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Overview

Markov decision processes (MDPs): model of sequential decision-making
under uncertainty

I Boucherie & van Dijk (2017): applications to healthcare,
transportation, production systems, communications, finance

Alternative “good” linear programming formulations of certain total-cost
and average-cost MDPs.

I Total-cost: should be transient.

I Average-cost: hitting time to a certain state should be bounded
uniformly in initial states & policies.

I Conditions under which they are solvable in strongly polynomial
time using classic methods.

I Based on recent results on discounted MDPs.
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Discrete-Time Markov Decision Process (MDP)

X = finite state set; |X| = n

A(x) = set of actions available at state x ;
∑

x |A(x)| = m

p(y |x , a) = probability that the next state is y , given the current
state is x and action a is taken

c(x , a) = cost incurred when current state is x and action a is
taken

Initial Distribution

State x0 x1 x2 x3 · · ·

c(x0, a0) c(x1, a1) c(x2, a2)

p(x1|x0,a0)
a0

p(x2|x1,a1)
a1

p(x3|x2,a2)
a2
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Policies

Policy = rule determining which action to take at each time step

In this talk: deterministic stationary policies only

I i.e., mappings φ on X where φ(x) ∈ A(x) for all x ∈ X

I no loss of generality (wrt. randomized history dependent policies)
for models considered

Compare policies via a cost criterion g(φ) ∈ Rn

I φ∗ is optimal if g(φ∗) 6 g(φ) (component-wise) for all policies φ

For each policy φ, let

P(φ)x ,y := p(y |x ,φ(x)), c(φ)x := c(x ,φ(x)).

Introduction Total-Cost MDPs Average-Cost MDPs Conclusion 3/20



Optimality Criteria

Total-Cost Criterion: For each state x ,

g(φ) = v(φ) :=
∞∑
n=0

P(φ)nc(φ)

Average-Cost Criterion: For each state x ,

g(φ) = w(φ) := lim sup
N→∞

1

N

N−1∑
n=0

P(φ)nc(φ)
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Complexity Estimates

An MDP is solved by computing an optimal policy.

An algorithm solves an MDP in strongly polynomial time if the # of
arithmetic operations needed can be bounded above by a polynomial in
the # of state-action pairs m.

If the # of arithmetic operations needed can be bounded above by a
polynomial in m and the total bit-size of the input data, it solves the
MDP in weakly polynomial time.

I Total-cost & average-cost MDPs can be formulated as linear
programs =⇒ solvable in weakly polynomial time (Khachiyan,
1979)

Introduction Total-Cost MDPs Average-Cost MDPs Conclusion 5/20



Total-Cost MDPs: Transience Assumption

‖P(φ)‖ := maxx∈X
∑

y∈X p(y |x ,φ(x))

I
∑

y p(y |x , a) < 1 =⇒ positive probability that process ends

Assumption (Transience)

There is a constant K such that, for every policy φ,∥∥∥∥∥
∞∑
n=0

P(φ)n

∥∥∥∥∥ 6 K <∞.

I Lifetime of the process is bounded by K under every policy.

Veinott (1974): Transience can be checked in strongly polynomial time.
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A Condition Equivalent to Transience

Theorem (Feinberg & H, 2017)

Transience holds if and only if there is a function µ : X→ [0,K ] where

µ(x) > 1 +
∑
y∈X

p(y |x , a)µ(y)

for all a ∈ A(x) and x ∈ X.

E.g., let

µ = max
φ

{ ∞∑
n=0

P(φ)n1

}
where 1x = 1 for all x ∈ X.

Denardo (2016): Such a µ can be computed using at most
O[(n3 +mn)mK logK ] arithmetic operations.
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Linear Programming Formulation

minimize
∑
x∈X

∑
a∈A(x)

c(x , a)

µ(x)
zx ,a

such that
∑

a∈A(x)
zx ,a −

∑
x′∈X

∑
a′∈A(x′)

p(x |x ′, a′)µ(x)

µ(x ′)
zx′,a′ = 1, x ∈ X

zx ,a > 0, a ∈ A(x), x ∈ X

For an optimal basic feasible solution z∗,

φ∗(x) = arg max
a∈A(x)

{
z∗x ,a
}

, x ∈ X.

Theorem (Feinberg & H, 2017)

φ∗ is optimal under the total-cost criterion.
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Complexity Estimate

Theorem (Feinberg & H, 2017)

The simplex method with Dantzig’s rule solves the linear program (LP)
using at most

O(nmK logK ) iterations.

Also, there is a block-pivoting simplex method that solves the LP using
at most

O(mK logK ) iterations.

I Each iteration of the simplex method needs O(n3 + nm) arithmetic
operations.

I When K is fixed, these two algorithms solve total-cost MDPs in
strongly polynomial time.

I Denardo (2016): similar estimates, using different proof technique
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Proof Sketch

The LP and the results about it come from a reduction to a discounted MDP
with cost-free absorbing state x̃ 6∈ X, based on Veinott (1968).

I discount factor β̃ = (K − 1)/K

I scaled transition matrices

P̃(φ)x ,y


β̃−1diag(µ−1)P(φ)diag(µ)x ,y , x , y 6= x̃

1 −
∑

y 6=x̃ P̃(φ)x ,y x 6= x̃ , y = x̃

1, x = y = x̃

and one-step costs

c̃(φ)x =

{
diag(µ−1)c(φ)x , x 6= x̃

0, x = x̃

I minimize ṽ(φ) =
∑∞

n=0 β̃
nP̃(φ)nc̃(φ)

Feinberg & Huang (2017): For every policy φ, v(φ) = diag(µ)ṽ(φ).

Use complexity estimates in Scherrer (2016) for discounted MDPs.
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Interlude: Discounted MDPs

An optimal policy for a discounted MDP with discount factor
β ∈ (0, 1) can be computed by solving

minimize
∑
x∈X

∑
a∈A(x)

c(x , a)zx ,a

such that
∑

a∈A(x)
zx ,a − β

∑
x′∈X

∑
a′∈A(x′)

p(x |x ′, a′)zx′,a′ = 1, x ∈ X

zx ,a > 0, a ∈ A(x), x ∈ X

I z is a basic feasible solution (BFS) =⇒ for every state x ,
exactly one zx ,a is positive

I z∗ is optimal BFS =⇒ policy φ∗(x) = arg maxa {zx ,a} is
optimal
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Interlude: Complexity of Discounted MDPs

Discounted MDPs with a fixed discount factor are solvable in strongly
polynomial time.

I Ye (2005): Interior-point method

I Ye (2011), Scherrer (2016): simplex method with Dantzig’s rule,
Howard’s (1960) policy iteration method

Hollanders, Delvenne, Jungers (2012): If discount factor isn’t fixed,
Howard’s (1960) policy iteration may need exponential time.

Discounted MDPs with special structure can be solved in strongly
polynomial time (regardless of discount factor).

I Zadorojniy, Even, Shwartz (2009): M/M/1 queue with service rate
control

I Post & Ye (2015): deterministic MDPs
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Average-Cost MDPs: Hitting Time Assumption

`P(φ)x ,y =

{
p(y |x ,φ(x)), y 6= `
0, y = `

Assumption (Hitting Time)

There is a state ` and a constant L such that, for every policy φ,∥∥∥∥∥
∞∑
n=0

`P(φ)
n

∥∥∥∥∥ 6 L <∞.

I Mean recurrence time to state ` is bounded by L under every policy.

I E.g., failed state of machine, no customers in queue

I Every such MDP is unichain.

Feinberg & Yang (2008): can be checked in strongly polynomial time
Introduction Total-Cost MDPs Average-Cost MDPs Conclusion 13/20



An Equivalent Condition

Theorem (Feinberg & H, 2017)

The hitting time assumption holds if and only if there is a function
µ` : X→ [0, L] satisfying

µ`(x) > 1 +
∑
y 6=`

p(y |x , a)µ`(y)

for all a ∈ A(x) and x ∈ X.

E.g., let

µ` = max
φ

{ ∞∑
n=0

`P(φ)
n1

}
where 1x = 1 for all x ∈ X.

Denardo (2016): Such a µ can be computed using at most
O[(n3 +mn)mL log L] arithmetic operations.
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Linear Programming Formulation

minimize
∑
x∈X

∑
a∈A(x)

c(x , a)

µ`(x)
zx ,a

such that
∑

a∈A(x)
zx ,a −

∑
x′∈X

∑
a′∈A(x′)

p(x |x ′, a′)

µ`(x ′)
µ`(x)zx′,a′ = 1, x 6= `

∑
a∈A(`)

z`,a −
∑
x′∈X

∑
a′∈A(x′)

µ`(x
′) − 1 −

∑
y 6=` p(y |x

′, a′)µ`(y)

µ`(x ′)
zx′,a′ = 1

zx ,a > 0, a ∈ A(x), x ∈ X

For an optimal basic feasible solution z∗,

φ∗(x) = arg max
a∈A(x)

{
z∗x ,a
}

, x ∈ X.

Theorem

φ∗ is optimal under the average-cost criterion.
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Complexity Estimate

Theorem (Feinberg & H, 2017)

The simplex method with Dantzig’s rule solves the linear program (LP)
using at most

O(nmL log L) iterations.

Also, there is a block-pivoting simplex method that solves the LP using
at most

O(mL log L) iterations.

I Each iteration of the simplex method needs O(n3 + nm) arithmetic
operations.

I When L is fixed, these two algorithms are strongly polynomial for
average-cost MDPs.

I Result for block-pivoting is special case of result in Akian &
Gaubert (2013) for 2-player stochastic games.
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Proof Sketch

The LP and the results about it come from a reduction to a discounted MDP
with cost-free absorbing state x̄ 6∈ X, based on Akian & Gaubert (2013).

I discount factor β̄ = (L− 1)/L

I scaled transition matrices

P̄(φ)x ,y =


β̄−1diag(µ−1

` )P(φ)diag(µ`)x ,y , x ∈ X, y ∈ X \ {`}

β̄−1diag(µ−1
` )(µ` − 1− `P(φ)µ)x ,y , x ∈ X, y = `

1 − β̄−1diag(µ−1
` )(µ− 1)x , x ∈ X, y = x̄ ,

1, x = y = x̄

and one-step costs

c̄(φ)x =

{
diag(µ−1

` )c(φ)x , x 6= x̄

0, x = x̄

I minimize v̄(φ) =
∑∞

n=0 β̄
nP̄(φ)nc̄(φ)

Feinberg & Huang (2017): For every policy φ, w(φ) = v̄(φ)` · 1.

Use complexity estimates in Scherrer (2016) for discounted MDPs.
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Complexity of Average-Cost MDPs

Average-cost MDPs with special structure are solvable in strongly
polynomial time.

I Zadorojniy, Even, Shwartz (2009): M/M/1 queue with service
rate control

I Feinberg & H (2013): replacement/maintenance problems
with fixed minimal failure probability

I Feinberg & H (2017): fixed upper bound on expected time to
failure

Fearnley (2010): Howard’s (1960) policy iteration may need
exponential time to solve a multichain average-cost MDP.

I Not known if this is true when MDP is unichain.
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Extensions

For total costs, the numbers p(y |x , a) need not be at most one.

I controlled multitype branching processes: Pliska (1976)

I multi-armed bandit problems with risk-seeking utilities:
Denardo, Feinberg, Rothblum (2013)

Feinberg & H (2017): For both criteria, the reductions to
discounting can be generalized to infinite state and action sets to
verify e.g.,

I existence of optimal policies

I validity of optimality equations

The reductions can also be formulated for stochastic games.

I model robust control
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Summary

Complexity estimates for certain total-cost and average-cost MDPs

I Conditions under which optimal policies for total-cost and
average-cost MDPs can be computed in strongly polynomial
time.

Future work:

I Do reductions to discounting hold under more general
conditions?

I Generalize to N-player stochastic games.
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