Reduction of average-cost Markov Decision Processes to discounting under an accessibility condition

Jefferson Huang

Department of Applied Mathematics and Statistics Stony Brook University

> INFORMS Annual Meeting November 10, 2014

Joint work with Eugene Feinberg

- 1. Definitions
- 2. Review: complexity of discounted MDPs
- 3. Review: complexity of average-cost MDPs
- 4. Reducing average-cost MDPs to discounting
 - Complexity of policy iteration
 - Existence of optimal policies infinite state spaces

Definitions: The model

Markov Decision Process (MDP): defined by $(X, A(\cdot), p, c)$ where

- 1. \mathbb{X} state space
- 2. A(x) sets of actions available at $x \in \mathbb{X}$
- 3. p(y|x, a) transition probabilities, where
 - x current state
 - a current action
 - y next state
- 4. c(x, a) one-step costs

Assume: X is discrete, A(x) is finite $\forall x \in X$.

Definitions: Policies

Policy π - history-dependent and randomized in general.

• Π := set of all policies.

Stationary policy ϕ : selects action $\phi(x) \in A(x)$ whenever the state is $x \in \mathbb{X}$.

▶ 𝔅 := set of all stationary policies.

For $\pi \in \Pi$ & initial $x \in \mathbb{X}$, the **average cost** is

$$w^{\pi}(x) := \limsup_{N \to \infty} \frac{1}{N} \mathbb{E}_{x}^{\pi} \sum_{n=0}^{N-1} c(x_n, a_n);$$

for $\beta \in [0,1)$ the β -discounted cost is

$$v_{\beta}^{\pi}(x) := \mathbb{E}_{x}^{\pi} \sum_{n=0}^{\infty} \beta^{n} c(x_{n}, a_{n}).$$

Definitions: Optimality

 $\pi_* \in \Pi$ is average-cost optimal if

$$w^{\pi_*}(x) = \inf_{\pi \in \Pi} w^{\pi}(x) \quad \forall x \in \mathbb{X}$$

and β -discount optimal if

$$v_{eta}^{\pi_*}(x) = \inf_{\pi\in\Pi} v_{eta}^{\pi}(x) \quad orall x\in\mathbb{X}.$$

Main questions:

- 1. When do (stationary) optimal policies exist?
- 2. How can optimal policies be computed (and how quickly)?

Computing optimal policies

Main methods:

- 1. Value Iteration
 - discounted: Shapley (1953)
 - undiscounted: Bellman (1957)
 - average-cost: White (1963)
- 2. Policy Iteration
 - discounted & average-cost: Howard (1960)
- 3. Linear Programming Algorithms via LP formulation
 - discounted: D'Epenoux (1963)
 - average-cost: de Ghellinck (1960) and Manne (1960); Denardo and Fox (1968), Hordijk and Kallenberg (1979, 1980), Kallenberg (1983)
 - Wolfe and Dantzig (1962)

Focus of talk: Policy Iteration & Simplex Method

m := number of state-action pairs $(x, a), x \in \mathbb{X}, a \in A(x)$

Two classes of "efficient" algorithms:

- weakly polynomial: number of arithmetic operations needed is bounded above by a polynomial in m & the bit-size L of the input data;
- strongly polynomial: number of arithmetic operations needed is bounded above by a polynomial in *m* only.

Complexity results: Discounted costs (fixed β)

Value Iteration:

- weakly polynomial Tseng (1990)
- not strongly polynomial Feinberg and H. (2014)

Howard's Policy Iteration:

- weakly polynomial Meister and Holzbaur (1986)
- strongly polynomial Ye (2011), sharper bounds by Hansen, Miltersen, and Zwick (2013) and Scherrer (2013)

LP Algorithms:

- weakly polynomial Khachiyan (1979) (ellipsoid), Karmarkar (1984) (interior point)
- strongly polynomial Ye (2005) (interior point); Ye (2011) (simplex + Dantzig's rule), sharper bound by Scherrer (2013)

Many **modified policy iteration** algorithms are not strongly polynomial - Feinberg, H., and Scherrer (2014).

 Puterman and Shin's (1978) algorithm, Bertsekas and Tsitsiklis's (1996) λ-policy iteration **Simplex**: strongly polynomial, regardless of β , for:

- deterministic MDPs Post and Ye (2013) (Dantzig's rule), sharper bound by Hansen, Kaplan, and Zwick (2014)
- controlled random walks (e.g. M/M/1 queues) Zadorojniy, Even, and Schwartz (2009) & Even and Zadorojniy (2012) (Gass-Saaty rule)

Complexity results: Average costs - particular models

Simplex: strongly polynomial for

- controlled random walks Zadorojniy, Even and Schwartz (2009), Even and Zadorojniy (2012) (Gass-Saaty rule)
- ▶ problems with a state ℓ that's reached under any action with probability at least α > 0 - Feinberg and H. (2013) (Dantzig's rule)

Howard's policy iteration: strongly polynomial for

- ▶ problems with a state ℓ that's reached under any action with probability at least α > 0 - Feinberg and H. (2013)
- ▶ problems where the hitting time to a state ℓ is uniformly bounded in starting state & policy - Akian and Gaubert (2013)
 - shown for Hoffman and Karp's (1966) algorithm for mean-payoff games

Methods for studying complexity of average costs

Two approaches:

- 1. New algorithms Zadorojniy, Even, and Schwartz (2009)
- 2. Reduction to discounted problem
 - Feinberg and H. (2013) Ross's (1968a,b) transformation
 - Akian and Gaubert (2013) non-linear Perron-Frobenius theory

Akian and Gaubert's (2013) transformation: generalization of Ross's (1968a,b) transformation.

 see also Gubenko and Štatland (1975), Dynkin and Yushkevich (1979).

- Sufficient conditions for & implications of Akian and Gaubert's (2013) hitting time assumption;
- 2. Their reduction for MDPs without non-linear Perron-Frobenius theory;
- 3. Infinite ${\mathbb X}$ obtaining existence of a stationary optimal policy.

The assumption

 $\ell \in \mathbb{X}$ - fixed state $au_\ell := \inf\{n \ge 1 | x_n = \ell\} = hitting time to \ell$

Assumption HT (Hitting Time)

There's a constant K where

$$\mathbb{E}^{\phi}_{x}\tau_{\ell} \leq K < \infty \quad \forall x \in \mathbb{X}, \phi \in \mathbb{F}.$$

Equivalent: \exists *bounded nonnegative function* ξ on X satisfying

$$\xi(x) \geq 1 + \sum_{y \in \mathbb{X} \setminus \{\ell\}} p(y|x, a)\xi(y) \quad orall a \in A(x), x \in \mathbb{X}.$$

Sufficient condition for Assumption HT

Assumption D

There's a positive integer N & constant α where

$$\mathbb{P}^{\phi}_{x}\{x_{\mathsf{N}}=\ell\} \geq \alpha > \mathbf{0} \quad \forall x \in \mathbb{X}, \phi \in \mathbb{F}.$$

- Special case of Hordijk's (1974) simultaneous Doeblin condition.
- Implies

$$\mathbb{E}^{\phi}_{x}\tau_{\ell} \leq \mathbf{N}/\alpha < \infty \quad \forall x \in \mathbb{X}, \phi \in \mathbb{F}.$$

• Ross's (1968a,b) assumption: N = 1.

Implications of Assumption HT

 ${\it P}(\phi):=$ Markov chain corresponding to $\phi\in \mathbb{F}$

- state ℓ is *positive recurrent* $\forall \phi \in \mathbb{F}$.
- ▶ MDP is **unichain**, i.e. $P(\phi)$ has a single recurrent class $\forall \phi \in \mathbb{F}$.
- If $P(\phi)$ is aperiodic $\forall \phi \in \mathbb{F}$,
 - each $P(\phi)$ has a stationary distribution $\pi(\phi)$;
 - each P(φ) is fast mixing ∃ positive integer N and ρ < 1 where

$$\sup_{B\subseteq\mathbb{X}}\left|\sum_{y\in B}\mathcal{P}^n(\phi)(x,y)-\sum_{y\in B}\pi(\phi)(y)\right|\leq \rho^{\lfloor n/N\rfloor}\quad\forall x\in\mathbb{X},n\geq 1;$$

see Federgruen, Hordijk, and Tijms (1978).

• average cost w^{ϕ} is **constant** $\forall \phi \in \mathbb{F}$.

Reduction to discounting under Assumption HT

 $\boldsymbol{\xi}$ - bounded nonnegative function satisfying

$$\xi(x) \geq 1 + \sum_{y \in \mathbb{X} \setminus \{\ell\}} p(y|x, a)\xi(y) \quad orall a \in A(x), x \in \mathbb{X}$$

K - upper bound for ξ

Step 1: Use ξ to construct MDP with **state-dependent discount** factors

$$rac{\xi(x)-1}{\xi(x)}, \quad x\in\mathbb{X}.$$

Step 2: Construct MDP with uniform discount factor

$$\beta := \frac{K-1}{K}.$$

Step 1: State-dependent discounting - Akian and Gaubert (2013)

- 1. State space \mathbb{X}
- **2.** Action sets A(x), $x \in \mathbb{X}$
- 3. Transition probabilities

$$onumber
ho_{\xi}(y|x,a) := egin{cases} rac{1}{\xi(x)-1}
ho(y|x,a)\xi(y), & y
eq \ell, \ 1-rac{1}{\xi(x)-1}\sum_{y
eq \ell}
ho(y|x,a)\xi(y), & y=\ell \end{cases}$$

4. One-step costs $c_{\xi}(x,a) := c(x,a)/\xi(x)$

5. Current state is $x \implies$ next period's cost discounted by

$$\gamma_{\xi}(x) := \frac{\xi(x) - 1}{\xi(x)}$$

Step 2: Uniform discounting - Feinberg (2002)

- "Grave state" $\bar{x} \notin \mathbb{X}$
- **1.** State space $\overline{\mathbb{X}} := \mathbb{X} \cup \{\overline{x}\}$
- 2. Action sets

$$ar{A}(x) := egin{cases} A(x), & x \in \mathbb{X} \ \{ar{a}\}, & x = ar{x} \end{cases}$$

3. Transition probabilities

$$ar{p}(y|x, a) := egin{cases} rac{\gamma(x)}{eta} p_{\xi}(y|x, a), & x, y \in \mathbb{X} \ 1 - rac{\gamma(x)}{eta}, & x \in \mathbb{X}, y = ar{x} \ 1, & x = y = ar{x} \end{cases}$$

4. One-step costs

$$ar{c}(x, a) := egin{cases} c_{\xi}(x, a), & x \in \mathbb{X} \ 0, & x = ar{x} \end{cases}$$

5. Discount factor $\beta = (K - 1)/K$

Howard's & simple policy iteration

Policy iteration (both discounted and average-cost):

- **0**. Select $\phi \in \mathbb{F}$.
- 1. Evaluate ϕ .
- 2. Improve ϕ if possible and go to step 1; otherwise ϕ is optimal.

Improvement rule \iff simplex pivoting rule for LP formulation.

$$\rho_{xa}$$
 - decision variables, $a \in A(x)$, $x \in \mathbb{X}$.

Howard's policy iteration: For each x, variable ρ_{xa} with most negative reduced cost enters the basis. (block pivoting)

Simple policy iteration: Variable ρ_{xa} with most negative reduced cost enters basis. (Dantzig's rule)

Correspondence of policy iterations

Lemma

A sequence of policies is generated by discounted policy iteration for the MDP $(\bar{\mathbb{X}}, \bar{A}(\cdot), \bar{p}, \bar{c})$ with discount factor $\beta = (K - 1)/K$

if and only if

that sequence is generated by average-cost policy iteration for the MDP $(X, A(\cdot), p, c)$.

Idea:

- ▶ Write evaluation and improvement steps for $(\bar{\mathbb{X}}, \bar{A}(\cdot), \bar{p}, \bar{c})$ in terms of ξ and the original transition probabilities & costs.
- Use the uniqueness of the solutions obtained in the evaluation step for policy iterations under both criteria.

Complexity estimates: Average-cost policy iterations

Theorem

If Assumption HT holds, then for average costs Howard's policy iteration needs

 $O(m \cdot K \log K)$

iterations, and simple policy iteration needs

 $O(nm \cdot K \log K)$

iterations.

Theorem follows from the Lemma and Scherrer's (2013) iteration bounds for Howard's and simple policy iteration.

Complexity estimates: Average-cost policy iterations

Assumption D

There's a positive integer N & constant α where

$$\mathbb{P}^{\phi}_{x}\{x_{\mathsf{N}}=\ell\} \geq \alpha > \mathsf{0} \quad \forall x \in \mathbb{X}, \phi \in \mathbb{F}.$$

Corollary

If Assumption D holds, then for average costs Howard's policy iteration needs

 $O(m \cdot (N/\alpha) \log(N/\alpha))$

iterations, and simple policy iteration needs

 $O(nm \cdot (N/\alpha) \log(N/\alpha))$

iterations.

For N = 1, Corollary was proved by Feinberg and H. (2013).

Existence of stationary optimal policies: Infinite $\mathbb X$

Bounded one-step costs $c \neq$ average-cost optimal policy exists when state space X is countably infinite.

Ross (1970)

Theorem

If c is bounded, and Assumption HT holds, then there's a stationary average-cost optimal policy.

- ► Theorem follows from Akian and Gaubert's (2013) reduction.
- Theorem was proved by Federgruen and Tijms (1978) using a different method.
- Theorem follows from a much more general result covering uncountable state spaces, noncompact action sets, and possibly no special state l, proved by Feinberg, Kasyanov, and Zadoianchuk (2012).

Existence of stationary optimal policies: Infinite $\mathbb X$

Idea: Obtain a *bounded* solution (g, h) to the average-cost optimality equation

$$g + h(x) = \min_{A(x)} \left[c(x,a) + \sum_{y \in \mathbb{X}} p(y|x,a)h(y) \right], \quad x \in \mathbb{X}$$

(Derman (1966) showed this suffices) by showing that

$$T_{\xi}v(x) :=$$

$$\min_{A(x)} \left[\frac{c(x,a)}{\xi(x)} + \frac{1}{\xi(x)} \sum_{y \in \mathbb{X}} p(y|x,a)\xi(y)(v(y) - v(\ell)) + \frac{\xi(x) - 1}{\xi(x)}v(\ell) \right]$$

is a contraction mapping on the space of bounded functions on \mathbb{X} .

- 1. Akian and Gaubert (2013) proposed a new reduction of mean-payoff games to discounted games.
- 2. For MDPs, the complexity results it implies can be proved without non-linear Perron-Frobenius theory.
- 3. It can also be used to verify the existence of stationary optimal policies.