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Markov decision processes

Defined by:

1. state space X
2. sets of available actions A(x) at each state x

3. one-step costs c(x , a): incurred whenever the state is x and
action a ∈ A(x) is performed

4. transition probabilities p(y |x , a): probability that the next
state is y , given that the current state is x & action a ∈ A(x)
is performed

Initial Distribution

State x0 x1 x2 x3 · · ·

c(x0, a0) c(x1, a1) c(x2, a2)

p(x1|x0,a0)
a0

p(x2|x1,a1)
a1

p(x3|x2,a2)
a2

This talk: X and A(x)’s are finite.
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Policies & cost criteria

A policy φ prescribes an action for every state.

Common criteria for policies:

I Discounted costs: for β ∈ (0, 1),

vφβ (x) := Eφx
∞∑
t=0

βnc(xt , at)

I Undiscounted total costs: discounted costs with β = 1.

I Average costs:

wφ(x) := lim sup
T→∞

1

T
Eφx

T−1∑
t=0

c(xt , at)

A policy is optimal if it minimizes the chosen criterion for every
initial state.
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Computing optimal policies

3 main approaches:

1. Value iteration
I discounted: Shapley (1953)
I undiscounted total: Bellman (1957), Blackwell (1961, 1967),

Strauch (1966)
I average: White (1963), Schweitzer & Federgruen (1977, 1979)

2. Policy iteration
I discounted: Howard (1960)
I undiscounted total: Veinott (1969), van der Wal (1981)
I average: Howard (1960), Veinott (1966)

3. Linear programming
I discounted: D’Epenoux (1963)
I undiscounted total: Veinott (1969), Kallenberg (1983)
I average: de Ghellinck (1960) and Manne (1960); Denardo and

Fox (1968), Hordijk and Kallenberg (1979, 1980)
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Strong polynomiality

m := number of state-action pairs (x , a), x ∈ X, a ∈ A(x).

Definition

An algorithm for computing an optimal policy is strongly
polynomial if there exists an upper bound on the required number
of arithmetic operations that

1. is a polynomial in m, and

2. holds for any particular MDP.

Ye (2011): When the discount factor β ∈ (0, 1) is fixed, Howard’s
PI and the simplex method with Dantzig’s pivoting rule are
strongly polynomial.

Feinberg & H. (2014): Value iteration is not strongly polynomial,
even when β ∈ (0, 1) is fixed.
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Notation

One-step operator:

Tφf (x) := c(x , φ(x)) + β
∑
y∈X

p(y |x , φ(x))f (y)

Dynamic Programming (DP) operator:

Tf (x) := min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)f (y)


Value function: vβ(x) := infφ vφβ (x)
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Value iteration for discounted MDPs

A policy φ ∈ F is greedy with respect to f : X→ R if

φ ∈ G(f ) := {ϕ ∈ F | Tϕf = Tf }.

Value Iteration (VI): Select any V0 : X→ R, and iteratively
apply the DP operator.

V0 V1 = TV0 V2 = TV1 · · · Vj = TVj−1 · · ·

φ1 ∈ G(V0) φ2 ∈ G(V1) φ3 ∈ G(V2) φj+1 ∈ G(Vj)

For β ∈ (0, 1),

I limj→∞ Vj(x) = vβ(x) for all x ∈ X.

I For some j <∞, φj is optimal.
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The example

Deterministic MDP with m = 4 state-action pairs:

2 1 3
C 0

0 −1

Arcs: correspond to actions, labeled with their one-step costs.

Note: Suppose V0 ≡ 0. Then at state 1, the solid arc is selected
for the j th policy only if

C ≥ βVj−1(3).

Idea: Use C to control the required number of iterations.
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The example

2 1 3
C 0

0 −1

Theorem (Feinberg & H. 2014)

Let β ∈ (0, 1) and V0 ≡ 0. Then for any positive integer N, there
is a C ∈ R such that at least N iterations are required to find the
optimal policy.

Corollary

Value iteration is not strongly polynomial.
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Proof of the Theorem

2 1 3
C 0

0 −1

Let C satisfy

− β

1− β < C < −β(1− βN)

1− β .

Then at state 1, the solid arc is the unique optimal action. Also,
C < 0 = V0(3), and for j = 1, . . . ,N

C < −β(1− βN)

1− β ≤ −β(1− βj)
1− β = βVj(3).

But, the optimal policy is selected only if C ≥ βVj−1(3). �
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Generalized optimistic policy iteration

N̄ := {1, 2, . . . } ∪ {∞}

Let {Nj}∞j=1 be a N̄-valued stochastic sequence with associated
probability measure P and expectation operator E .

Generalized Optimistic PI: Select any V0 : X→ R and iteratively
generate {Vj}∞j=1 as follows:

V0 V1 = E [TN1

φ1 V0] V2 = E [TN2

φ2 V1] · · · Vj = E [T
Nj

φj Vj−1] · · ·

φ1 ∈ G(V0) φ2 ∈ G(V1) φ3 ∈ G(V2) φj+1 ∈ G(Vj)

Special cases: VI (Nj ’s ≡ 1), modified PI (Puterman & Shin
1978), λ-PI (Bertsekas & Tsitsiklis 1996), optimistic PI (Thiéry
& Scherrer 2010), Howard’s PI (Nj ’s ≡ ∞)
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Generalized optimistic policy iteration

2 1 3
C 0

0 −1

Theorem (Feinberg, H., & Scherrer 2014)

Let β ∈ (0, 1) and V0 ≡ 0. Suppose P{Nj <∞} > 0 for all j .
Then for any positive integer N, there is a C ∈ R such that at
least N iterations are required by Generalized Optimistic PI to find
the optimal policy.

Corollary

Value iteration, modified policy iteration, λ-policy iteration, and
optimistic policy iteration are not strongly polynomial.
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Reductions to discounted MDPs

For x ∈ X, let τx := inf{t ≥ 1 | xt = x}.

Theorem

Suppose there’s a state ` ∈ X and a constant K satisfying

Eφx τ` ≤ K <∞ for all x ∈ X, φ ∈ F.

Then:

(i) an average-cost optimal policy can be found by solving a
discounted MDP;

(ii) if ` is a cost-free absorbing state, then an undiscounted
total-cost optimal policy can be found by solving a
discounted MDP.

Feinberg & H. (2015): Conditions under which
I the Theorem holds for MDPs with infinite X and A(x)’s, and
I (ii) holds for a more general model.
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Checking the assumption

Let m := | ∪x∈X |A(x)|| and n := |X|.

The assumption that

Eφx τ` ≤ K <∞ for all x ∈ X, φ ∈ F. (1)

can be checked using O(mn2) arithmetic operations.

I For average costs, (1) holds iff. the MDP is unichain and has
a recurrent state `, which can be checked with O(mn2)
arithmetic operations (Feinberg & Yang 2008).

I For undiscounted total costs, (1) can be checked for a given
cost-free absorbing state using O(mn) arithmetic operations
(Veinott 1974).
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Construction of the discounted MDPs

Proposition

For ` ∈ X,

Eφx τ` ≤ K <∞ for all x ∈ X, φ ∈ F.

if and only if there’s a µ : X→ [0,∞) that’s bounded above by K
and satisfies

µ(x) ≥ 1 +
∑

y∈X\{`}

p(y |x , a)µ(y) for all x ∈ X, a ∈ A(x).

Use µ to construct the discounted MDPs, by extending ideas
of Alan Hoffman (Veinott 1969) and Akian & Gaubert (2013).
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Computing µ

For x ∈ X, let τ(x) := maxφ∈F Eφx τ`. Then

τ(x) = max
a∈A(x)

1 +
∑

y∈X\{`}

p(y |x , a)τ(y)

 , x ∈ X.

It follows from Denardo (2015) that τ can be computed using
O(mn ·mnK log(nK )) arithmetic operations.

It’s also possible to use ideas from Veinott (1974) to compute a
µ ≥ τ using O(n3 + mn) arithmetic operations.
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Construction of the discounted MDPs

State set: X̃ := X ∪ {x̃}.
Action sets: for x ∈ X̃,

Ã(x) :=

{
A(x) if x ∈ X,
{ã} if x = x̃ .

One-step costs: for x ∈ X̃ and a ∈ Ã(x),

c̃(x , a) :=

{
c(x , a)/µ(x), if x ∈ X,
0, if x = x̃ .

Discount factor:

β̃ :=
K − 1

K
.
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Transition probabilities for the discounted MDPs

When the original criterion is average costs, use the transition
probabilities

p̃av(y |x , a) :=


1

β̃µ(x)
p(y |x , a)µ(y), y ∈ X \ {`}, x ∈ X,

1

β̃µ(x)
[µ(x)− 1−

∑
y∈X\{`} p(y |x , a)µ(y)], y = `, x ∈ X,

1− 1

β̃µ(x)
[µ(x)− 1], y = x̃ , x ∈ X,

1, y = x = x̃

For undiscounted total costs, the transition probabilities are

p̃tot(y |x , a) :=


1

β̃µ(x)
p(y |x , a)µ(y), y , x ∈ X \ {`},

0, y = `, x ∈ X \ {`},
1− 1

β̃µ(x)

∑
y∈X\{`} p(y |x , a)µ(y), y = x̃ , x ∈ X \ {`},

1, y = x ∈ {`, x̃}
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Representation of average costs

Let ṽφ
β̃

be the discounted cost function under φ ∈ F for the MDP

(X̃, Ã(·), c̃ , p̃av).

Proposition

Let hφ(x) := µ(x)[ṽφ
β̃

(x)− ṽφ
β̃

(`)], x ∈ X. Then

ṽφ
β̃

(`) + hφ(x) = c(x , φ(x)) +
∑
y∈X

p(y |x , φ(x))hφ(y), x ∈ X.

and wφ ≡ ṽφ
β̃

(`).

Corollary

Any optimal policy for the new discounted MDP is average-cost
optimal for the original MDP.
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Representation of undiscounted total costs

Now let ṽφ
β̃

be the discounted cost function under φ ∈ F for the

MDP (X̃, Ã(·), c̃ , p̃tot).

Proposition

If ` is a cost-free absorbing state, then

vφ1 (x) = µ(x)ṽφ
β̃

(x), x ∈ X.

Corollary

Any optimal policy for the new discounted MDP is undiscounted
total-cost optimal for the original MDP.
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Computing an optimal policy

To compute an average-cost optimal policy, solve the LP

minimize
∑
x∈X̃

∑
a∈Ã(x)

c̃(x , a)zx,a

such that
∑

a∈Ã(x)

zx,a − β̃
∑
y∈X̃

∑
a∈Ã(y)

p̃av(x |y , a)zy ,a = 1 ∀x ∈ X̃,

zx,a ≥ 0 ∀x ∈ X̃, a ∈ Ã(x).

To compute an undiscounted total-cost optimal policy, solve the
above LP with p̃av replaced by p̃tot.

When K > 1, for both p̃av and p̃tot Scherrer’s (2013) results imply
the LP can be solved using the simplex method with

I Dantzig’s rule, using O(mnK log K ) iterations, or

I the block-pivoting rule corresponding to Howard’s PI, using
O(mK log K ) iterations.
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Summary

1. Unlike Howard’s PI and the simplex method with Dantzig’s
rule, value iteration and many of its generalizations are not
strongly polynomial.

2. If there’s a state ` satisfying

Eφx τ` ≤ K <∞ for all x ∈ X, φ ∈ F,

then both an average-cost optimal policy, and an
undiscounted total-cost optimal policy when ` is cost-free and
absorbing, can be computed by:

(1) computing a function µ using O(m2n2K log nK ) arithmetic
operations;

(2) constructing a discounted MDP using O(mn) arithmetic
operations;

(3) computing an optimal policy for the discounted MDP using
O(mn ·mK log K ) arithmetic operations.
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