Strongly Polynomial Algorithms for Transient and Average-Cost MDPs

Jefferson Huang

School of Operations Research and Information Engineering
Cornell University

June 5, 2017

Workshop on MAtematical performance Modeling and Analysis (MAMA)
University of Illinois at Urbana-Champaign
Urbana, IL

Joint work with Eugene A. Feinberg (Stony Brook University)
Overview

Markov decision processes (MDPs): model of sequential decision-making under uncertainty

- Boucherie & van Dijk (2017): applications to healthcare, transportation, production systems, communications, finance

Alternative “good” linear programming formulations of certain total-cost and average-cost MDPs.

- Total-cost: should be transient.
- Average-cost: hitting time to a certain state should be bounded uniformly in initial states & policies.
- Conditions under which they are solvable in strongly polynomial time using classic methods.
- Based on recent results on discounted MDPs.
Discrete-Time Markov Decision Process (MDP)

\(X \) = finite state set; \(|X| = n \)

\(A(x) \) = set of actions available at state \(x \); \(\sum_x |A(x)| = m \)

\(p(y|x, a) \) = probability that the next state is \(y \), given the current state is \(x \) and action \(a \) is taken

\(c(x, a) \) = cost incurred when current state is \(x \) and action \(a \) is taken

Initial Distribution

State \(x_0 \) \(p(x_1|x_0, a_0) \) \(a_0 \) \(x_1 \) \(p(x_2|x_1, a_1) \) \(a_1 \) \(x_2 \) \(p(x_3|x_2, a_2) \) \(a_2 \) \(x_3 \) \(\cdots \)

\(c(x_0, a_0) \) \(c(x_1, a_1) \) \(c(x_2, a_2) \)
Policies

Policy = rule determining which action to take at each time step

In this talk: deterministic stationary policies only

- i.e., mappings \(\phi \) on \(X \) where \(\phi(x) \in A(x) \) for all \(x \in X \)

- no loss of generality (wrt. randomized history dependent policies) for models considered

Compare policies via a cost criterion \(g(\phi) \in \mathbb{R}^n \)

- \(\phi_* \) is optimal if \(g(\phi_*) \leq g(\phi) \) (component-wise) for all policies \(\phi \)

For each policy \(\phi \), let

\[
P(\phi)_{x,y} := p(y|x, \phi(x)), \quad c(\phi)_x := c(x, \phi(x)).
\]
Optimality Criteria

Total-Cost Criterion: For each state x,

$$g(\phi) = v(\phi) := \sum_{n=0}^{\infty} P(\phi)^n c(\phi)$$

Average-Cost Criterion: For each state x,

$$g(\phi) = w(\phi) := \limsup_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} P(\phi)^n c(\phi)$$
Complexity Estimates

An MDP is solved by computing an optimal policy.

An algorithm solves an MDP in strongly polynomial time if the number of arithmetic operations needed can be bounded above by a polynomial in the number of state-action pairs \(m \).

If the number of arithmetic operations needed can be bounded above by a polynomial in \(m \) and the total bit-size of the input data, it solves the MDP in weakly polynomial time.

- Total-cost & average-cost MDPs can be formulated as linear programs \(\implies \) solvable in weakly polynomial time (Khachiyan, 1979)
Total-Cost MDPs: Transience Assumption

\[\| P(\phi) \| := \max_{x \in X} \sum_{y \in X} p(y|x, \phi(x)) \]

\[\sum_y p(y|x, a) < 1 \implies \text{positive probability that process ends} \]

Assumption (Transience)

There is a constant \(K \) such that, for every policy \(\phi \),

\[\left\| \sum_{n=0}^{\infty} P(\phi)^n \right\| \leq K < \infty. \]

\[\text{Lifetime of the process is bounded by } K \text{ under every policy.} \]

Veinott (1974): Transience can be checked in strongly polynomial time.
A Condition Equivalent to Transience

Theorem (Feinberg & H, 2017)

Transience holds if and only if there is a function \(\mu : X \to [0, K] \) where

\[
\mu(x) \geq 1 + \sum_{y \in X} p(y|x, a) \mu(y)
\]

for all \(a \in A(x) \) and \(x \in X \).

E.g., let

\[
\mu = \max_{\phi} \left\{ \sum_{n=0}^{\infty} P(\phi)^n \mathbf{1} \right\}
\]

where \(\mathbf{1}_x = 1 \) for all \(x \in X \).

Denardo (2016): Such a \(\mu \) can be computed using at most \(O[(n^3 + mn)mK \log K] \) arithmetic operations.
Linear Programming Formulation

\[
\begin{align*}
\text{minimize} & \quad \sum_{x \in \mathbb{X}} \sum_{a \in A(x)} \frac{c(x, a)}{\mu(x)} z_{x,a} \\
\text{such that} & \quad \sum_{a \in A(x)} z_{x,a} - \sum_{x' \in \mathbb{X}} \sum_{a' \in A(x')} \frac{p(x|x', a')\mu(x)}{\mu(x')} z_{x',a'} = 1, \quad x \in \mathbb{X} \\
& \quad z_{x,a} \geq 0, \quad a \in A(x), \quad x \in \mathbb{X}
\end{align*}
\]

For an optimal basic feasible solution \(z^* \),

\[\phi_*(x) = \arg\max_{a \in A(x)} \left\{ z^*_{x,a} \right\}, \quad x \in \mathbb{X}.\]

Theorem (Feinberg & H, 2017)

\(\phi_* \) is optimal under the total-cost criterion.
Theorem (Feinberg & H, 2017)

The simplex method with Dantzig’s rule solves the linear program (LP) using at most

\[O(nmK \log K) \] iterations.

Also, there is a block-pivoting simplex method that solves the LP using at most

\[O(mK \log K) \] iterations.

- Each iteration of the simplex method needs \(O(n^3 + nm) \) arithmetic operations.

- When \(K \) is fixed, these two algorithms solve total-cost MDPs in strongly polynomial time.

- Denardo (2016): similar estimates, using different proof technique
Proof Sketch

The LP and the results about it come from a reduction to a discounted MDP with cost-free absorbing state $\tilde{x} \not\in X$, based on Veinott (1968).

- discount factor $\tilde{\beta} = (K - 1)/K$

- scaled transition matrices

$$
\tilde{P}(\phi)_{x,y} = \begin{cases}
\tilde{\beta}^{-1} \text{diag}(\mu^{-1}) P(\phi) \text{diag}(\mu), & x, y \neq \tilde{x} \\
1 - \sum_{y \neq \tilde{x}} \tilde{P}(\phi)_{x,y} & x \neq \tilde{x}, y = \tilde{x} \\
1, & x = y = \tilde{x}
\end{cases}
$$

and one-step costs

$$
\tilde{c}(\phi)_x = \begin{cases}
\text{diag}(\mu^{-1}) c(\phi)_x, & x \neq \tilde{x} \\
0, & x = \tilde{x}
\end{cases}
$$

- minimize $\tilde{v}(\phi) = \sum_{n=0}^{\infty} \tilde{\beta}^n \tilde{P}(\phi)^n \tilde{c}(\phi)$

Feinberg & Huang (2017): For every policy ϕ, $v(\phi) = \text{diag}(\mu) \tilde{v}(\phi)$.

Use complexity estimates in Scherrer (2016) for discounted MDPs.
An optimal policy for a discounted MDP with discount factor $\beta \in (0, 1)$ can be computed by solving

\[
\minimize \sum_{x \in \mathcal{X}} \sum_{a \in A(x)} c(x, a) z_{x,a}
\]

such that

\[
\sum_{a \in A(x)} z_{x,a} - \beta \sum_{x' \in \mathcal{X}} \sum_{a' \in A(x')} p(x|x', a') z_{x',a'} = 1, \quad x \in \mathcal{X}
\]

\[
z_{x,a} \geq 0, \quad a \in A(x), \quad x \in \mathcal{X}
\]

- z is a basic feasible solution (BFS) \implies for every state x, exactly one $z_{x,a}$ is positive

- z^* is optimal BFS \implies policy $\phi^*(x) = \arg \max_a \{ z_{x,a} \}$ is optimal
Interlude: Complexity of Discounted MDPs

Discounted MDPs with a **fixed discount factor** are solvable in strongly polynomial time.

- Ye (2005): Interior-point method

Hollanders, Delvenne, Jungers (2012): If discount factor isn’t fixed, Howard’s (1960) policy iteration may need exponential time.

Discounted MDPs with **special structure** can be solved in strongly polynomial time (regardless of discount factor).

- Zadorojniy, Even, Shwartz (2009): M/M/1 queue with service rate control
- Post & Ye (2015): deterministic MDPs
Average-Cost MDPs: Hitting Time Assumption

\[\ell P(\phi)_{x,y} = \begin{cases}
 p(y|x, \phi(x)), & y \neq \ell \\
 0, & y = \ell
\end{cases} \]

Assumption (Hitting Time)

There is a state \(\ell \) and a constant \(L \) such that, for every policy \(\phi \),

\[
\left\| \sum_{n=0}^{\infty} \ell P(\phi)^n \right\| \leq L < \infty.
\]

- Mean recurrence time to state \(\ell \) is bounded by \(L \) under every policy.
 - E.g., failed state of machine, no customers in queue
 - Every such MDP is unichain.

Feinberg & Yang (2008): can be checked in strongly polynomial time
An Equivalent Condition

Theorem (Feinberg & H, 2017)

The hitting time assumption holds if and only if there is a function \(\mu_\ell : \mathbb{X} \to [0, L]\) *satisfying*

\[
\mu_\ell(x) \geq 1 + \sum_{y \neq \ell} p(y|x, a) \mu_\ell(y)
\]

for all \(a \in A(x)\) *and* \(x \in \mathbb{X} \).

E.g., let

\[
\mu_\ell = \max_\phi \left\{ \sum_{n=0}^{\infty} \ell P(\phi)^n 1 \right\}
\]

where \(1_x = 1\) *for all* \(x \in \mathbb{X}\).

Denardo (2016): Such a \(\mu\) can be computed using at most \(O[(n^3 + mn) mL \log L]\) arithmetic operations.
Linear Programming Formulation

minimize \[\sum_{x \in X} \sum_{a \in A(x)} \frac{c(x, a)}{\mu_\ell(x)} z_{x,a} \]

such that \[\sum_{a \in A(x)} z_{x,a} - \sum_{x' \in X} \sum_{a' \in A(x')} \frac{p(x|x', a')}{\mu_\ell(x')} \mu_\ell(x) z_{x',a'} = 1, \quad x \neq \ell \]

\[\sum_{a \in A(\ell)} z_{\ell,a} - \sum_{x' \in X} \sum_{a' \in A(x')} \frac{\mu_\ell(x') - 1 - \sum_{y \neq \ell} p(y|x', a') \mu_\ell(y)}{\mu_\ell(x')} z_{x',a'} = 1 \]

\[z_{x,a} \geq 0, \quad a \in A(x), \quad x \in X \]

For an optimal basic feasible solution \(z^* \),

\[\phi^*_*(x) = \arg \max_{a \in A(x)} \{ z^*_{x,a} \}, \quad x \in X. \]

Theorem

\(\phi^*_* \) is optimal under the average-cost criterion.
Complexity Estimate

Theorem (Feinberg & H, 2017)

The simplex method with Dantzig's rule solves the linear program (LP) using at most

\[O(nmL \log L) \] *iterations.*

Also, there is a block-pivoting simplex method that solves the LP using at most

\[O(mL \log L) \] *iterations.*

- Each iteration of the simplex method needs \(O(n^3 + nm) \) arithmetic operations.

- When \(L \) is fixed, these two algorithms are strongly polynomial for average-cost MDPs.

- Result for block-pivoting is special case of result in Akian & Gaubert (2013) for 2-player stochastic games.
Proof Sketch

The LP and the results about it come from a reduction to a discounted MDP with cost-free absorbing state $\bar{x} \not\in \mathbb{X}$, based on Akian & Gaubert (2013).

- **discount factor** $\bar{\beta} = (L - 1)/L$
- **scaled** transition matrices

$$
\bar{P}(\phi)_{x,y} =
\begin{cases}
 \bar{\beta}^{-1} \text{diag}(\mu_{\ell}^{-1}) P(\phi) \text{diag}(\mu_{\ell})_{x,y}, & x \in \mathbb{X}, \ y \in \mathbb{X} \setminus \{\ell\} \\
 \bar{\beta}^{-1} \text{diag}(\mu_{\ell}^{-1})(\mu_{\ell} - 1 - \ell P(\phi) \mu)_{x,y}, & x \in \mathbb{X}, \ y = \ell \\
 1 - \bar{\beta}^{-1} \text{diag}(\mu_{\ell}^{-1})(\mu - 1)_{x}, & x \in \mathbb{X}, \ y = \bar{x}, \\
 1, & x = y = \bar{x}
\end{cases}
$$

and one-step costs

$$
\bar{c}(\phi)_x =
\begin{cases}
 \text{diag}(\mu_{\ell}^{-1}) c(\phi)_x, & x \neq \bar{x} \\
 0, & x = \bar{x}
\end{cases}
$$

- **minimize** $\bar{v}(\phi) = \sum_{n=0}^{\infty} \bar{\beta}^n \bar{P}(\phi)^n \bar{c}(\phi)$

Feinberg & Huang (2017): For every policy ϕ, $w(\phi) = \bar{v}(\phi)_{\ell} \cdot 1$.

Use complexity estimates in Scherrer (2016) for discounted MDPs.
Complexity of Average-Cost MDPs

Average-cost MDPs with **special structure** are solvable in strongly polynomial time.

- **Zadorojniy, Even, Shwartz (2009):** M/M/1 queue with service rate control
- **Feinberg & H (2013):** replacement/maintenance problems with fixed minimal failure probability
 - **Feinberg & H (2017):** fixed upper bound on expected time to failure

Fearnley (2010): Howard’s (1960) policy iteration may need exponential time to solve a **multichain** average-cost MDP.

- **Not known if this is true when MDP is unichain.**
Extensions

For total costs, the numbers $p(y|x, a)$ need not be at most one.

- controlled multitype branching processes: Pliska (1976)

Feinberg & H (2017): For both criteria, the reductions to discounting can be generalized to infinite state and action sets to verify e.g.,

- existence of optimal policies
- validity of optimality equations

The reductions can also be formulated for stochastic games.

- model robust control
Summary

Complexity estimates for certain total-cost and average-cost MDPs

- Conditions under which optimal policies for total-cost and average-cost MDPs can be computed in strongly polynomial time.

Future work:

- Do reductions to discounting hold under more general conditions?
- Generalize to N-player stochastic games.