = 4
state-action pairs for which value iteration needs
at least N iterations to return the optimal policy.

Conclusion:

Value iteration is not strongly polynomial.

Conclusion:

Value iteration is not strongly polynomial.

(If it were, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Stronger Conclusion:

The number of iterations needed by value it-
eration to return an optimal policy cannot be

bounded above by any function of m only.

(If it cound, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 21/32

Proof that Value Iteration is Not Strongly Polynomial

Given N > 1, select any C on the interval
(
− β

1−β ,−β(1−βN−1)
1−β

)
.

2 1 3
C 0

0 −1

Iteration 1: V1(1) = min{C , 0}, ϕ∗1(1) = “left”

Iteration 2: V2(1) = min{C ,−β}, ϕ∗2(1) = “left”

...
...

Iteration N: VN(1) = min
{
C ,−β(1−βN−1)

1−β

}
, ϕ∗N(1) = “left”

Iteration N + 1: VN+1(1) = min
{
C ,−β(1−βN)

1−β

}
, ϕ∗N+1(1) = “right”

Theorem: (H., 2016)

For every N > 1, there is an MDP with m = 4
state-action pairs for which value iteration needs
at least N iterations to return the optimal policy.

Conclusion:

Value iteration is not strongly polynomial.

Conclusion:

Value iteration is not strongly polynomial.

(If it were, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Stronger Conclusion:

The number of iterations needed by value it-
eration to return an optimal policy cannot be

bounded above by any function of m only.

(If it cound, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 21/32

Proof that Value Iteration is Not Strongly Polynomial

Given N > 1, select any C on the interval
(
− β

1−β ,−β(1−βN−1)
1−β

)
.

2 1 3
C 0

0 −1

Iteration 1: V1(1) = min{C , 0}, ϕ∗1(1) = “left”

Iteration 2: V2(1) = min{C ,−β}, ϕ∗2(1) = “left”

...
...

Iteration N: VN(1) = min
{
C ,−β(1−βN−1)

1−β

}
, ϕ∗N(1) = “left”

Iteration N + 1: VN+1(1) = min
{
C ,−β(1−βN)

1−β

}
, ϕ∗N+1(1) = “right”

Theorem: (H., 2016)

For every N > 1, there is an MDP with m = 4
state-action pairs for which value iteration needs
at least N iterations to return the optimal policy.

Conclusion:

Value iteration is not strongly polynomial.

Conclusion:

Value iteration is not strongly polynomial.

(If it were, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Stronger Conclusion:

The number of iterations needed by value it-
eration to return an optimal policy cannot be

bounded above by any function of m only.

(If it cound, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 21/32

Proof that Value Iteration is Not Strongly Polynomial

Given N > 1, select any C on the interval
(
− β

1−β ,−β(1−βN−1)
1−β

)
.

2 1 3
C 0

0 −1

Iteration 1: V1(1) = min{C , 0}, ϕ∗1(1) = “left”

Iteration 2: V2(1) = min{C ,−β}, ϕ∗2(1) = “left”

...
...

Iteration N: VN(1) = min
{
C ,−β(1−βN−1)

1−β

}
, ϕ∗N(1) = “left”

Iteration N + 1: VN+1(1) = min
{
C ,−β(1−βN)

1−β

}
, ϕ∗N+1(1) = “right”

Theorem: (H., 2016)

For every N > 1, there is an MDP with m = 4
state-action pairs for which value iteration needs
at least N iterations to return the optimal policy.

Conclusion:

Value iteration is not strongly polynomial.

Conclusion:

Value iteration is not strongly polynomial.

(If it were, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Stronger Conclusion:

The number of iterations needed by value it-
eration to return an optimal policy cannot be

bounded above by any function of m only.

(If it cound, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 21/32

Proof that Value Iteration is Not Strongly Polynomial

Given N > 1, select any C on the interval
(
− β

1−β ,−β(1−βN−1)
1−β

)
.

2 1 3
C 0

0 −1

Iteration 1: V1(1) = min{C , 0}, ϕ∗1(1) = “left”

Iteration 2: V2(1) = min{C ,−β}, ϕ∗2(1) = “left”

...
...

Iteration N: VN(1) = min
{
C ,−β(1−βN−1)

1−β

}
, ϕ∗N(1) = “left”

Iteration N + 1: VN+1(1) = min
{
C ,−β(1−βN)

1−β

}
, ϕ∗N+1(1) = “right”

Theorem: (H., 2016)

For every N > 1, there is an MDP with m = 4
state-action pairs for which value iteration needs
at least N iterations to return the optimal policy.

Conclusion:

Value iteration is not strongly polynomial.

Conclusion:

Value iteration is not strongly polynomial.

(If it were, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Stronger Conclusion:

The number of iterations needed by value it-
eration to return an optimal policy cannot be

bounded above by any function of m only.

(If it cound, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 21/32

Proof that Value Iteration is Not Strongly Polynomial

Given N > 1, select any C on the interval
(
− β

1−β ,−β(1−βN−1)
1−β

)
.

2 1 3
C 0

0 −1

Iteration 1: V1(1) = min{C , 0}, ϕ∗1(1) = “left”

Iteration 2: V2(1) = min{C ,−β}, ϕ∗2(1) = “left”

...
...

Iteration N: VN(1) = min
{
C ,−β(1−βN−1)

1−β

}
, ϕ∗N(1) = “left”

Iteration N + 1: VN+1(1) = min
{
C ,−β(1−βN)

1−β

}
, ϕ∗N+1(1) = “right”

Theorem: (H., 2016)

For every N > 1, there is an MDP with m = 4
state-action pairs for which value iteration needs
at least N iterations to return the optimal policy.

Conclusion:

Value iteration is not strongly polynomial.

Conclusion:

Value iteration is not strongly polynomial.

(If it were, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Stronger Conclusion:

The number of iterations needed by value it-
eration to return an optimal policy cannot be

bounded above by any function of m only.

(If it cound, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 21/32

Proof that Value Iteration is Not Strongly Polynomial

Given N > 1, select any C on the interval
(
− β

1−β ,−β(1−βN−1)
1−β

)
.

2 1 3
C 0

0 −1

Iteration 1: V1(1) = min{C , 0}, ϕ∗1(1) = “left”

Iteration 2: V2(1) = min{C ,−β}, ϕ∗2(1) = “left”

...
...

Iteration N: VN(1) = min
{
C ,−β(1−βN−1)

1−β

}
, ϕ∗N(1) = “left”

Iteration N + 1: VN+1(1) = min
{
C ,−β(1−βN)

1−β

}
, ϕ∗N+1(1) = “right”

Theorem: (H., 2016)

For every N > 1, there is an MDP with m = 4
state-action pairs for which value iteration needs
at least N iterations to return the optimal policy.

Conclusion:

Value iteration is not strongly polynomial.

Conclusion:

Value iteration is not strongly polynomial.

(If it were, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Stronger Conclusion:

The number of iterations needed by value it-
eration to return an optimal policy cannot be

bounded above by any function of m only.

(If it cound, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 21/32

Proof that Value Iteration is Not Strongly Polynomial

Given N > 1, select any C on the interval
(
− β

1−β ,−β(1−βN−1)
1−β

)
.

2 1 3
C 0

0 −1

Iteration 1: V1(1) = min{C , 0}, ϕ∗1(1) = “left”

Iteration 2: V2(1) = min{C ,−β}, ϕ∗2(1) = “left”

...
...

Iteration N: VN(1) = min
{
C ,−β(1−βN−1)

1−β

}
, ϕ∗N(1) = “left”

Iteration N + 1: VN+1(1) = min
{
C ,−β(1−βN)

1−β

}
, ϕ∗N+1(1) = “right”

Theorem: (H., 2016)

For every N > 1, there is an MDP with m = 4
state-action pairs for which value iteration needs
at least N iterations to return the optimal policy.

Conclusion:

Value iteration is not strongly polynomial.

Conclusion:

Value iteration is not strongly polynomial.

(If it were, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Stronger Conclusion:

The number of iterations needed by value it-
eration to return an optimal policy cannot be

bounded above by any function of m only.

(If it cound, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 21/32

Proof that Value Iteration is Not Strongly Polynomial

Given N > 1, select any C on the interval
(
− β

1−β ,−β(1−βN−1)
1−β

)
.

2 1 3
C 0

0 −1

Iteration 1: V1(1) = min{C , 0}, ϕ∗1(1) = “left”

Iteration 2: V2(1) = min{C ,−β}, ϕ∗2(1) = “left”

...
...

Iteration N: VN(1) = min
{
C ,−β(1−βN−1)

1−β

}
, ϕ∗N(1) = “left”

Iteration N + 1: VN+1(1) = min
{
C ,−β(1−βN)

1−β

}
, ϕ∗N+1(1) = “right”

Theorem: (H., 2016)

For every N > 1, there is an MDP with m = 4
state-action pairs for which value iteration needs
at least N iterations to return the optimal policy.

Conclusion:

Value iteration is not strongly polynomial.

Conclusion:

Value iteration is not strongly polynomial.

(If it were, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Stronger Conclusion:

The number of iterations needed by value it-
eration to return an optimal policy cannot be

bounded above by any function of m only.

(If it cound, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 21/32

Proof that Value Iteration is Not Strongly Polynomial

Given N > 1, select any C on the interval
(
− β

1−β ,−β(1−βN−1)
1−β

)
.

2 1 3
C 0

0 −1

Iteration 1: V1(1) = min{C , 0}, ϕ∗1(1) = “left”

Iteration 2: V2(1) = min{C ,−β}, ϕ∗2(1) = “left”

...
...

Iteration N: VN(1) = min
{
C ,−β(1−βN−1)

1−β

}
, ϕ∗N(1) = “left”

Iteration N + 1: VN+1(1) = min
{
C ,−β(1−βN)

1−β

}
, ϕ∗N+1(1) = “right”

Theorem: (H., 2016)

For every N > 1, there is an MDP with m = 4
state-action pairs for which value iteration needs
at least N iterations to return the optimal policy.

Conclusion:

Value iteration is not strongly polynomial.

Conclusion:

Value iteration is not strongly polynomial.

(If it were, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Stronger Conclusion:

The number of iterations needed by value it-
eration to return an optimal policy cannot be

bounded above by any function of m only.

(If it cound, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 21/32

Proof that Value Iteration is Not Strongly Polynomial

Given N > 1, select any C on the interval
(
− β

1−β ,−β(1−βN−1)
1−β

)
.

2 1 3
C 0

0 −1

Iteration 1: V1(1) = min{C , 0}, ϕ∗1(1) = “left”

Iteration 2: V2(1) = min{C ,−β}, ϕ∗2(1) = “left”

...
...

Iteration N: VN(1) = min
{
C ,−β(1−βN−1)

1−β

}
, ϕ∗N(1) = “left”

Iteration N + 1: VN+1(1) = min
{
C ,−β(1−βN)

1−β

}
, ϕ∗N+1(1) = “right”

Theorem: (H., 2016)

For every N > 1, there is an MDP with m = 4
state-action pairs for which value iteration needs
at least N iterations to return the optimal policy.

Conclusion:

Value iteration is not strongly polynomial.

Conclusion:

Value iteration is not strongly polynomial.

(If it were, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Stronger Conclusion:

The number of iterations needed by value it-
eration to return an optimal policy cannot be

bounded above by any function of m only.

(If it cound, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 21/32

Proof that Value Iteration is Not Strongly Polynomial

Given N > 1, select any C on the interval
(
− β

1−β ,−β(1−βN−1)
1−β

)
.

2 1 3
C 0

0 −1

Iteration 1: V1(1) = min{C , 0}, ϕ∗1(1) = “left”

Iteration 2: V2(1) = min{C ,−β}, ϕ∗2(1) = “left”

...
...

Iteration N: VN(1) = min
{
C ,−β(1−βN−1)

1−β

}
, ϕ∗N(1) = “left”

Iteration N + 1: VN+1(1) = min
{
C ,−β(1−βN)

1−β

}
, ϕ∗N+1(1) = “right”

Theorem: (H., 2016)

For every N > 1, there is an MDP with m = 4
state-action pairs for which value iteration needs
at least N iterations to return the optimal policy.

Conclusion:

Value iteration is not strongly polynomial.

Conclusion:

Value iteration is not strongly polynomial.

(If it were, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Stronger Conclusion:

The number of iterations needed by value it-
eration to return an optimal policy cannot be

bounded above by any function of m only.

(If it cound, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 21/32

Proof that Value Iteration is Not Strongly Polynomial

Given N > 1, select any C on the interval
(
− β

1−β ,−β(1−βN−1)
1−β

)
.

2 1 3
C 0

0 −1

Iteration 1: V1(1) = min{C , 0}, ϕ∗1(1) = “left”

Iteration 2: V2(1) = min{C ,−β}, ϕ∗2(1) = “left”

...
...

Iteration N: VN(1) = min
{
C ,−β(1−βN−1)

1−β

}
, ϕ∗N(1) = “left”

Iteration N + 1: VN+1(1) = min
{
C ,−β(1−βN)

1−β

}
, ϕ∗N+1(1) = “right”

Theorem: (H., 2016)

For every N > 1, there is an MDP with m = 4
state-action pairs for which value iteration needs
at least N iterations to return the optimal policy.

Conclusion:

Value iteration is not strongly polynomial.

Conclusion:

Value iteration is not strongly polynomial.

(If it were, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Stronger Conclusion:

The number of iterations needed by value it-
eration to return an optimal policy cannot be

bounded above by any function of m only.

(If it cound, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 21/32

Proof that Value Iteration is Not Strongly Polynomial

Given N > 1, select any C on the interval
(
− β

1−β ,−β(1−βN−1)
1−β

)
.

2 1 3
C 0

0 −1

Iteration 1: V1(1) = min{C , 0}, ϕ∗1(1) = “left”

Iteration 2: V2(1) = min{C ,−β}, ϕ∗2(1) = “left”

...
...

Iteration N: VN(1) = min
{
C ,−β(1−βN−1)

1−β

}
, ϕ∗N(1) = “left”

Iteration N + 1: VN+1(1) = min
{
C ,−β(1−βN)

1−β

}
, ϕ∗N+1(1) = “right”

Theorem: (H., 2016)

For every N > 1, there is an MDP with m = 4
state-action pairs for which value iteration needs
at least N iterations to return the optimal policy.

Conclusion:

Value iteration is not strongly polynomial.

Conclusion:

Value iteration is not strongly polynomial.

(If it were, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Stronger Conclusion:

The number of iterations needed by value it-
eration to return an optimal policy cannot be

bounded above by any function of m only.

(If it cound, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 21/32

Proof that Value Iteration is Not Strongly Polynomial

Given N > 1, select any C on the interval
(
− β

1−β ,−β(1−βN−1)
1−β

)
.

2 1 3
C 0

0 −1

Iteration 1: V1(1) = min{C , 0}, ϕ∗1(1) = “left”

Iteration 2: V2(1) = min{C ,−β}, ϕ∗2(1) = “left”

...
...

Iteration N: VN(1) = min
{
C ,−β(1−βN−1)

1−β

}
, ϕ∗N(1) = “left”

Iteration N + 1: VN+1(1) = min
{
C ,−β(1−βN)

1−β

}
, ϕ∗N+1(1) = “right”

Theorem: (H., 2016)

For every N > 1, there is an MDP with m = 4
state-action pairs for which value iteration needs
at least N iterations to return the optimal policy.

Conclusion:

Value iteration is not strongly polynomial.

Conclusion:

Value iteration is not strongly polynomial.

(If it were, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Stronger Conclusion:

The number of iterations needed by value it-
eration to return an optimal policy cannot be

bounded above by any function of m only.

(If it cound, then value iteration should re-
turn the optimal policy for the example in
at most a constant number of iterations.)

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 21/32

Strongly Polynomial Algorithms for MDPs

Assume the discount factor β is a constant.

Q: Is there a strongly polynomial algorithm for MDPs?

A: Yes! Policy Iteration: First, select any policy ϕ∗0 .

1. Define V0(x) = v(x ,ϕ∗0) for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = v(x ,ϕ∗t)

← hard if the state set is large

Theorem: (Ye, 2011)

The policy iteration algorithm is strongly polynomial.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 22/32

Strongly Polynomial Algorithms for MDPs

Assume the discount factor β is a constant.

Q: Is there a strongly polynomial algorithm for MDPs?

A: Yes! Policy Iteration: First, select any policy ϕ∗0 .

1. Define V0(x) = v(x ,ϕ∗0) for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = v(x ,ϕ∗t)

← hard if the state set is large

Theorem: (Ye, 2011)

The policy iteration algorithm is strongly polynomial.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 22/32

Strongly Polynomial Algorithms for MDPs

Assume the discount factor β is a constant.

Q: Is there a strongly polynomial algorithm for MDPs?

A: Yes!

Policy Iteration: First, select any policy ϕ∗0 .

1. Define V0(x) = v(x ,ϕ∗0) for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = v(x ,ϕ∗t)

← hard if the state set is large

Theorem: (Ye, 2011)

The policy iteration algorithm is strongly polynomial.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 22/32

Strongly Polynomial Algorithms for MDPs

Assume the discount factor β is a constant.

Q: Is there a strongly polynomial algorithm for MDPs?

A: Yes! Policy Iteration:

First, select any policy ϕ∗0 .

1. Define V0(x) = v(x ,ϕ∗0) for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = v(x ,ϕ∗t)

← hard if the state set is large

Theorem: (Ye, 2011)

The policy iteration algorithm is strongly polynomial.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 22/32

Strongly Polynomial Algorithms for MDPs

Assume the discount factor β is a constant.

Q: Is there a strongly polynomial algorithm for MDPs?

A: Yes! Policy Iteration: First, select any policy ϕ∗0 .

1. Define V0(x) = v(x ,ϕ∗0) for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = v(x ,ϕ∗t)

← hard if the state set is large

Theorem: (Ye, 2011)

The policy iteration algorithm is strongly polynomial.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 22/32

Strongly Polynomial Algorithms for MDPs

Assume the discount factor β is a constant.

Q: Is there a strongly polynomial algorithm for MDPs?

A: Yes! Policy Iteration: First, select any policy ϕ∗0 .

1. Define V0(x) = v(x ,ϕ∗0) for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = v(x ,ϕ∗t)

← hard if the state set is large

Theorem: (Ye, 2011)

The policy iteration algorithm is strongly polynomial.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 22/32

Strongly Polynomial Algorithms for MDPs

Assume the discount factor β is a constant.

Q: Is there a strongly polynomial algorithm for MDPs?

A: Yes! Policy Iteration: First, select any policy ϕ∗0 .

1. Define V0(x) = v(x ,ϕ∗0) for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = v(x ,ϕ∗t)

← hard if the state set is large

Theorem: (Ye, 2011)

The policy iteration algorithm is strongly polynomial.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 22/32

Strongly Polynomial Algorithms for MDPs

Assume the discount factor β is a constant.

Q: Is there a strongly polynomial algorithm for MDPs?

A: Yes! Policy Iteration: First, select any policy ϕ∗0 .

1. Define V0(x) = v(x ,ϕ∗0) for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = v(x ,ϕ∗t)

← hard if the state set is large

Theorem: (Ye, 2011)

The policy iteration algorithm is strongly polynomial.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 22/32

Strongly Polynomial Algorithms for MDPs

Assume the discount factor β is a constant.

Q: Is there a strongly polynomial algorithm for MDPs?

A: Yes! Policy Iteration: First, select any policy ϕ∗0 .

1. Define V0(x) = v(x ,ϕ∗0) for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = v(x ,ϕ∗t) ← hard if the state set is large

Theorem: (Ye, 2011)

The policy iteration algorithm is strongly polynomial.

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 22/32

Value Iteration vs. Policy Iteration

Value Iteration: Each iteration is cheap

, but may require more
iterations.

Policy Iteration: Each iteration is expensive, but may require fewer
iterations.

Q: Is there a way to combine the good qualities of both?

A: One approach is Modified Policy Iteration: First, select M > 0.

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = TM

ϕ∗
t
Vt−1(x)

TM
ϕ∗

t
“interpolates” between VI and PI:

Value Iteration:

T 0
ϕ∗

t
Vt−1(x) = min

a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Policy Iteration:

lim
M→∞TM

ϕ∗
t
Vt−1(x) = v(x ,ϕ∗t)

In Between: M = 1, 2, . . .

TM
ϕ∗

t
Vt−1(x) = E

[
M∑
n=0

βnc(xn,ϕ∗t (xn)) + β
M+1Vt−1(xT+1)

]

Question:

Is modified policy iteration strongly polynomial, for some M?

Theorem: (H. et al, 2014)

Modified policy iteration is not strongly polynomial for any M .

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 23/32

Value Iteration vs. Policy Iteration

Value Iteration: Each iteration is cheap, but may require more
iterations.

Policy Iteration: Each iteration is expensive, but may require fewer
iterations.

Q: Is there a way to combine the good qualities of both?

A: One approach is Modified Policy Iteration: First, select M > 0.

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = TM

ϕ∗
t
Vt−1(x)

TM
ϕ∗

t
“interpolates” between VI and PI:

Value Iteration:

T 0
ϕ∗

t
Vt−1(x) = min

a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Policy Iteration:

lim
M→∞TM

ϕ∗
t
Vt−1(x) = v(x ,ϕ∗t)

In Between: M = 1, 2, . . .

TM
ϕ∗

t
Vt−1(x) = E

[
M∑
n=0

βnc(xn,ϕ∗t (xn)) + β
M+1Vt−1(xT+1)

]

Question:

Is modified policy iteration strongly polynomial, for some M?

Theorem: (H. et al, 2014)

Modified policy iteration is not strongly polynomial for any M .

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 23/32

Value Iteration vs. Policy Iteration

Value Iteration: Each iteration is cheap, but may require more
iterations.

Policy Iteration: Each iteration is expensive

, but may require fewer
iterations.

Q: Is there a way to combine the good qualities of both?

A: One approach is Modified Policy Iteration: First, select M > 0.

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = TM

ϕ∗
t
Vt−1(x)

TM
ϕ∗

t
“interpolates” between VI and PI:

Value Iteration:

T 0
ϕ∗

t
Vt−1(x) = min

a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Policy Iteration:

lim
M→∞TM

ϕ∗
t
Vt−1(x) = v(x ,ϕ∗t)

In Between: M = 1, 2, . . .

TM
ϕ∗

t
Vt−1(x) = E

[
M∑
n=0

βnc(xn,ϕ∗t (xn)) + β
M+1Vt−1(xT+1)

]

Question:

Is modified policy iteration strongly polynomial, for some M?

Theorem: (H. et al, 2014)

Modified policy iteration is not strongly polynomial for any M .

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 23/32

Value Iteration vs. Policy Iteration

Value Iteration: Each iteration is cheap, but may require more
iterations.

Policy Iteration: Each iteration is expensive, but may require fewer
iterations.

Q: Is there a way to combine the good qualities of both?

A: One approach is Modified Policy Iteration: First, select M > 0.

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = TM

ϕ∗
t
Vt−1(x)

TM
ϕ∗

t
“interpolates” between VI and PI:

Value Iteration:

T 0
ϕ∗

t
Vt−1(x) = min

a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Policy Iteration:

lim
M→∞TM

ϕ∗
t
Vt−1(x) = v(x ,ϕ∗t)

In Between: M = 1, 2, . . .

TM
ϕ∗

t
Vt−1(x) = E

[
M∑
n=0

βnc(xn,ϕ∗t (xn)) + β
M+1Vt−1(xT+1)

]

Question:

Is modified policy iteration strongly polynomial, for some M?

Theorem: (H. et al, 2014)

Modified policy iteration is not strongly polynomial for any M .

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 23/32

Value Iteration vs. Policy Iteration

Value Iteration: Each iteration is cheap, but may require more
iterations.

Policy Iteration: Each iteration is expensive, but may require fewer
iterations.

Q: Is there a way to combine the good qualities of both?

A: One approach is Modified Policy Iteration: First, select M > 0.

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = TM

ϕ∗
t
Vt−1(x)

TM
ϕ∗

t
“interpolates” between VI and PI:

Value Iteration:

T 0
ϕ∗

t
Vt−1(x) = min

a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Policy Iteration:

lim
M→∞TM

ϕ∗
t
Vt−1(x) = v(x ,ϕ∗t)

In Between: M = 1, 2, . . .

TM
ϕ∗

t
Vt−1(x) = E

[
M∑
n=0

βnc(xn,ϕ∗t (xn)) + β
M+1Vt−1(xT+1)

]

Question:

Is modified policy iteration strongly polynomial, for some M?

Theorem: (H. et al, 2014)

Modified policy iteration is not strongly polynomial for any M .

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 23/32

Value Iteration vs. Policy Iteration

Value Iteration: Each iteration is cheap, but may require more
iterations.

Policy Iteration: Each iteration is expensive, but may require fewer
iterations.

Q: Is there a way to combine the good qualities of both?

A: One approach is Modified Policy Iteration: First, select M > 0.

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = TM

ϕ∗
t
Vt−1(x)

TM
ϕ∗

t
“interpolates” between VI and PI:

Value Iteration:

T 0
ϕ∗

t
Vt−1(x) = min

a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Policy Iteration:

lim
M→∞TM

ϕ∗
t
Vt−1(x) = v(x ,ϕ∗t)

In Between: M = 1, 2, . . .

TM
ϕ∗

t
Vt−1(x) = E

[
M∑
n=0

βnc(xn,ϕ∗t (xn)) + β
M+1Vt−1(xT+1)

]

Question:

Is modified policy iteration strongly polynomial, for some M?

Theorem: (H. et al, 2014)

Modified policy iteration is not strongly polynomial for any M .

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 23/32

Value Iteration vs. Policy Iteration

Value Iteration: Each iteration is cheap, but may require more
iterations.

Policy Iteration: Each iteration is expensive, but may require fewer
iterations.

Q: Is there a way to combine the good qualities of both?

A: One approach is Modified Policy Iteration: First, select M > 0.

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = TM

ϕ∗
t
Vt−1(x)

TM
ϕ∗

t
“interpolates” between VI and PI:

Value Iteration:

T 0
ϕ∗

t
Vt−1(x) = min

a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Policy Iteration:

lim
M→∞TM

ϕ∗
t
Vt−1(x) = v(x ,ϕ∗t)

In Between: M = 1, 2, . . .

TM
ϕ∗

t
Vt−1(x) = E

[
M∑
n=0

βnc(xn,ϕ∗t (xn)) + β
M+1Vt−1(xT+1)

]

Question:

Is modified policy iteration strongly polynomial, for some M?

Theorem: (H. et al, 2014)

Modified policy iteration is not strongly polynomial for any M .

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 23/32

Value Iteration vs. Policy Iteration

Value Iteration: Each iteration is cheap, but may require more
iterations.

Policy Iteration: Each iteration is expensive, but may require fewer
iterations.

Q: Is there a way to combine the good qualities of both?

A: One approach is Modified Policy Iteration: First, select M > 0.

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = TM

ϕ∗
t
Vt−1(x)

TM
ϕ∗

t
“interpolates” between VI and PI:

Value Iteration:

T 0
ϕ∗

t
Vt−1(x) = min

a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Policy Iteration:

lim
M→∞TM

ϕ∗
t
Vt−1(x) = v(x ,ϕ∗t)

In Between: M = 1, 2, . . .

TM
ϕ∗

t
Vt−1(x) = E

[
M∑
n=0

βnc(xn,ϕ∗t (xn)) + β
M+1Vt−1(xT+1)

]

Question:

Is modified policy iteration strongly polynomial, for some M?

Theorem: (H. et al, 2014)

Modified policy iteration is not strongly polynomial for any M .

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 23/32

Value Iteration vs. Policy Iteration

Value Iteration: Each iteration is cheap, but may require more
iterations.

Policy Iteration: Each iteration is expensive, but may require fewer
iterations.

Q: Is there a way to combine the good qualities of both?

A: One approach is Modified Policy Iteration: First, select M > 0.

1. Define V0(x) = 0 for all states x .

2. For t = 1, 2, . . .,

ϕ∗t (x) = arg min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Vt(x) = TM

ϕ∗
t
Vt−1(x)

TM
ϕ∗

t
“interpolates” between VI and PI:

Value Iteration:

T 0
ϕ∗

t
Vt−1(x) = min

a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)Vt−1(y)


Policy Iteration:

lim
M→∞TM

ϕ∗
t
Vt−1(x) = v(x ,ϕ∗t)

In Between: M = 1, 2, . . .

TM
ϕ∗

t
Vt−1(x) = E

[
M∑
n=0

βnc(xn,ϕ∗t (xn)) + β
M+1Vt−1(xT+1)

]

Question:

Is modified policy iteration strongly polynomial, for some M?

Theorem: (H. et al, 2014)

Modified policy iteration is not strongly polynomial for any M .

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 23/32

Theoretical Efficiency of Algorithms for MDPs

Known to be solvable in weakly polynomial time since the 1980s.
(via linear programming)

Policy iteration shown to be weakly polynomial in 1986.

Value iteration (and hence modified policy iteration) shown to be
weakly polynomial in 1990.

Policy iteration shown to be strongly polynomial in 2011.

Value iteration and modified policy iteration shown to be not
strongly polynomial in 2014.

Summary:

We showed that there is a stark difference between value
iteration (and modified policy iteration) and policy iteration.

Question:

Given an MDP, which algorithm should be used?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 24/32

Theoretical Efficiency of Algorithms for MDPs

Known to be solvable in weakly polynomial time since the 1980s.

(via linear programming)

Policy iteration shown to be weakly polynomial in 1986.

Value iteration (and hence modified policy iteration) shown to be
weakly polynomial in 1990.

Policy iteration shown to be strongly polynomial in 2011.

Value iteration and modified policy iteration shown to be not
strongly polynomial in 2014.

Summary:

We showed that there is a stark difference between value
iteration (and modified policy iteration) and policy iteration.

Question:

Given an MDP, which algorithm should be used?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 24/32

Theoretical Efficiency of Algorithms for MDPs

Known to be solvable in weakly polynomial time since the 1980s.
(via linear programming)

Policy iteration shown to be weakly polynomial in 1986.

Value iteration (and hence modified policy iteration) shown to be
weakly polynomial in 1990.

Policy iteration shown to be strongly polynomial in 2011.

Value iteration and modified policy iteration shown to be not
strongly polynomial in 2014.

Summary:

We showed that there is a stark difference between value
iteration (and modified policy iteration) and policy iteration.

Question:

Given an MDP, which algorithm should be used?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 24/32

Theoretical Efficiency of Algorithms for MDPs

Known to be solvable in weakly polynomial time since the 1980s.
(via linear programming)

Policy iteration shown to be weakly polynomial in 1986.

Value iteration (and hence modified policy iteration) shown to be
weakly polynomial in 1990.

Policy iteration shown to be strongly polynomial in 2011.

Value iteration and modified policy iteration shown to be not
strongly polynomial in 2014.

Summary:

We showed that there is a stark difference between value
iteration (and modified policy iteration) and policy iteration.

Question:

Given an MDP, which algorithm should be used?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 24/32

Theoretical Efficiency of Algorithms for MDPs

Known to be solvable in weakly polynomial time since the 1980s.
(via linear programming)

Policy iteration shown to be weakly polynomial in 1986.

Value iteration (and hence modified policy iteration) shown to be
weakly polynomial in 1990.

Policy iteration shown to be strongly polynomial in 2011.

Value iteration and modified policy iteration shown to be not
strongly polynomial in 2014.

Summary:

We showed that there is a stark difference between value
iteration (and modified policy iteration) and policy iteration.

Question:

Given an MDP, which algorithm should be used?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 24/32

Theoretical Efficiency of Algorithms for MDPs

Known to be solvable in weakly polynomial time since the 1980s.
(via linear programming)

Policy iteration shown to be weakly polynomial in 1986.

Value iteration (and hence modified policy iteration) shown to be
weakly polynomial in 1990.

Policy iteration shown to be strongly polynomial in 2011.

Value iteration and modified policy iteration shown to be not
strongly polynomial in 2014.

Summary:

We showed that there is a stark difference between value
iteration (and modified policy iteration) and policy iteration.

Question:

Given an MDP, which algorithm should be used?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 24/32

Theoretical Efficiency of Algorithms for MDPs

Known to be solvable in weakly polynomial time since the 1980s.
(via linear programming)

Policy iteration shown to be weakly polynomial in 1986.

Value iteration (and hence modified policy iteration) shown to be
weakly polynomial in 1990.

Policy iteration shown to be strongly polynomial in 2011.

Value iteration and modified policy iteration shown to be not
strongly polynomial in 2014.

Summary:

We showed that there is a stark difference between value
iteration (and modified policy iteration) and policy iteration.

Question:

Given an MDP, which algorithm should be used?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 24/32

Theoretical Efficiency of Algorithms for MDPs

Known to be solvable in weakly polynomial time since the 1980s.
(via linear programming)

Policy iteration shown to be weakly polynomial in 1986.

Value iteration (and hence modified policy iteration) shown to be
weakly polynomial in 1990.

Policy iteration shown to be strongly polynomial in 2011.

Value iteration and modified policy iteration shown to be not
strongly polynomial in 2014.

Summary:

We showed that there is a stark difference between value
iteration (and modified policy iteration) and policy iteration.

Question:

Given an MDP, which algorithm should be used?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 24/32

Theoretical Efficiency of Algorithms for MDPs

Known to be solvable in weakly polynomial time since the 1980s.
(via linear programming)

Policy iteration shown to be weakly polynomial in 1986.

Value iteration (and hence modified policy iteration) shown to be
weakly polynomial in 1990.

Policy iteration shown to be strongly polynomial in 2011.

Value iteration and modified policy iteration shown to be not
strongly polynomial in 2014.

Summary:

We showed that there is a stark difference between value
iteration (and modified policy iteration) and policy iteration.

Question:

Given an MDP, which algorithm should be used?

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 24/32

Part 3

Computing Optimal Policies in Practice

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 25/32

Solving MDPs in Practice

Policy iteration should be used if possible.

I clear stopping criterion (unlike value iteration)

I typically converges quickly

(e.g., ∼ 10, 000 states, ∼ 100 actions per state)

If policy iteration is infeasible, use modified policy iteration.

I converges faster than value iteration

I not much more computationally expensive than value iteration

Otherwise, approximate methods are needed.

I approximate versions of value iteration, policy iteration

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 26/32

Solving MDPs in Practice

Policy iteration should be used if possible.

I clear stopping criterion (unlike value iteration)

I typically converges quickly

(e.g., ∼ 10, 000 states, ∼ 100 actions per state)

If policy iteration is infeasible, use modified policy iteration.

I converges faster than value iteration

I not much more computationally expensive than value iteration

Otherwise, approximate methods are needed.

I approximate versions of value iteration, policy iteration

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 26/32

Solving MDPs in Practice

Policy iteration should be used if possible.

I clear stopping criterion (unlike value iteration)

I typically converges quickly

(e.g., ∼ 10, 000 states, ∼ 100 actions per state)

If policy iteration is infeasible, use modified policy iteration.

I converges faster than value iteration

I not much more computationally expensive than value iteration

Otherwise, approximate methods are needed.

I approximate versions of value iteration, policy iteration

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 26/32

Solving MDPs in Practice

Policy iteration should be used if possible.

I clear stopping criterion (unlike value iteration)

I typically converges quickly

(e.g., ∼ 10, 000 states, ∼ 100 actions per state)

If policy iteration is infeasible, use modified policy iteration.

I converges faster than value iteration

I not much more computationally expensive than value iteration

Otherwise, approximate methods are needed.

I approximate versions of value iteration, policy iteration

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 26/32

Solving MDPs in Practice

Policy iteration should be used if possible.

I clear stopping criterion (unlike value iteration)

I typically converges quickly

(e.g., ∼ 10, 000 states, ∼ 100 actions per state)

If policy iteration is infeasible, use modified policy iteration.

I converges faster than value iteration

I not much more computationally expensive than value iteration

Otherwise, approximate methods are needed.

I approximate versions of value iteration, policy iteration

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 26/32

Solving MDPs in Practice

Policy iteration should be used if possible.

I clear stopping criterion (unlike value iteration)

I typically converges quickly

(e.g., ∼ 10, 000 states, ∼ 100 actions per state)

If policy iteration is infeasible, use modified policy iteration.

I converges faster than value iteration

I not much more computationally expensive than value iteration

Otherwise, approximate methods are needed.

I approximate versions of value iteration, policy iteration

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 26/32

Solving MDPs in Practice

Policy iteration should be used if possible.

I clear stopping criterion (unlike value iteration)

I typically converges quickly

(e.g., ∼ 10, 000 states, ∼ 100 actions per state)

If policy iteration is infeasible, use modified policy iteration.

I converges faster than value iteration

I not much more computationally expensive than value iteration

Otherwise, approximate methods are needed.

I approximate versions of value iteration, policy iteration

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 26/32

Solving MDPs in Practice

Policy iteration should be used if possible.

I clear stopping criterion (unlike value iteration)

I typically converges quickly

(e.g., ∼ 10, 000 states, ∼ 100 actions per state)

If policy iteration is infeasible, use modified policy iteration.

I converges faster than value iteration

I not much more computationally expensive than value iteration

Otherwise, approximate methods are needed.

I approximate versions of value iteration, policy iteration

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 26/32

Example: Controlled Queue

At most N customers in the queue.

Finite number of possible service rates q

In each decision epoch:

1. an arrival arrives with probability p;

2. if there is a customer, a service completion occurs with probability q.

Cost incurred if there are x customers and service rate q is used:

g(x , q) = x + 60q3

Objective: Control the service rate to minimize the expected discounted
total cost. (discount factor = 0.9)

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 27/32

Example: Controlled Queue

At most N customers in the queue.

Finite number of possible service rates q

In each decision epoch:

1. an arrival arrives with probability p;

2. if there is a customer, a service completion occurs with probability q.

Cost incurred if there are x customers and service rate q is used:

g(x , q) = x + 60q3

Objective: Control the service rate to minimize the expected discounted
total cost. (discount factor = 0.9)

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 27/32

Example: Controlled Queue

At most N customers in the queue.

Finite number of possible service rates q

In each decision epoch:

1. an arrival arrives with probability p;

2. if there is a customer, a service completion occurs with probability q.

Cost incurred if there are x customers and service rate q is used:

g(x , q) = x + 60q3

Objective: Control the service rate to minimize the expected discounted
total cost. (discount factor = 0.9)

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 27/32

Example: Controlled Queue

At most N customers in the queue.

Finite number of possible service rates q

In each decision epoch:

1. an arrival arrives with probability p;

2. if there is a customer, a service completion occurs with probability q.

Cost incurred if there are x customers and service rate q is used:

g(x , q) = x + 60q3

Objective: Control the service rate to minimize the expected discounted
total cost. (discount factor = 0.9)

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 27/32

Example: Controlled Queue

At most N customers in the queue.

Finite number of possible service rates q

In each decision epoch:

1. an arrival arrives with probability p;

2. if there is a customer, a service completion occurs with probability q.

Cost incurred if there are x customers and service rate q is used:

g(x , q) = x + 60q3

Objective: Control the service rate to minimize the expected discounted
total cost. (discount factor = 0.9)

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 27/32

Example: Controlled Queue

At most N customers in the queue.

Finite number of possible service rates q

In each decision epoch:

1. an arrival arrives with probability p;

2. if there is a customer, a service completion occurs with probability q.

Cost incurred if there are x customers and service rate q is used:

g(x , q) = x + 60q3

Objective: Control the service rate to minimize the expected discounted
total cost. (discount factor = 0.9)

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 27/32

Example: Controlled Queue

At most N customers in the queue.

Finite number of possible service rates q

In each decision epoch:

1. an arrival arrives with probability p;

2. if there is a customer, a service completion occurs with probability q.

Cost incurred if there are x customers and service rate q is used:

g(x , q) = x + 60q3

Objective: Control the service rate to minimize the expected discounted
total cost. (discount factor = 0.9)

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 27/32

Running Time: Value Iteration vs. Policy Iteration

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 28/32

Number of Iterations: Value Iteration vs. Policy Iteration

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 29/32

Part 4

Future Research

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 30/32

Balancing Basic and Applied Research

Basic:

1. Existence of optimal policies for MDPs with general state and
action sets (H. et al, 2017 & 2018)

2. Computational complexity of average-cost MDPs (H. et al,
2013 & 2017)

Applied:

1. Joint maintenance and scheduling (e.g., in semiconductor
manufacturing) (H. et al, 2018)

2. Inventory management (H. et al., 2018)

3. Sequential decision-making in military operations

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 31/32

Balancing Basic and Applied Research

Basic:

1. Existence of optimal policies for MDPs with general state and
action sets (H. et al, 2017 & 2018)

2. Computational complexity of average-cost MDPs (H. et al,
2013 & 2017)

Applied:

1. Joint maintenance and scheduling (e.g., in semiconductor
manufacturing) (H. et al, 2018)

2. Inventory management (H. et al., 2018)

3. Sequential decision-making in military operations

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 31/32

Balancing Basic and Applied Research

Basic:

1. Existence of optimal policies for MDPs with general state and
action sets (H. et al, 2017 & 2018)

2. Computational complexity of average-cost MDPs (H. et al,
2013 & 2017)

Applied:

1. Joint maintenance and scheduling (e.g., in semiconductor
manufacturing) (H. et al, 2018)

2. Inventory management (H. et al., 2018)

3. Sequential decision-making in military operations

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 31/32

Balancing Basic and Applied Research

Basic:

1. Existence of optimal policies for MDPs with general state and
action sets (H. et al, 2017 & 2018)

2. Computational complexity of average-cost MDPs (H. et al,
2013 & 2017)

Applied:

1. Joint maintenance and scheduling (e.g., in semiconductor
manufacturing) (H. et al, 2018)

2. Inventory management (H. et al., 2018)

3. Sequential decision-making in military operations

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 31/32

Balancing Basic and Applied Research

Basic:

1. Existence of optimal policies for MDPs with general state and
action sets (H. et al, 2017 & 2018)

2. Computational complexity of average-cost MDPs (H. et al,
2013 & 2017)

Applied:

1. Joint maintenance and scheduling (e.g., in semiconductor
manufacturing) (H. et al, 2018)

2. Inventory management (H. et al., 2018)

3. Sequential decision-making in military operations

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 31/32

Balancing Basic and Applied Research

Basic:

1. Existence of optimal policies for MDPs with general state and
action sets (H. et al, 2017 & 2018)

2. Computational complexity of average-cost MDPs (H. et al,
2013 & 2017)

Applied:

1. Joint maintenance and scheduling (e.g., in semiconductor
manufacturing) (H. et al, 2018)

2. Inventory management (H. et al., 2018)

3. Sequential decision-making in military operations

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 31/32

Balancing Basic and Applied Research

Basic:

1. Existence of optimal policies for MDPs with general state and
action sets (H. et al, 2017 & 2018)

2. Computational complexity of average-cost MDPs (H. et al,
2013 & 2017)

Applied:

1. Joint maintenance and scheduling (e.g., in semiconductor
manufacturing) (H. et al, 2018)

2. Inventory management (H. et al., 2018)

3. Sequential decision-making in military operations

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 31/32

Balancing Basic and Applied Research

Basic:

1. Existence of optimal policies for MDPs with general state and
action sets (H. et al, 2017 & 2018)

2. Computational complexity of average-cost MDPs (H. et al,
2013 & 2017)

Applied:

1. Joint maintenance and scheduling (e.g., in semiconductor
manufacturing) (H. et al, 2018)

2. Inventory management (H. et al., 2018)

3. Sequential decision-making in military operations

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 31/32

Thank You!

Modeling Decision-Making Efficiency of Algorithms In Practice Looking Forward 32/32

	Modeling Decision-Making
	Efficiency of Algorithms
	In Practice
	Looking Forward

