Recovering Bandits

Jefferson Huang

Department of Applied Mathematics and Statistics Stony Brook University

> Algorithms Reading Group February 26, 2016

Multi-armed bandits (MABs)

A model of sequential decision-making:

- Given: set of K Markov chains.
- Select a chain ("arm") k to "play".
- Chain k undergoes a state transition; the other chains don't move.
- If chain k transitions from state i to state j, a reward ρ(i, j) is earned.
- Select another chain ...

A model of sequential decision-making:

- Given: $(S, \{A_s\}, r, p)$
- When the system is in state s ∈ S, select an action a ∈ A_s.
- A reward r(s, a) is earned.
- ► The next state is t with probability p(t|s, a).
- Select another action ...

MDP formluation of a multi-armed bandit

- States: $s = (i_1, \ldots, i_K)$, $i_k =$ state of arm k.
- Actions: $a = 1, \ldots, K$, i.e. which arm to play.
- Transition probabilities & rewards defined according to the arms' transition probabilities & rewards.

Problem

- **Given:** MDP $(S, \{A_s\}, r, p)$ generated by a MAB.
- Question:

How hard is it to recover the underlying MAB?

Motivation

Benchmarking MDP solution algorithms:

- It can be hard to tell how well an algorithm is doing.
- Example: Tetris.

 ${\sim}2^{200}$ states 1996: average score ${\sim}1,000$ 2006, 2009: average scores ${\sim}900,000$

► Want: Automatically generate large, difficult-to-solve MDPs whose optimal performance levels are known.

Motivation

- Idea: Use MABs.
- Lead to large MDPs:
 - ► MAB with K = 100 arms, where arm k has N = 10 states \implies MDP with $N^{K} = 10^{100}$ states, 100 actions per state.
- Optimal policies can be computed efficiently:
 - Denardo, Feinberg, Rothblum (2013): O(N³K³) arithmetic operations suffice to:
 - compute an optimal policy for the MAB;
 - compute the optimal value earned from a given initial state of the associated MDP.
- Want: Ensure the MDP is still difficult to solve.

Easy case: complete transition graphs

Use transitions to keep track of the current arm:

Communicating transition graphs

Easy when rewards identify the arm:

Deterministic arms

How to keep track of the current arm?

Other questions

- What other conditions make recovery easy?
- Is NP-hardness relevant to the recovery problem?
- Given a MDP, is it hard in general to decide whether it models a MAB?

Contact email:

jefferson.huang@stonybrook.edu

