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Overview

Markov decision processes (MDPs): model of sequential decision-making

under uncertainty

> Boucherie & van Dijk (2017): applications to healthcare,

Alternative “good” linear programming formulations of certain total-cost

transportation, production systems, communications, finance

and average-cost MDPs.

>

>

>

Introduction

Total-cost: should be transient.

Average-cost: hitting time to a certain state should be bounded
uniformly in initial states & policies.

Conditions under which they are solvable in strongly polynomial
time using classic methods.

Based on recent results on discounted MDPs.
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Discrete-Time Markov Decision Process (MDP)

X = finite state set; |X|=n
A(x) = set of actions available at state x; ) , [A(x)|=m

plylx, a) = probability that the next state is y, given the current
state is x and action a is taken

c(x, a) = cost incurred when current state is x and action a is
taken

Initial Distribution

\ P(X1|X0,30) P(XZ‘XLQI) P(Xa\X2v32)

State  Xo X1 X2 X3
aop ai an
C(Xo,ao) c(xl,al) C(Xg,az)
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Policies

Policy = rule determining which action to take at each time step
In this talk: deterministic stationary policies only

» i.e., mappings ¢ on X where ¢p(x) € A(x) for all x € X

» no loss of generality (wrt. randomized history dependent policies)
for models considered

Compare policies via a cost criterion g(¢d) € R”

> &, is optimal if g(d.) < g(d) (component-wise) for all policies ¢

For each policy ¢, let

P(d)xy = plylx, d(x)),  c(d)x = clx, d(x)).
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Optimality Criteria

Total-Cost Criterion: For each state x,

Average-Cost Criterion: For each state x,

g(d) = w(d) = hmsupf Z P(¢

N—oo
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Complexity Estimates

An MDP is solved by computing an optimal policy.

An algorithm solves an MDP in strongly polynomial time if the # of
arithmetic operations needed can be bounded above by a polynomial in
the # of state-action pairs m.

If the # of arithmetic operations needed can be bounded above by a
polynomial in m and the total bit-size of the input data, it solves the
MDP in weakly polynomial time.

» Total-cost & average-cost MDPs can be formulated as linear

programs = solvable in weakly polynomial time (Khachiyan,
1979)
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Total-Cost MDPs: Transience Assumption

1P(6)] = maxeex ¥ex Plylx, ()

> Zy p(ylx,a) <1 = positive probability that process ends

Assumption (Transience)
There is a constant K such that, for every policy ¢,

[ee]

> P(¢)"

n=0

< K < o0.

» Lifetime of the process is bounded by K under every policy.

Veinott (1974): Transience can be checked in strongly polynomial time.
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A Condition Equivalent to Transience

Theorem (Feinberg & H, 2017)

Transience holds if and only if there is a function p: X — [0, K] where

wx) 214 plylx, a)uly)
yeX

for all a € A(x) and x € X.

E.g., let

where 1, =1 for all x € X.

Denardo (2016): Such a p can be computed using at most
O[(n® 4+ mn)mK log K] arithmetic operations.
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Linear Programming Formulation

minimize
xeX acA(x
x|x’ a
such that Zz“ Yoy AL o1 xex
acA(x x'eX a'eA(x")

Zx,a>0, acAx), xeX

For an optimal basic feasible solution z*,

b (x )—argmax{ } x € X.
acA(x)

Theorem (Feinberg & H, 2017)

&« is optimal under the total-cost criterion.
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Complexity Estimate

Theorem (Feinberg & H, 2017)

The simplex method with Dantzig's rule solves the linear program (LP)

using at most
O(nmK log K) iterations.

Also, there is a block-pivoting simplex method that solves the LP using

at most
O(mK log K) iterations.

» Each iteration of the simplex method needs O(n® + nm) arithmetic
operations.

» When K is fixed, these two algorithms solve total-cost MDPs in
strongly polynomial time.

» Denardo (2016): similar estimates, using different proof technique
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Proof Sketch

The LP and the results about it come from a reduction to a discounted MDP
with cost-free absorbing state X ¢ X, based on Veinott (1968).

» discount factor B = (K —1)/K

» scaled transition matrices

) p-idiag(n ") P(P)diag(k)y, Xy # X
P(@)ey 41— 3,5 P(d)y x#% y=%
1, X=y=X
and one-step costs
(&), = {giag(u el x# X
' x =X

> minimize 7(¢) = 37, B"P(d)"E(d)
Feinberg & Huang (2017): For every policy ¢, v(¢$) = diag(pn)v(d).
Use complexity estimates in Scherrer (2016) for discounted MDPs.
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Interlude: Discounted MDPs

An optimal policy for a discounted MDP with discount factor
3 € (0,1) can be computed by solving

minimize E E c(x,a)zxa

xeX acA(x)
such that Z Zya— BZ Z pxlx',d)ze =1, xeX
acA(x x'eXa'eA(x")

ZX,aZO, acAx), xeX

> z is a basic feasible solution (BFS) = for every state x,
exactly one z, , is positive

» z* is optimal BFS = policy ¢.(x) = arg max,{z .} is
optimal
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Interlude: Complexity of Discounted MDPs

Discounted MDPs with a fixed discount factor are solvable in strongly
polynomial time.

> Ye (2005): Interior-point method
> Ye (2011), Scherrer (2016): simplex method with Dantzig's rule,
Howard's (1960) policy iteration method

Hollanders, Delvenne, Jungers (2012): If discount factor isn't fixed,
Howard's (1960) policy iteration may need exponential time.

Discounted MDPs with special structure can be solved in strongly
polynomial time (regardless of discount factor).

» Zadorojniy, Even, Shwartz (2009): M/M/1 queue with service rate
control

> Post & Ye (2015): deterministic MDPs
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Average-Cost MDPs: Hitting Time Assumption

4
Pl),, = {gmx'w))' iie

Assumption (Hitting Time)
There is a state { and a constant L such that, for every policy ¢,

o]

D P(d)"

n=0

<L < oo.

» Mean recurrence time to state { is bounded by L under every policy.
» E.g., failed state of machine, no customers in queue

» Every such MDP is unichain.

Feinberg & Yang (2008): can be checked in strongly polynomial time
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An Equivalent Condition

Theorem (Feinberg & H, 2017)

The hitting time assumption holds if and only if there is a function
we : X — [0, L] satisfying

we(x) =14 plylx, a)uely)
y#t

for all a € A(x) and x € X.

E.g., let
He = max {Z zP(d>)”1}
¢
n=0
where 1, =1 for all x € X.

Denardo (2016): Such a p can be computed using at most
O[(n® 4+ mn)mLlog L] arithmetic operations.
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Linear Programming Formulation

minimize
xEX acA(x)
x|x', a)
such that Z Zya— Z Z p | We(x)zy oo =1, x#4
acA(x) x'eX a’eA(x")
te(x =2 e PlyIX' @) ely)
S ¥
He(x')
acA(L x'eX a’eA(x")

zxva>0, acAlx), xeX

For an optimal basic feasible solution z*,

b (x )fargmax{ } x € X.
acA(x

&« is optimal under the average-cost criterion.
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Complexity Estimate

Theorem (Feinberg & H, 2017)

The simplex method with Dantzig's rule solves the linear program (LP)
using at most
O(nmLlog L) iterations.

Also, there is a block-pivoting simplex method that solves the LP using

at most
O(mLlogL) iterations.

> Each iteration of the simplex method needs O(n® + nm) arithmetic
operations.

» When L is fixed, these two algorithms are strongly polynomial for
average-cost MDPs.

» Result for block-pivoting is special case of result in Akian &
Gaubert (2013) for 2-player stochastic games.
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Proof Sketch

The LP and the results about it come from a reduction to a discounted MDP
with cost-free absorbing state X ¢ X, based on Akian & Gaubert (2013).

» discount factor B = (L—1)/L

» scaled transition matrices

B1diag(py L) P(db)diag(1te) sy xeX, yeX\ {0
Blo)., — | BBl N~ 1= POy, x €Ky =

1— B diag(pg ) (e — 1), xeX, y=x

1, )

and one-step costs

Ewk_{&%m[ka. x# %
0, X=X

> minimize v($) =) B"P(d)"E(d)
Feinberg & Huang (2017): For every policy ¢, w(d) = v(db), - 1.

Use complexity estimates in Scherrer (2016) for discounted MDPs.
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Complexity of Average-Cost MDPs

Average-cost MDPs with special structure are solvable in strongly
polynomial time.

» Zadorojniy, Even, Shwartz (2009): M/M/1 queue with service
rate control

» Feinberg & H (2013): replacement/maintenance problems
with fixed minimal failure probability

» Feinberg & H (2017): fixed upper bound on expected time to
failure

Fearnley (2010): Howard's (1960) policy iteration may need

exponential time to solve a multichain average-cost MDP.
» Not known if this is true when MDP is unichain.
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Extensions

For total costs, the numbers p(y|x, a) need not be at most one.
» controlled multitype branching processes: Pliska (1976)

» multi-armed bandit problems with risk-seeking utilities:
Denardo, Feinberg, Rothblum (2013)

Feinberg & H (2017): For both criteria, the reductions to
discounting can be generalized to infinite state and action sets to

verify e.g.,
> existence of optimal policies

» validity of optimality equations

The reductions can also be formulated for stochastic games.

» model robust control
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Summary

Complexity estimates for certain total-cost and average-cost MDPs

» Conditions under which optimal policies for total-cost and
average-cost MDPs can be computed in strongly polynomial
time.

Future work:

» Do reductions to discounting hold under more general
conditions?

» Generalize to N-player stochastic games.
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