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Model definition

A discrete-time Markov decision process (MDP) is defined by:

1. X - state space

2. A - action space

3. A(x) - sets of available actions

4. c(x , a) - one-step costs

5. q(y |x , a) - non-negative transition rates

In this talk,

1. X is countable

2. A is a Borel subset of a Polish space

3. A(x) is a Borel subset of A ∀x ∈ X.

4. c is bounded, and measurable in a ∈ A(x) ∀x ∈ X
5. q is measurable in a ∈ A(x) ∀x , y ∈ X, and

sup{∑y∈X q(y |x , a) | x ∈ X, a ∈ A(x)} <∞
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Policies

A policy is a mapping φ : X→ A where φ(x) ∈ A(x) ∀x ∈ X.

I F - set of all policies

Each φ ∈ F has a corresponding transition matrix

Qφ(x , y) := q(y |x , φ(x)), x , y ∈ X,

and cost vector

cφ(x) := c(x , φ(x)), x ∈ X.
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Cost measures

Discounted costs: For β ∈ [0, 1),

vφβ (x) :=
∞∑
n=0

βnQn
φcφ(x).

Undiscounted total costs:

vφ(x) :=
∞∑
n=0

Qn
φcφ(x).

Average costs:

wφ(x) := lim sup
N→∞

1

N

N−1∑
n=0

Qn
φcφ(x).
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Optimality criteria

A policy φ∗ is:

β-optimal if

vφ∗β (x) = inf
φ∈F

vφβ (x) =: vβ(x) ∀x ∈ X;

total-cost optimal if

vφ∗(x) = inf
φ∈F

vφ(x) =: v(x) ∀x ∈ X;

average-cost optimal if

wφ∗(x) = inf
φ∈F

wφ(x) =: w(x) ∀x ∈ X.
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Computing optimal policies

There are 3 main approaches:

1. Value iteration
I discounted: Shapley (1953)
I undiscounted total: Bellman (1957), Blackwell (1961, 1967),

Strauch (1966)
I average: White (1963), Schweitzer & Federgruen (1977, 1979)

2. Policy iteration
I discounted: Howard (1960)
I undiscounted total: Veinott (1969), van der Wal (1981)
I average: Howard (1960), Veinott (1966)

3. Linear programming
I discounted: D’Epenoux (1963)
I undiscounted total: Veinott (1969), Kallenberg (1983)
I average: de Ghellinck (1960) and Manne (1960); Denardo and

Fox (1968), Hordijk and Kallenberg (1979, 1980)
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Complexity of algorithms

Finite X and A

m := number of state-action pairs (x , a), x ∈ X, a ∈ A(x)

Two classes of “efficient” algorithms:

I weakly polynomial: number of arithmetic operations needed
is bounded above by a polynomial in m & the bit-size L of the
input data;

I strongly polynomial: number of arithmetic operations
needed is bounded above by a polynomial in m only.
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Complexity of algorithms - discounted costs

Take β to be a constant.

Weakly polynomial algorithms exist for all 3 approaches.

1. Value iteration: Tseng (1990)

2. Policy iteration: Meister & Holzbaur (1986)

3. Linear programming: Khachiyan (1979), Karmarkar (1984)

Ye (2011): strongly polynomial algorithms exist for the latter two
approaches.

Feinberg & H. (2014): value iteration algorithm is not strongly
polynomial
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Value iteration - discounted costs

For β ∈ [0, 1) and f : X→ R, define the optimality operator

Tβf (x) := min
A(x)

c(x , a) + β
∑
y∈X

q(y |x , a)f (y)

 , x ∈ X.

Step 0: Pick V0 : X→ R, and set k = 1.

Step 1: Pick any φk ∈ F satisfying cφk + βQφkVk−1 = TβVk−1.

Step 2:
I If Vk−1 = TβVk−1, then φk is β-optimal.
I Else, set Vk = TβVk−1, increase k by 1 and go to Step 1.

If X and A are finite, and the q(y |x , a)’s are transition proba-
bilities, then

Vk → vβ and φk is β-optimal for some k <∞.
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The example

Deterministic MDP with m = 4 state-action pairs:

2 1 3
δ 0

0 −1

Arcs correspond to actions, and are labeled with their one-step
costs.

Note: Suppose V0 ≡ 0. Then at state 1, the solid arc is selected
on iteration k only if

δ ≥ βVk−1(3).

Use δ to control the required number of iterations.
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The example

2 1 3
δ 0

0 −1

Theorem

Let β ∈ (0, 1) and V0 ≡ 0. Then for any positive integer N, there
is a δ ∈ R such that at least N iterations are required to find the
optimal policy.

Proof. Let δ satisfy

− β

1− β < δ < −β(1− βN−1)

1− β .

Then at state 1, the solid arc is the unique optimal action. Also,
for k = 1, . . . ,N

δ < −β(1− βN−1)

1− β ≤ −β(1− βk−1)

1− β = βVk−1(3).

�
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Non-strong polynomiality

Corollary

The value iteration algorithm is not strongly polynomial.

Proof. By the preceding theorem, the required number of iter-
ations cannot be bounded by a polynomial in m only. �

Feinberg, H., and Scherrer (2014): the same example shows that
many optimistic policy iteration algorithms are not strongly
polynomial.

I Includes Puterman & Shin’s (1978) modified policy iteration
and Bertsekas & Tsitsiklis’s (1996) λ-policy iteration.
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Transient MDPs

For a nonnegative matrix B with entries B(x , y), x , y ∈ X, let

‖B‖ := supx∈X
∑

y∈X B(x , y).

Assumption T

The MDP is transient, i.e., there is a constant K satisfying

‖
∞∑
n=0

Qn
φ‖ ≤ K <∞ ∀φ ∈ F.

There’s a strongly polynomial algorithm, due to Eric Denardo, for
checking Assumption T - see Veinott (1969).
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A preliminary result

Proposition

Suppose the MDP is transient. Then there is a µ : X→ [0,∞)
that is bounded above by K and satisfies

µ(x) ≥ 1 +
∑
y∈X

q(y |x , a)µ(y), x ∈ X, a ∈ A(x). (1)

Proof. When the MDP is transient, the operator

U f (x) := sup
A(x)

1 +
∑
y∈X

q(y |x , a)f (y)

 , x ∈ X,

has a nonnegative fixed point bounded above by K . �
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The Hoffman-Veinott transformation

Extension of an idea attributed to Alan Hoffman by Veinott (1969):

State space: X̃ := X ∪ {x̃}
Action space: Ã := A ∪ {ã}
Available actions:

Ã(x) :=

{
A(x), x ∈ X,
{ã}, x = x̃

One-step costs:

c̃(x , a) :=

{
µ(x)−1c(x , a), x ∈ X, a ∈ A(x),

0, (x , a) = (x̃ , ã)
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The Hoffman-Veinott transformation (continued)

Choose a discount factor

β̃ ∈
[
K − 1

K
, 1

)
.

Transition probabilities:

p̃(y |x , a) :=


1

β̃µ(x)
q(y |x , a)µ(y), x , y ∈ X,

1− 1
β̃µ(x)

∑
y∈X q(y |x , a)µ(y), y = x̃ , x ∈ X,

1, y = x = x̃
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Representation of total costs

Proposition

Suppose the MDP is transient, and the one-step costs are
bounded. Then

vφ(x) = µ(x)ṽφ
β̃

(x), φ ∈ F, x ∈ X.

Proof. Use the fact that x̃ is a cost-free absorbing state to rewrite
ṽφ
β̃

in terms of the original problem data. �
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Compactness conditions

Our main results use the following conditions:

Compactness Conditions

(i) A(x) is compact ∀x ∈ X;

(ii) c(x , a) is:
I bounded in (x , a) where x ∈ X and a ∈ A(x), and
I lower semicontinuous in a ∈ A(x) ∀x ∈ X;

(iii) q(y |x , a) is continuous in a ∈ A(x) ∀x , y ∈ X;

(iv) q(X|x , a) :=
∑

y∈X q(y |x , a) is continuous in a ∈ A(x)
∀x ∈ X.

For a discounted MDP, the Compactness Conditions imply the
existence of an optimal policy - see e.g., Feinberg Kasyanov &
Zadoianchuk (2012).
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Main result for transient MDPs

A∗(x) := {a ∈ A(x) | v(x) = c(x , a)+
∑

y∈X q(y |x , a)v(y)}, x ∈ X.

Theorem - cf. Pliska (1978)

Suppose the MDP is transient, and satisfies the Compactness
Conditions. Then:

(i) the value function v = µṽβ is the unique bounded function
satisfying

v(x) = minA(x)[c(x , a) +
∑

y∈X q(y |x , a)v(y)], x ∈ X;

(ii) there is a stationary total-cost optimal policy;

(iii) φ ∈ F is total-cost optimal iff. φ(x) ∈ A∗(x) ∀x ∈ X, and for
x ∈ X

A∗(x) = {a ∈ A(x) | ṽβ̃(x) = c̃(x , a) + β̃
∑

y∈X̃ p̃(y |x , a)ṽβ̃(y)}.
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A strongly polynomial algorithm

To compute a total-cost optimal policy for a transient MDP, solve
the LP

minimize
∑
x∈X̃

∑
a∈Ã(x)

c̃(x , a)zx,a

such that
∑

a∈Ã(x)

zx,a − β̃
∑
y∈X̃

∑
a∈Ã(y)

p̃(x |y , a)zy ,a = 1 ∀x ∈ X̃,

zx,a ≥ 0 ∀x ∈ X̃, a ∈ Ã(x).

When β̃ = (K − 1)/K and K > 1, Scherrer’s (2013) results imply
that this LP can be solved using

O(mK logK ) iterations

of a block-pivoting simplex method corresponding to Howard’s
policy iteration.

I Ye (2011) and Denardo (2015) also provide complexity estimates for

transient MDPs.
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An assumption for average-cost MDPs

For z ∈ X and φ ∈ F, consider the matrix zQφ with entries

zQφ(x , y) :=

{
q(y |x , φ(x)), if x ∈ X, y 6= z ,

0, if x ∈ X, y = z .

Assumption HT

There is a state ` ∈ X and a constant K ∗ satisfying

‖
∞∑
n=0

`Q
n
φ‖ ≤ K ∗ <∞ for all φ ∈ F.

Feinberg & Yang (2008): there’s a strongly polynomial algorithm
for checking Assumption HT when the q(y |x , a)’s are transition
probabilities.

24 / 31



The HV-AG transformation

I modification of Akian & Gaubert’s (2013) transformation for
turn-based zero-sum stochastic games with finite state &
action sets

I can be viewed as an extension of the Hoffman-Veinott
transformation

I Ross’s (1968) transformation can be viewed as a special case

Note: If Assumption HT holds, then there’s a µ : X→ [0,∞)
that’s bounded above by K ∗ and satisfies

µ(x) ≥ 1 +
∑

y∈X\{`}

q(y |x , a)µ(y), x ∈ X, a ∈ A(x);

cf. (1).
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The HV-AG transformation

State space: X̄ := X ∪ {x̄}
Action space: Ā := A ∪ {ā}
Available actions:

Ā(x) :=

{
A(x), x ∈ X,
{ā}, x = x̄

One-step costs:

c̄(x , a) :=

{
µ(x)−1c(x , a), x ∈ X, a ∈ A(x),

0, (x , a) = (x̄ , ā)

(So far, it’s the same as the Hoffman-Veinott transformation.)

26 / 31



The HV-AG transformation (continued)

Choose a discount factor

β̄ ∈
[
K ∗ − 1

K ∗
, 1

)
.

Transition probabilities:

p̄(y |x , a) :=


1

β̄µ(x)
q(y |x , a)µ(y), y ∈ X \ {`}, x ∈ X,

1
β̄µ(x)

[µ(x)− 1−
∑

y∈X\{`} q(y |x , a)µ(y)], y = `, x ∈ X,
1− 1

β̄µ(x)
[µ(x)− 1], y = x̄ , x ∈ X,

1, y = x = x̄
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Representation result for average costs

Proposition

For φ ∈ F, let hφ(x) := µ(x)[v̄φ
β̄

(x)− v̄φ
β̄

(`)], x ∈ X. Then

v̄φ
β̄

(`) + hφ(x) = c(x , φ(x)) +
∑
y∈X

q(y |x , φ(x))hφ(y), x ∈ X.

If the one-step costs c are bounded and the q(y |x , a)’s are

transition probabilities, then wφ ≡ v̄φ
β̄

(`).

Proof. Rewrite

v̄φ
β̄

(x) = c̄(x , φ(x)) + β̄
∑
y∈X̄

p̄(y |x , φ(x))v̄φ
β̄

(y), x ∈ X,

in terms of the original problem data. �
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Main result for average-cost MDPs

Theorem - cf. Derman (1966), Derman & Veinott (1967), Federgruen &
Tijms (1978), Dynkin & Yushkevich (1979)

Suppose the original MDP with transition probabilities q satisfies
Assumption HT and the Compactness Conditions. Then:

(i) w = v̄β̄(`) and h(x) = µ(x)[v̄β̄(x)− v̄β̄(`)], x ∈ X, satisfy the
optimality equation

w + h(x) = minA(x)

[
c(x , a) +

∑
y∈X q(y |x , a)h(y)

]
, x ∈ X;

(ii) there is a stationary average-cost optimal policy;

(iii) any φ ∈ F satisfying

φ(x) ∈ A∗av(x) := {a ∈ A(x) | w + h(x) = c(x , a) +
∑

y∈X q(y |x , a)h(y)}

for all x ∈ X is average-cost optimal, and for x ∈ X

A∗av(x) = {a ∈ A(x) | v̄β̄(x) = c̄(x , a) + β̄
∑

y∈X̄ p̄(y |x , a)v̄β̄(y)}.
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A strongly polynomial algorithm

To compute an average-cost optimal policy for an MDP with
transition probabilities that satisfy Assumption HT, solve the LP

minimize
∑
x∈X̄

∑
a∈Ā(x)

c̄(x , a)zx,a

such that
∑

a∈Ā(x)

zx,a − β̄
∑
y∈X̄

∑
a∈Ā(y)

p̄(x |y , a)zy ,a = 1 ∀x ∈ X̄,

zx,a ≥ 0 ∀x ∈ X̄, a ∈ Ā(x).

When β̄ = (K ∗ − 1)/K ∗ and K ∗ > 1, Scherrer’s (2013) results
imply that this LP can be solved using

O(mK ∗ logK ∗) iterations

of the block-pivoting simplex method corresponding to Howard’s
policy iteration - see also Akian & Gaubert (2013).
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Summary

1. A simple deterministic MDP shows that the value iteration
algorithm is not strongly polynomial.

2. Transient MDPs satisfying the Compactness Conditions can
be reduced to discounted ones.

3. Average-cost MDPs satisfying Assumption HT and the
Compactness Conditions can be reduced to discounted ones.

4. The reductions lead to strongly polynomial algorithms.
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