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Overview

I Discounted MDPs are typically easier to study than undiscounted
ones.

I No need to consider structure of Markov chains induced by
stationary policies.

I Study of optimality equations, existence of optimal policies,
and algorithms is often more straightforward.

I Early approach: reduce the undiscounted problem to a discounted
one [Ross 1968], [Gubenko, Štatland 1975], [Dynkin, Yushkevich
1979]

This Talk: Most general known conditions under which undiscounted
MDPs can be reduced to discounted ones.
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Model Description

X = state space; n := |X| 6 |N| (will remark on uncountable case)

A(x) = action space; m := | ∪x∈X A(x)| 6 |R|

p(y |x , a) = probability that the next state is y , given the current state is
x and action a is taken

c(x , a) = cost incurred when current state is x and action a is taken

Initial Distribution

State x0 x1 x2 x3 · · ·

c(x0, a0) c(x1, a1) c(x2, a2)

p(x1|x0,a0)
a0

p(x2|x1,a1)
a1

p(x3|x2,a2)
a2

Introduction Model Description Total Costs Average Costs Per Unit Time Conclusion 2/23



Super-Stochastic Transition Rates

We will consider “transition rates”

q(y |x , a) := α(x , a)p(y |x , a), α(x , a) > 0.

Why?

I Generalization of usual discounted MDPs (constant α < 1)

I This talk: Conditions under which general discounting can be
reduced to usual discounting.

I Studied by many authors since the 1960s, e.g., [Veinott 1969],

[Sondik 1974], [Rothblum 1975], [Pliska 1976, 1978], [Rothblum, Veinott

1982], [Hordijk, Kallenberg 1984], [Hinderer, Waldmann 2003, 2005],

[Eaves, Veinott 2014]

I Also called e.g., “Markov branching decision chains”, “Markov

population decision chains”

I Applications to controlled population processes, infinite particle systems,

marketing, pest eradication, multiarmed bandits with risk-seeking criteria,

stochastic shortest path problems, . . .
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Policies

Policy = rule determining which action to take at each time step

This Talk: deterministic stationary policies only

I i.e., mappings φ on X where φ(x) ∈ A(x) for all x ∈ X

I no loss of generality (wrt. randomized history-dependent policies)
for models considered

Compare policies via a cost criterion g(φ) ∈ Rn

I φ∗ is optimal if g(φ∗) 6 g(φ) (component-wise) for all policies φ

For each policy φ, let

Q(φ)x ,y := q(y |x ,φ(x)), c(φ)x := c(x ,φ(x)).
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Optimality Criteria

Total-Cost Criterion: For each state x ,

g(φ) = v(φ) :=
∞∑
t=0

Q(φ)tc(φ)

Average-Cost Criterion: For each state x ,

g(φ) = w(φ) := lim sup
T→∞

1

T

T−1∑
n=0

Q(φ)tc(φ)
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Complexity Estimates

An MDP is solved by computing an optimal policy.

An algorithm solves an MDP (with finite state & action sets) in strongly
polynomial time if the # of arithmetic operations needed can be
bounded above by a polynomial in the # of state-action pairs m.

If the # of arithmetic operations needed can be bounded above by a
polynomial in m and the total bit-size of the input data, it solves the
MDP in weakly polynomial time.

I Total-cost & average-cost MDPs can be formulated as linear
programs =⇒ solvable in weakly polynomial time [Khachiyan
1979], [Karmarkar 1984]
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Total-Cost MDPs: Transience Assumption

‖Q(φ)‖V := supx∈X V (x)−1
∑

y∈X q(y |x ,φ(x))V (y), V > 1

Assumption (Transience)

There is a constant K such that, for every policy φ,∥∥∥∥∥
∞∑
t=0

Q(φ)t

∥∥∥∥∥
V

6 K <∞.

I ”Lifetime” of the process initiated at state x is bounded by KV (x)
under every policy.

[Veinott 1974]: Transience can be checked in strongly polynomial time.
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Characterization of Transience

Theorem (Feinberg & H, 2017)

Transience holds if and only if there is a function µ : X → [1,K ] where

µ(x) > V (x) +
∑
y∈X

q(y |x , a)µ(y)

for all a ∈ A(x) and x ∈ X.

E.g., let

µ = sup
φ

{ ∞∑
t=0

Q(φ)tV

}
.

[Denardo 2016]: Such a µ can be computed using O[(n3 +mn)mK logK ]
arithmetic operations.
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Hoffman-Veinott (HV) Transformation

β̃ := (K − 1)/K

X̃ := X ∪ {x̃}, and Ã := A ∪ {ã}

Ã(x) := A(x) if x ∈ X and Ã(x̃) := {ã}.

p̃(y |x , a) :=


1

β̃µ(x)
µ(y)q(y |x , a), x , y ∈ X, a ∈ A(x),

1 − 1
β̃µ(x)

∑
y∈X µ(y)q(y |x , a), y = x̃ , x ∈ X, a ∈ A(x),

1 y = x̃ , (x , a) = (x̃ , ã).

c̃(x , a) :=

{
c(x , a)/µ(x), x ∈ X, a ∈ A(x),

0, (x , a) = (x̃ , ã).

ṽβ̃(φ)x := Ẽφx
∞∑
t=0

β̃t c̃(xt , at) x ∈ X, φ ∈ F
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Reduction to a Discounted MDP

Theorem (Feinberg & H, 2017)

Suppose transience holds, and that there is a constant c <∞ satisfying

|c(x , a)| 6 cV (x) ∀x ∈ X, a ∈ A(x).

Then
vφ(x) = µ(x)ṽφ

β̃
(x) ∀x ∈ X, φ ∈ F.

Proof. Let c̃φ(x) := c̃(x ,φ(x)) and P̃φ(x , y) := p̃(y |x ,φ(x)). Then

β̃nP̃ t
φc̃φ(x) = µ(x)

−1Qt
φcφ(x) ∀t ∈ {0, 1, . . . }

�

Implies that to minimize vφ, it suffices to minimize ṽφ
β̃

.

Leads to results on validity of optimality equation and existence and
characterization of optimal policies for the original MDP [Feinberg & H, 2017].
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Linear Programming Formulation

The new discounted MDP leads to the following LP.

minimize
∑
x∈X

∑
a∈A(x)

c(x , a)

µ(x)
zx ,a

such that
∑

a∈A(x)
zx ,a −

∑
x′∈X

∑
a′∈A(x′)

p(x |x ′, a′)µ(x)

µ(x ′)
zx′,a′ = 1, x ∈ X

zx ,a > 0, a ∈ A(x), x ∈ X

For an optimal basic feasible solution z∗, let

φ∗(x) = arg max
a∈A(x)

{
z∗x ,a

}
, x ∈ X.

Theorem (Feinberg & H, 2017)

φ∗ is optimal under the total-cost criterion.
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Complexity Estimate

Theorem (Feinberg & H, 2017)

The simplex method with Dantzig’s rule solves the linear program (LP)
using at most

O(nmK logK ) iterations.

Also, there is a block-pivoting simplex method that solves the LP using
at most

O(mK logK ) iterations.

I Via results for discounted MDPs [Scherrer 2016].

I Each iteration of the simplex method needs O(n3 + nm) arithmetic
operations.

I When K is fixed, these two algorithms solve total-cost MDPs in
strongly polynomial time.

I [Denardo 2016]: similar estimates, using different proof technique
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Interlude: Complexity of Discounted MDPs

Discounted MDPs with a fixed discount factor are solvable in strongly
polynomial time.

I [Ye 2005]: Interior-point method

I [Ye 2011], [Scherrer 2016]: simplex method with Dantzig’s rule, Howard’s
(1960) policy iteration method

I [Hansen, Miltersen, Zwick 2013] Extension to strategy iteration for
zero-sum perfect-information stochastic games

[Hollanders, Delvenne, Jungers 2012]: If discount factor isn’t fixed, Howard’s
(1960) policy iteration may need exponential time.

[Feinberg, H 2014], [Feinberg, H, Scherrer 2014]: Modified policy iteration
algorithms (e.g., value iteration, λ-policy iteration) are not strongly polynomial

Discounted MDPs with special structure can be solved in strongly polynomial
time (regardless of discount factor)

I [Zadorojniy, Even, Shwartz 2009]: controlled random walks

I [Post & Ye 2015]: deterministic MDPs
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Uncountable State Spaces

Need to deal with measurability and continuity issues.

I Measurability of new cost function c̃ and transition probabilities p̃

I Depends on measurability of µ
I In general, costs and transition probabilities may only be

universally measurable

I Continuity of new cost function c̃ and transition probabilities p̃

I Depends on continuity of µ
I Related to existence of stationary optimal policies
I c̃ : semicontinuity
I p̃: setwise/weak continuity

See [Feinberg & H, 2017] for details. Also relevant in the average-cost
case (Slide 22).
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Average-Cost MDPs: Hitting Time Assumption

`Q(φ)x ,y =

{
q(y |x ,φ(x)), y 6= `
0, y = `

Assumption (Hitting Time)

There is a state ` and a constant L such that, for every policy φ,∥∥∥∥∥
∞∑
t=0

`Q(φ)t

∥∥∥∥∥
1

6 L <∞.

I If q 6 1, mean recurrence time to state ` is bounded by L under every

policy.

I ` may be e.g., failed state of machine, no customers in queue

I Every such MDP is unichain.

[Feinberg & Yang 2008]: can be checked in strongly polynomial time
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An Equivalent Condition

Theorem (Feinberg & H, 2017)

The hitting time assumption holds if and only if there is a function
µ` : X → [0, L] satisfying

µ`(x) > 1 +
∑
y 6=`

q(y |x , a)µ`(y)

for all a ∈ A(x) and x ∈ X.

E.g., let

µ` = sup
φ

{ ∞∑
t=0

`Q(φ)t1

}
where 1x = 1 for all x ∈ X.

[Denardo 2016]: Such a µ can be computed using at most
O[(n3 +mn)mL log L] arithmetic operations.
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HV-AG (Akian-Gaubert) Transformation

β̄ := (L− 1)/L

X̄ := X ∪ {x̄}, and Ā := A ∪ {ā}

Ā(x) := A(x) if x ∈ X and Ā(x̄) := {ā}.

p̄(y |x , a) :=


1

β̄µ`(x)
µ`(y)q(y |x , a), y 6= `, x ∈ X;

1
β̄µ`(x)

[µ`(x) − 1 −
∑

y 6=` µ`(y)q(y |x , a)] y = `, x ∈ X;

1 − 1
β̄µ`(x)

[µ`(x) − 1], y = x̄ , x ∈ X;

1 y = x̄ , (x , a) = (x̄ , ā).

c̄(x , a) :=

{
c(x , a)/µ`(x), x ∈ X, a ∈ A(x),

0, (x , a) = (x̄ , ā).

v̄φ
β̄
(x) := Ēφx

∞∑
t=0

β̄t c̄(xt , at) x ∈ X̄, φ ∈ F.
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Reduction to a Discounted MDP

Note: p̄ are transition probabilities.

Theorem (Feinberg & H)

Suppose the hitting time assumption holds, that
∑

y∈X q(y |x , a) = 1 for all
x ∈ X and a ∈ A(x), and that the constant c <∞ satisfies

|c(x , a)| 6 cV (x) ∀x ∈ X, a ∈ A(x).

Then
wφ(x) = v̄φ

β̄
(`) ∀x ∈ X, φ ∈ F.

Proof. Show that for every φ, the function hφ(x) := µ(x)[v̄β̄(x) − v̄β̄(`)]
satisfies

v̄φ
β̄
(`) + hφ(x) = cφ(x) +Qφh

φ(x) ∀x ∈ X,

and that

lim
T→∞

1

T
QT
φh

φ(x) = 0.

�
Used to verify validity of the average-cost optimality equation and the existence
of stationary optimal policies [Feinberg & H, 2017].
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Linear Programming Formulation

An LP is obtained from the new discounted MDP:

minimize
∑
x∈X

∑
a∈A(x)

c(x , a)

µ`(x)
zx ,a

such that
∑

a∈A(x)
zx ,a −

∑
x′∈X

∑
a′∈A(x′)

p(x |x ′, a′)

µ`(x ′)
µ`(x)zx′,a′ = 1, x 6= `

∑
a∈A(`)

z`,a −
∑
x′∈X

∑
a′∈A(x′)

µ`(x
′) − 1 −

∑
y 6=` p(y |x

′, a′)µ`(y)

µ`(x ′)
zx′,a′ = 1

zx ,a > 0, a ∈ A(x), x ∈ X

For an optimal basic feasible solution z∗, let

φ∗(x) = arg max
a∈A(x)

{
z∗x ,a

}
, x ∈ X.

Theorem

φ∗ is optimal under the average-cost criterion.
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Complexity Estimate

Theorem (Feinberg & H, 2017)

The simplex method with Dantzig’s rule solves the linear program (LP) using
at most

O(nmL log L) iterations.

Also, there is a block-pivoting simplex method that solves the LP using at most

O(mL log L) iterations.

I Via results for discounted MDPs Scherrer 2016].

I Each iteration of the simplex method needs O(n3 + nm) arithmetic
operations.

I When L is fixed, these two algorithms are strongly polynomial for
average-cost MDPs.

I Result for block-pivoting is special case of result in [Akian & Gaubert
2013] for 2-player stochastic games.
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Complexity of Average-Cost MDPs

Average-cost MDPs with special structure are solvable in strongly polynomial
time.

I [Zadorojniy, Even, Shwartz 2009]: controlled random walk

I [Feinberg, H 2013]: replacement/maintenance problems with fixed

minimal failure probability

I [Feinberg, H 2017]: fixed upper bound on expected time to
failure

[Fearnley 2010]: Howard’s (1960) policy iteration may need exponential time to
solve a multichain average-cost MDP.

I Not known if this is true when MDP is unichain.

[Tsitsiklis 2007]: Checking whether an MDP is unichain is NP-complete.

I Our hitting time assumption can be checked in strongly polynomial time
[Feinberg, Yang 2008].
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Extension to Uncountable State Spaces

I Similar issues as in the total cost case (Slide 14).

I For weak continuity of transition probabilities, the state ` may
need to be isolated from X (i.e., the singleton {`} is both open
and closed)

See [H, 2016] for details.
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Conclusion

This Talk:

1. Conditions under which undiscounted MDPs can be reduced to
discounted ones.

I Total Costs: Transience

I Average Costs: Recurrence

2. Lead to validity of optimality equations, existence of optimal
policies, and complexity estimates for computing optimal policies.

Questions/Extensions:

I Consequences for specific models? (e.g., queueing control,
replacement & maintenance) [Feinberg, H 2013]

I More general conditions under which a reduction holds?

I Complexity estimates for average-cost problems

I N-player stochastic games?
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