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Server Scheduling: Classic Setting

I Optimality of cµ-rule (Buyukkoc, Varaiya, Walrand 1985), (Nain
1989), (Van Mieghem, 1995)

I Applications to scheduling jobs/customers in production & service
systems
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Server Scheduling: Our Setting

Service rate depends on server state, which can be controlled. (Kaufman,
Lewis 2007), (Cai, Hasenbein, Kutanoglu, Liao 2013)

Motivation: scheduling chip testing in semiconductor manufacturing

Question: What is the structure of optimal policies?

I Optimality of cµ-rule?

I Optimality of threshold-type maintenance policies?
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The Model

I Independent Poisson arrivals at rates λ1, λ2.

I Each job has exponential service requirement with rate 1.

I Server deteriorates according to a pure-death process on S = {0, 1, . . . ,B}.

0 = server is down and being maintained

B = server is (like-)new

µs
k = service rate for class k jobs, when server state is s

I Costs: accrued continuously

I linear class-dependent holding costs with rates c1, c2
I fixed state-dependent maintenance costs K (s) > 0, s ∈ S.
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Policies & Optimality Criteria

Decision Epochs: arrivals, service completions, server state changes

Service Assumptions: non-anticipative, non-idling, preemptive

Decisions: perform service, maintain, or idle; e.g.,

Optimality Criteria: total discounted cost, average cost per unit time

A policy is discounted-cost (resp. average-cost) optimal if it
achieves the minimal discounted (resp. average) cost for every
initial pair of queue lengths and initial server state.
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A Key Assumption

Assumption (Constant-Ratio)

For k ∈ {1, 2} and s ∈ S, let µsk be the service rate at which class k jobs
can be served when the server state is s. Then

µs−1
1 µs2 = µ

s
1µ

s−1
2 for s = 1, . . . ,B.

Implication: Either c1µ
s
1 > c2µ

s
2 ∀s ∈ S, or c1µ

s
1 < c2µ

s
2 ∀s ∈ S.

(State-Dependent) cµ-rule:

If the current server state is s ∈ S, prioritize class

k∗ ∈ arg max
k

{ckµ
s
k }.
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Pure Scheduling Under Deterioration

Theorem (H, Down, Lewis, Wu 2017)

Suppose

I the Constant-Ratio assumption holds, and

I the decision-maker has no control over the server state.

Then the cµ-rule is both discounted-cost and average-cost optimal.

I Proof: adaptation of a classic interchange argument (Nain 1989)

I Holds under more general arrival and server-state processes.

I Fails if the Constant-Ratio assumption does not hold.

I (H, Down, Lewis, Wu 2017) cµ-rule may be unstable, even
when a stable policy exists
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Joint Scheduling & Maintenance

Stationary Policy: At every decision epoch, perform action

f (i , j , s) ∈ {serve class 1, serve class 2, maintain, idle}

if there are currently i class 1 jobs, j class 2 jobs, and the server state is s.

A stationary policy is monotone in s if it has an associated “switching curve”
that is monotonic in the server state s.

(Kaufman, Lewis 2007) provide an example where the optimal switching curve
is non-monotone in the number of jobs. (1 class only)
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Joint Scheduling & Maintenance

Theorem (H, Down, Lewis, Wu 2017)

There exists a discounted-cost optimal stationary policy with the
following properties.

(i) If it is optimal to perform service at the current decision epoch, and
both queues are nonempty, then it is optimal to schedule according
to the cµ-rule.

(ii) If the maintenance time and maintenance costs K (s) satisfy certain
conditions, then the aforementioned policy can be taken to be
monotone in s.

If certain stability conditions hold, then there exists an average-cost
optimal stationary policy with the preceding properties.

I Proof: (i) use result on pure scheduling; (ii) dynamic programming,
“monotonicity” of discounted-cost value function
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Conclusions & Future Work

Contributions:

1. A sufficient condition (Constant-Ratio) under which the cµ-rule is
optimal for scheduling, when the server deteriorates.

I If Constant-Ratio does not hold, the cµ rule may not be
optimal (or even stable, despite the presence of a stable
policy).

2. Extension of results in (Kaufman, Lewis 2007) to two job classes.

Future Work:

Preliminary numerical results indicate that scheduling according to the
cµ-rule performs well even when the Constant-Ratio assumption does
not hold.

I How does the degree of deviation from Constant-Ratio affect the
optimality of the cµ-rule?
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