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Plan of the talk

1. Definitions

2. Review: complexity of discounted MDPs

3. Review: complexity of average-cost MDPs

4. Reducing average-cost MDPs to discounting
I Complexity of policy iteration
I Existence of optimal policies - infinite state spaces
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Definitions: The model

Markov Decision Process (MDP): defined by (X,A(·), p, c)
where

1. X - state space

2. A(x) - sets of actions available at x ∈ X
3. p(y |x , a) - transition probabilities, where

I x - current state
I a - current action
I y - next state

4. c(x , a) - one-step costs

Assume: X is discrete, A(x) is finite ∀x ∈ X.
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Definitions: Policies

Policy π - history-dependent and randomized in general.

I Π := set of all policies.

Stationary policy φ: selects action φ(x) ∈ A(x) whenever the
state is x ∈ X.

I F := set of all stationary policies.

For π ∈ Π & initial x ∈ X, the average cost is

wπ(x) := lim sup
N→∞

1

N
Eπx

N−1∑
n=0

c(xn, an);

for β ∈ [0, 1) the β-discounted cost is

vπβ (x) := Eπx
∞∑
n=0

βnc(xn, an).
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Definitions: Optimality

π∗ ∈ Π is average-cost optimal if

wπ∗(x) = inf
π∈Π

wπ(x) ∀x ∈ X

and β-discount optimal if

vπ∗β (x) = inf
π∈Π

vπβ (x) ∀x ∈ X.

Main questions:

1. When do (stationary) optimal policies exist?

2. How can optimal policies be computed (and how quickly)?
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Computing optimal policies

Main methods:

1. Value Iteration
I discounted: Shapley (1953)
I undiscounted: Bellman (1957)
I average-cost: White (1963)

2. Policy Iteration
I discounted & average-cost: Howard (1960)

3. Linear Programming Algorithms via LP formulation
I discounted: D’Epenoux (1963)
I average-cost: de Ghellinck (1960) and Manne (1960); Denardo

and Fox (1968), Hordijk and Kallenberg (1979, 1980),
Kallenberg (1983)

I Wolfe and Dantzig (1962)

Focus of talk: Policy Iteration & Simplex Method
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Definitions: Complexity of algorithms

m := number of state-action pairs (x , a), x ∈ X, a ∈ A(x)

Two classes of “efficient” algorithms:

I weakly polynomial: number of arithmetic operations needed
is bounded above by a polynomial in m & the bit-size L of the
input data;

I strongly polynomial: number of arithmetic operations
needed is bounded above by a polynomial in m only.

6 / 24



Complexity results: Discounted costs (fixed β)

Value Iteration:
I weakly polynomial - Tseng (1990)
I not strongly polynomial - Feinberg and H. (2014)

Howard’s Policy Iteration:
I weakly polynomial - Meister and Holzbaur (1986)
I strongly polynomial - Ye (2011), sharper bounds by Hansen,

Miltersen, and Zwick (2013) and Scherrer (2013)

LP Algorithms:
I weakly polynomial - Khachiyan (1979) (ellipsoid), Karmarkar

(1984) (interior point)
I strongly polynomial - Ye (2005) (interior point); Ye (2011)

(simplex + Dantzig’s rule), sharper bound by Scherrer (2013)

Many modified policy iteration algorithms are not strongly polynomial
- Feinberg, H., and Scherrer (2014).

I Puterman and Shin’s (1978) algorithm, Bertsekas and Tsitsiklis’s
(1996) λ-policy iteration
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Complexity results: Discounted costs - particular models

Simplex: strongly polynomial, regardless of β, for:

I deterministic MDPs - Post and Ye (2013) (Dantzig’s rule),
sharper bound by Hansen, Kaplan, and Zwick (2014)

I controlled random walks (e.g. M/M/1 queues) - Zadorojniy,
Even, and Schwartz (2009) & Even and Zadorojniy (2012)
(Gass-Saaty rule)
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Complexity results: Average costs - particular models

Simplex: strongly polynomial for

I controlled random walks - Zadorojniy, Even and Schwartz
(2009), Even and Zadorojniy (2012) (Gass-Saaty rule)

I problems with a state ` that’s reached under any action with
probability at least α > 0 - Feinberg and H. (2013) (Dantzig’s
rule)

Howard’s policy iteration: strongly polynomial for

I problems with a state ` that’s reached under any action with
probability at least α > 0 - Feinberg and H. (2013)

I problems where the hitting time to a state ` is uniformly
bounded in starting state & policy - Akian and Gaubert
(2013)

I shown for Hoffman and Karp’s (1966) algorithm for
mean-payoff games
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Methods for studying complexity of average costs

Two approaches:

1. New algorithms - Zadorojniy, Even, and Schwartz (2009)

2. Reduction to discounted problem
I Feinberg and H. (2013) - Ross’s (1968a,b) transformation
I Akian and Gaubert (2013) - non-linear Perron-Frobenius theory

Akian and Gaubert’s (2013) transformation: generalization of
Ross’s (1968a,b) transformation.

I see also Gubenko and Štatland (1975), Dynkin and
Yushkevich (1979).
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Rest of the talk

1. Sufficient conditions for & implications of Akian and
Gaubert’s (2013) hitting time assumption;

2. Their reduction for MDPs without non-linear
Perron-Frobenius theory;

3. Infinite X - obtaining existence of a stationary optimal policy.
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The assumption

` ∈ X - fixed state

τ` := inf{n ≥ 1|xn = `} = hitting time to `

Assumption HT (Hitting Time)

There’s a constant K where

Eφx τ` ≤ K <∞ ∀x ∈ X, φ ∈ F.

Equivalent: ∃ bounded nonnegative function ξ on X satisfying

ξ(x) ≥ 1 +
∑

y∈X\{`}

p(y |x , a)ξ(y) ∀a ∈ A(x), x ∈ X.
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Sufficient condition for Assumption HT

Assumption D

There’s a positive integer N & constant α where

Pφx{xN = `} ≥ α > 0 ∀x ∈ X, φ ∈ F.

I Special case of Hordijk’s (1974) simultaneous Doeblin
condition.

I Implies
Eφx τ` ≤ N/α <∞ ∀x ∈ X, φ ∈ F.

I Ross’s (1968a,b) assumption: N = 1.
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Implications of Assumption HT

P(φ) := Markov chain corresponding to φ ∈ F

I state ` is positive recurrent ∀φ ∈ F.

I MDP is unichain, i.e. P(φ) has a single recurrent class
∀φ ∈ F.

I If P(φ) is aperiodic ∀φ ∈ F,
I each P(φ) has a stationary distribution π(φ);
I each P(φ) is fast mixing - ∃ positive integer N and ρ < 1

where

sup
B⊆X

∣∣∣∣∣∣
∑
y∈B

Pn(φ)(x , y)−
∑
y∈B

π(φ)(y)

∣∣∣∣∣∣ ≤ ρbn/Nc ∀x ∈ X, n ≥ 1;

see Federgruen, Hordijk, and Tijms (1978).

I average cost wφ is constant ∀φ ∈ F.
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Reduction to discounting under Assumption HT

ξ - bounded nonnegative function satisfying

ξ(x) ≥ 1 +
∑

y∈X\{`}

p(y |x , a)ξ(y) ∀a ∈ A(x), x ∈ X

K - upper bound for ξ

Step 1: Use ξ to construct MDP with state-dependent discount
factors

ξ(x)− 1

ξ(x)
, x ∈ X.

Step 2: Construct MDP with uniform discount factor

β :=
K − 1

K
.
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Step 1: State-dependent discounting - Akian and Gaubert (2013)

1. State space X

2. Action sets A(x), x ∈ X

3. Transition probabilities

pξ(y |x , a) :=


1

ξ(x)−1p(y |x , a)ξ(y), y 6= `,

1− 1
ξ(x)−1

∑
y 6=`

p(y |x , a)ξ(y), y = `

4. One-step costs cξ(x , a) := c(x , a)/ξ(x)

5. Current state is x =⇒ next period’s cost discounted by

γξ(x) :=
ξ(x)− 1

ξ(x)
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Step 2: Uniform discounting - Feinberg (2002)

“Grave state” - x̄ 6∈ X

1. State space X̄ := X ∪ {x̄}
2. Action sets

Ā(x) :=

{
A(x), x ∈ X
{ā}, x = x̄

3. Transition probabilities

p̄(y |x , a) :=


γ(x)
β pξ(y |x , a), x , y ∈ X

1− γ(x)
β , x ∈ X, y = x̄

1, x = y = x̄

4. One-step costs

c̄(x , a) :=

{
cξ(x , a), x ∈ X
0, x = x̄

5. Discount factor β = (K − 1)/K
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Howard’s & simple policy iteration

Policy iteration (both discounted and average-cost):

0. Select φ ∈ F.

1. Evaluate φ.

2. Improve φ if possible and go to step 1; otherwise φ is optimal.

Improvement rule ⇐⇒ simplex pivoting rule for LP formulation.

ρxa - decision variables, a ∈ A(x), x ∈ X.

Howard’s policy iteration: For each x , variable ρxa with most
negative reduced cost enters the basis. (block pivoting)

Simple policy iteration: Variable ρxa with most negative reduced
cost enters basis. (Dantzig’s rule)
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Correspondence of policy iterations

Lemma

A sequence of policies is generated by discounted policy iteration
for the MDP (X̄, Ā(·), p̄, c̄) with discount factor β = (K − 1)/K

if and only if

that sequence is generated by average-cost policy iteration for the
MDP (X,A(·), p, c).

Idea:

I Write evaluation and improvement steps for (X̄, Ā(·), p̄, c̄) in
terms of ξ and the original transition probabilities & costs.

I Use the uniqueness of the solutions obtained in the evaluation
step for policy iterations under both criteria.
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Complexity estimates: Average-cost policy iterations

Theorem

If Assumption HT holds, then for average costs Howard’s policy
iteration needs

O (m · K logK )

iterations, and simple policy iteration needs

O(nm · K logK )

iterations.

Theorem follows from the Lemma and Scherrer’s (2013) iteration
bounds for Howard’s and simple policy iteration.
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Complexity estimates: Average-cost policy iterations

Assumption D

There’s a positive integer N & constant α where

Pφx{xN = `} ≥ α > 0 ∀x ∈ X, φ ∈ F.

Corollary

If Assumption D holds, then for average costs Howard’s policy
iteration needs

O(m · (N/α) log(N/α))

iterations, and simple policy iteration needs

O(nm · (N/α) log(N/α))

iterations.

For N = 1, Corollary was proved by Feinberg and H. (2013).
21 / 24



Existence of stationary optimal policies: Infinite X

Bounded one-step costs c 6⇒ average-cost optimal policy exists
when state space X is countably infinite.

I Ross (1970)

Theorem

If c is bounded, and Assumption HT holds, then there’s a
stationary average-cost optimal policy.

I Theorem follows from Akian and Gaubert’s (2013) reduction.

I Theorem was proved by Federgruen and Tijms (1978) using a
different method.

I Theorem follows from a much more general result covering
uncountable state spaces, noncompact action sets, and
possibly no special state `, proved by Feinberg, Kasyanov, and
Zadoianchuk (2012).
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Existence of stationary optimal policies: Infinite X

Idea: Obtain a bounded solution (g , h) to the average-cost
optimality equation

g + h(x) = min
A(x)

c(x , a) +
∑
y∈X

p(y |x , a)h(y)

 , x ∈ X

(Derman (1966) showed this suffices) by showing that

Tξv(x) :=

min
A(x)

c(x , a)

ξ(x)
+

1

ξ(x)

∑
y∈X

p(y |x , a)ξ(y)(v(y)− v(`)) +
ξ(x)− 1

ξ(x)
v(`)


is a contraction mapping on the space of bounded functions on X.
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Summary

1. Akian and Gaubert (2013) proposed a new reduction of
mean-payoff games to discounted games.

2. For MDPs, the complexity results it implies can be proved
without non-linear Perron-Frobenius theory.

3. It can also be used to verify the existence of stationary
optimal policies.
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