Computational Complexity Estimates for Policy and Value Iteration Algorithms for Total-Cost and Average-Cost MDPs

Jefferson Huang

Department of Applied Mathematics and Statistics Stony Brook University

> INFORMS Annual Meeting Philadelphia, PA November 2, 2015

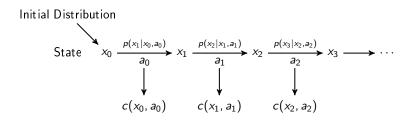
Joint work with Eugene A. Feinberg

- 1. MDPs & strong polynomiality
- 2. Value iteration & its generalizations for discounted MDPs
- 3. Reductions of total & average-cost MDPs to discounted ones

Markov decision processes

Defined by:

- 1. state space \mathbb{X}
- 2. sets of available actions A(x) at each state x
- one-step costs c(x, a): incurred whenever the state is x and action a ∈ A(x) is performed
- transition probabilities p(y|x, a): probability that the next state is y, given that the current state is x & action a ∈ A(x) is performed



This talk: X and A(x)'s are **finite**.

Policies & cost criteria

A **policy** ϕ prescribes an action for every state.

Common criteria for policies:

• Discounted costs: for $\beta \in (0, 1)$,

$$v^{\phi}_{eta}(x) := \mathbb{E}^{\phi}_{x} \sum_{t=0}^{\infty} eta^{n} c(x_{t}, a_{t})$$

- Undiscounted total costs: discounted costs with $\beta = 1$.
- Average costs:

$$w^{\phi}(x) := \limsup_{T o \infty} rac{1}{T} \mathbb{E}^{\phi}_{x} \sum_{t=0}^{T-1} c(x_t, a_t)$$

A policy is **optimal** if it minimizes the chosen criterion for every initial state.

Computing optimal policies

3 main approaches:

1. Value iteration

- discounted: Shapley (1953)
- undiscounted total: Bellman (1957), Blackwell (1961, 1967), Strauch (1966)
- ▶ average: White (1963), Schweitzer & Federgruen (1977, 1979)
- 2. Policy iteration
 - discounted: Howard (1960)
 - undiscounted total: Veinott (1969), van der Wal (1981)
 - average: Howard (1960), Veinott (1966)

3. Linear programming

- discounted: D'Epenoux (1963)
- undiscounted total: Veinott (1969), Kallenberg (1983)
- average: de Ghellinck (1960) and Manne (1960); Denardo and Fox (1968), Hordijk and Kallenberg (1979, 1980)

Strong polynomiality

m := number of state-action pairs (x, a), $x \in \mathbb{X}$, $a \in A(x)$.

Definition

An algorithm for computing an optimal policy is **strongly polynomial** if there exists an upper bound on the required number of arithmetic operations that

- 1. is a polynomial in *m*, and
- 2. holds for any particular MDP.

Ye (2011): When the discount factor $\beta \in (0, 1)$ is fixed, **Howard's PI** and the simplex method with **Dantzig's pivoting rule** are strongly polynomial.

Feinberg & H. (2014): Value iteration is *not* strongly polynomial, even when $\beta \in (0, 1)$ is fixed.

- 1. MDPs & strong polynomiality
- 2. Value iteration & its generalizations for discounted MDPs
- 3. Reductions of total & average-cost MDPs to discounted ones

Notation

One-step operator:

$$T_{\phi}f(x) := c(x,\phi(x)) + eta \sum_{y \in \mathbb{X}} p(y|x,\phi(x))f(y)$$

Dynamic Programming (DP) operator:

$$Tf(x) := \min_{a \in A(x)} \left[c(x,a) + \beta \sum_{y \in \mathbb{X}} p(y|x,a)f(y) \right]$$

Value function: $v_{\beta}(x) := \inf_{\phi} v_{\beta}^{\phi}(x)$

Value iteration for discounted MDPs

A policy $\phi \in \mathbb{F}$ is **greedy** with respect to $f : \mathbb{X} \to \mathbb{R}$ if

$$\phi \in \mathcal{G}(f) := \{ \varphi \in \mathbb{F} \mid T_{\varphi}f = Tf \}.$$

Value Iteration (VI): Select any $V_0 : \mathbb{X} \to \mathbb{R}$, and iteratively apply the DP operator.

For $\beta \in (0,1)$,

►
$$\lim_{j\to\infty} V_j(x) = v_\beta(x)$$
 for all $x \in \mathbb{X}$.

For some $j < \infty$, ϕ' is optimal.

The example

Deterministic MDP with m = 4 state-action pairs:

$$0 \underbrace{}_{2} \underbrace{}_{2} \underbrace{}_{-1} \underbrace{\phantom$$

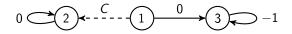
Arcs: correspond to actions, labeled with their one-step costs.

Note: Suppose $V_0 \equiv 0$. Then at state 1, the solid arc is selected for the j^{th} policy only if

$$C \geq \beta V_{j-1}(3).$$

Idea: Use C to control the required number of iterations.

The example



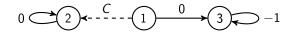
Theorem (Feinberg & H. 2014)

Let $\beta \in (0, 1)$ and $V_0 \equiv 0$. Then for any positive integer N, there is a $C \in \mathbb{R}$ such that at least N iterations are required to find the optimal policy.

Corollary

Value iteration is not strongly polynomial.

Proof of the Theorem



Let C satisfy

$$-\frac{\beta}{1-\beta} < C < -\frac{\beta(1-\beta^{N})}{1-\beta}.$$

Then at state 1, the solid arc is the unique optimal action. Also, $C < 0 = V_0(3)$, and for j = 1, ..., N

$$C < -rac{eta(1-eta^N)}{1-eta} \leq -rac{eta(1-eta^j)}{1-eta} = eta V_j(3).$$

But, the optimal policy is selected only if $C \ge \beta V_{j-1}(3)$.

Generalized optimistic policy iteration

$$\bar{\mathbb{N}}:=\{1,2,\dots\}\cup\{\infty\}$$

Let $\{N_j\}_{j=1}^{\infty}$ be a \mathbb{N} -valued stochastic sequence with associated probability measure P and expectation operator E.

Generalized Optimistic PI: Select any $V_0 : \mathbb{X} \to \mathbb{R}$ and iteratively generate $\{V_j\}_{j=1}^{\infty}$ as follows:

Special cases: VI (N_j 's \equiv 1), modified PI (Puterman & Shin 1978), λ -PI (Bertsekas & Tsitsiklis 1996), optimistic PI (Thiéry & Scherrer 2010), Howard's PI (N_j 's $\equiv \infty$)

Generalized optimistic policy iteration

$$0 \xrightarrow{C} 0 \xrightarrow{C} -1 \xrightarrow{C} -1 \xrightarrow{O} 3 \xrightarrow{C} -1$$

Theorem (Feinberg, H., & Scherrer 2014)

Let $\beta \in (0,1)$ and $V_0 \equiv 0$. Suppose $P\{N_j < \infty\} > 0$ for all j. Then for any positive integer N, there is a $C \in \mathbb{R}$ such that at least N iterations are required by Generalized Optimistic PI to find the optimal policy.

Corollary

Value iteration, modified policy iteration, λ -policy iteration, and optimistic policy iteration are not strongly polynomial.

- 1. MDPs & strong polynomiality
- 2. Value iteration & its generalizations for discounted MDPs
- 3. Reductions of total & average-cost MDPs to discounted ones

Reductions to discounted MDPs

For
$$x \in \mathbb{X}$$
, let $\tau_x := \inf\{t \ge 1 \mid x_t = x\}$.

Theorem

Suppose there's a state $\ell \in \mathbb{X}$ and a constant K satisfying

$$\mathbb{E}^{\phi}_{\mathsf{x}}\tau_{\ell} \leq \mathsf{K} < \infty \quad \text{for all } \mathsf{x} \in \mathbb{X}, \ \phi \in \mathbb{F}.$$

Then:

- (i) an average-cost optimal policy can be found by solving a discounted MDP;
- (ii) if ℓ is a cost-free absorbing state, then an undiscounted total-cost optimal policy can be found by solving a discounted MDP.

Feinberg & H. (2015): Conditions under which

- the Theorem holds for MDPs with infinite X and A(x)'s, and
- (ii) holds for a more general model.

Checking the assumption

Let
$$m := |\cup_{x \in \mathbb{X}} |A(x)||$$
 and $n := |\mathbb{X}|$.

The assumption that

$$\mathbb{E}_{x}^{\phi}\tau_{\ell} \leq K < \infty \quad \text{for all } x \in \mathbb{X}, \ \phi \in \mathbb{F}.$$
(1)

can be checked using $O(mn^2)$ arithmetic operations.

- For average costs, (1) holds iff. the MDP is unichain and has a recurrent state ℓ, which can be checked with O(mn²) arithmetic operations (Feinberg & Yang 2008).
- ▶ For undiscounted total costs, (1) can be checked for a given cost-free absorbing state using O(mn) arithmetic operations (Veinott 1974).

Construction of the discounted MDPs

Proposition

For $\ell \in \mathbb{X}$,

$$\mathbb{E}^{\phi}_{\mathsf{x}}\tau_{\ell} \leq \mathsf{K} < \infty \quad \text{for all } \mathsf{x} \in \mathbb{X}, \ \phi \in \mathbb{F}.$$

if and only if there's a $\mu:\mathbb{X}\to[0,\infty)$ that's bounded above by K and satisfies

$$\mu(x) \geq 1 + \sum_{y \in \mathbb{X} \setminus \{\ell\}} p(y|x, a) \mu(y) \quad \textit{for all } x \in \mathbb{X}, \,\, a \in A(x).$$

Use μ to construct the discounted MDPs, by extending ideas of Alan Hoffman (Veinott 1969) and Akian & Gaubert (2013).

Computing μ

For $x \in \mathbb{X}$, let $\tau(x) := \max_{\phi \in \mathbb{F}} \mathbb{E}^{\phi}_{x} \tau_{\ell}$. Then

$$au(x) = \max_{a \in A(x)} \left[1 + \sum_{y \in \mathbb{X} \setminus \{\ell\}} p(y|x, a) \tau(y) \right], \quad x \in \mathbb{X}.$$

It follows from Denardo (2015) that τ can be computed using $O(mn \cdot mnK \log(nK))$ arithmetic operations.

It's also possible to use ideas from Veinott (1974) to compute a $\mu \ge \tau$ using $O(n^3 + mn)$ arithmetic operations.

Construction of the discounted MDPs

State set: $\tilde{\mathbb{X}} := \mathbb{X} \cup \{\tilde{x}\}.$ Action sets: for $x \in \tilde{\mathbb{X}}$,

$$ilde{A}(x) := egin{cases} A(x) & ext{ if } x \in \mathbb{X}, \ \{ ilde{a}\} & ext{ if } x = ilde{x}. \end{cases}$$

One-step costs: for $x \in \tilde{\mathbb{X}}$ and $a \in \tilde{A}(x)$,

$$\widetilde{c}(x,a) := egin{cases} c(x,a)/\mu(x), & ext{ if } x \in \mathbb{X}, \ 0, & ext{ if } x = \widetilde{x}. \end{cases}$$

Discount factor:

$$\tilde{\beta} := \frac{K-1}{K}.$$

Transition probabilities for the discounted MDPs

When the original criterion is **average costs**, use the transition probabilities

$$\tilde{p}_{\mathsf{av}}(y|x, \mathbf{a}) := \begin{cases} \frac{1}{\beta\mu(x)} p(y|x, \mathbf{a})\mu(y), & y \in \mathbb{X} \setminus \{\ell\}, \ x \in \mathbb{X}, \\ \frac{1}{\beta\mu(x)} [\mu(x) - 1 - \sum_{y \in \mathbb{X} \setminus \{\ell\}} p(y|x, \mathbf{a})\mu(y)], & y = \ell, \ x \in \mathbb{X}, \\ 1 - \frac{1}{\beta\mu(x)} [\mu(x) - 1], & y = \tilde{x}, \ x \in \mathbb{X}, \\ 1, & y = x = \tilde{x} \end{cases}$$

For undiscounted total costs, the transition probabilities are

$$\tilde{p}_{\text{tot}}(y|x, \boldsymbol{a}) := \begin{cases} \frac{1}{\tilde{\beta}\mu(x)} \boldsymbol{p}(y|x, \boldsymbol{a})\mu(y), & y, x \in \mathbb{X} \setminus \{\ell\}, \\ 0, & y = \ell, \ x \in \mathbb{X} \setminus \{\ell\}, \\ 1 - \frac{1}{\tilde{\beta}\mu(x)} \sum_{y \in \mathbb{X} \setminus \{\ell\}} \boldsymbol{p}(y|x, \boldsymbol{a})\mu(y), & y = \tilde{x}, \ x \in \mathbb{X} \setminus \{\ell\}, \\ 1, & y = x \in \{\ell, \tilde{x}\} \end{cases}$$

Representation of average costs

Let $\tilde{v}^{\phi}_{\tilde{\beta}}$ be the discounted cost function under $\phi \in \mathbb{F}$ for the MDP $(\tilde{\mathbb{X}}, \tilde{A}(\cdot), \tilde{c}, \tilde{p}_{av})$.

Proposition

Let
$$h^{\phi}(x) := \mu(x) [\tilde{v}^{\phi}_{\tilde{eta}}(x) - \tilde{v}^{\phi}_{\tilde{eta}}(\ell)], x \in \mathbb{X}$$
. Then

$$ilde{v}^{\phi}_{ ilde{eta}}(\ell)+h^{\phi}(x)=c(x,\phi(x))+\sum_{y\in\mathbb{X}}p(y|x,\phi(x))h^{\phi}(y),\quad x\in\mathbb{X}.$$

and
$$w^{\phi}\equiv ilde{v}^{\phi}_{ ilde{eta}}(\ell).$$

Corollary

Any optimal policy for the new discounted MDP is average-cost optimal for the original MDP.

Representation of undiscounted total costs

Now let $\tilde{v}^{\phi}_{\tilde{\beta}}$ be the discounted cost function under $\phi \in \mathbb{F}$ for the MDP $(\tilde{\mathbb{X}}, \tilde{A}(\cdot), \tilde{c}, \tilde{p}_{tot})$.

Proposition

If ℓ is a cost-free absorbing state, then

$$v_1^{\phi}(x) = \mu(x) \tilde{v}_{ ilde{eta}}^{\phi}(x), \quad x \in \mathbb{X}.$$

Corollary

Any optimal policy for the new discounted MDP is undiscounted total-cost optimal for the original MDP.

Computing an optimal policy

To compute an average-cost optimal policy, solve the LP

$$\begin{array}{ll} \text{minimize} & \sum_{x \in \tilde{\mathbb{X}}} \sum_{a \in \tilde{A}(x)} \tilde{c}(x, a) z_{x, a} \\ \text{such that} & \sum_{a \in \tilde{A}(x)} z_{x, a} - \tilde{\beta} \sum_{y \in \tilde{\mathbb{X}}} \sum_{a \in \tilde{A}(y)} \tilde{p}_{\mathsf{av}}(x | y, a) z_{y, a} = 1 \quad \forall x \in \tilde{\mathbb{X}}, \\ & z_{x, a} \geq 0 \quad \forall x \in \tilde{\mathbb{X}}, \ a \in \tilde{A}(x). \end{array}$$

To compute an **undiscounted total-cost** optimal policy, solve the above LP with \tilde{p}_{av} replaced by \tilde{p}_{tot} .

When K > 1, for both \tilde{p}_{av} and \tilde{p}_{tot} Scherrer's (2013) results imply the LP can be solved using the **simplex method** with

- ▶ **Dantzig's** rule, using $O(mnK \log K)$ iterations, or
- the block-pivoting rule corresponding to Howard's PI, using O(mK log K) iterations.

Summary

- 1. Unlike Howard's PI and the simplex method with Dantzig's rule, value iteration and many of its generalizations are **not strongly polynomial**.
- 2. If there's a state ℓ satisfying

 $\mathbb{E}^{\phi}_{\mathsf{x}}\tau_{\ell} \leq \mathsf{K} < \infty \quad \text{for all } \mathsf{x} \in \mathbb{X}, \ \phi \in \mathbb{F},$

then both an average-cost optimal policy, and an undiscounted total-cost optimal policy when ℓ is cost-free and absorbing, can be computed by:

- (1) computing a function μ using $O(m^2 n^2 K \log nK)$ arithmetic operations;
- (2) constructing a discounted MDP using O(mn) arithmetic operations;
- (3) computing an optimal policy for the discounted MDP using $O(mn \cdot mK \log K)$ arithmetic operations.