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(57) ABSTRACT

A system for forecasting leaks in a fluid-delivery pipeline
network. The system identifies a subsystem in the pipeline
network that comprises a plurality of topologically con-
nected stations. The system accesses historical temporal
sensor measurements of a plurality of variables of the
stations that are directly connected and generates a temporal
causal dependency model for a first control variable at the
first station in the subsystem, based on the plurality of time
series of sensor measurements of a second variable of the
first station, and temporal delay characteristics of the plu-
rality of time series of sensor measurements of the second
variable at the stations directly connected to the first station.
The system automatically calculates a normal operating
value of the first control variable at the first station and the
deviations between actual measured values and the normal
operating value and determines a threshold deviation that
indicates a leak event.
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|dentify a subsystem in the pipeline network with stations
that are topologically connected
5100

!

Access historical temporal sensor measurements of a plurality
of variables from directly connected stations in the subsystem
5102

Y

Generate a temporal casual dependency model for a control
variable at a station in the subsystem, based on time series of
sensor measurement of a variable of the station and temporal
delay characteristics of time series of sensor measurements of

the variable at the stations directly connected to the station

S104

!

Automatically calculate a normal operating value of the control
variable at the station by applying a learning algorithm to train
the model over a first training period comprising time series of
sensor measurements under normal operating conditions
S106

v

Calculate deviation between actual measured values of the
control variable at the station and the normal operating value
of the control variable at the station over the first training period
S108

Y

Determine a threshold deviation of the control variable that
indicates a leak event by calculating the deviations of the control
variable for a second training period comprising time series of
sensor measurements under both normal operating conditions
and leak event operating conditions
S110

FIG. 3



US 2017/0308796 Al

SYSTEM AND METHOD FOR
FORECASTING LEAKS IN A
FLUID-DELIVERY PIPELINE NETWORK

BACKGROUND

[0001] The present application relates to forecasting leaks
in a physical delivery system, and more specifically, to
forecast leaks with the consideration of interactions between
different variables.

[0002] A physical delivery system includes a pipeline
system that delivers fluids, such as liquid and/or gas. For
example, a gas pipeline system to deliver gas, which is used
as fuel for heating, cooling, or any other purposes, is a
physical delivery system. Forecasting leaks in gas pipeline
system caused by rupture or small damage to the gas pipe
line infrastructure is essential for gas pipeline management,
and essential for safety of both human beings and the
environment. In the physical delivery system, usually a
sensor network exists, measuring and recording in real time
multiple physical properties of the gas being delivered,
hence monitoring the health or risk of the system. In one
example, such information is being captured by the so called
SCADA (supervisory control and data acquisition) system.

[0003] The gas pipe line system is a complex system with
unsteady compressible flow and frequent compressor opera-
tions. Due to the nature of compressibility of the gas
dynamics, there is a lagged effect for any change at one
location to take effect on connected locations at different
speed under different operation conditions. Additionally, not
all physical properties, including pressure and flow mea-
surements, are available at all the stations.

SUMMARY OF THE INVENTION

[0004] One embodiment of this disclosure is directed to a
method for forecasting leaks in a fluid-delivery pipeline
network. The method includes identifying a subsystem in the
pipeline network, which comprises a plurality of stations
that are topologically connected. The method then includes
accessing historical temporal sensor measurements of a
plurality of variables from the stations in the subsystem that
are directly connected.

[0005] Next, the method includes generating a temporal
causal dependency model for a first control variable at the
first station in the subsystem, based on the plurality of time
series of sensor measurements of a second variable of the
first station, and temporal delay characteristics of the plu-
rality of time series of sensor measurements of the second
variable at the stations directly connected to the first station.
The method further includes automatically calculating a
normal operating value of the first control variable at the first
station by applying a learning algorithm to train the temporal
causal dependency model over a first training period com-
prising one or more time series of sensor measurements
made under normal operating conditions.

[0006] Then, the method includes calculating deviations
between actual measured values of the first control variable
at the first station and the normal operating value of the first
control variable at the first station over the first training
period. Further, the method includes determining a threshold
deviation of the first control variable that indicates a leak
event by calculating the deviations of the first control
variable for a second training period comprising a plurality
of time series of sensor measurements made under both
normal operating conditions and leak event operating con-
ditions.
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[0007] In one embodiment, the plurality of time series of
sensor measurements of a second variable of the plurality of
variables at the first station are current values of the sensor
measurements. In another embodiment, the temporal delay
characteristics of the plurality of time series of sensor
measurements of the second variable at the stations directly
connected to the first station are lagged values of the sensor
measurements.

[0008] In an embodiment, the system further applies the
learning algorithm to the temporal causal dependency model
to compute a risk score of the first control variable. The risk
score is based on differences between the calculated devia-
tions and the threshold deviation.

[0009] In one embodiment, the learning algorithm is a
Lasso model. In another embodiment, the system further
applies the learning algorithm for ranking the time series of
sensor measurements of the plurality of variables for gen-
erating the temporal causal dependency model for the first
control variable.

[0010] One embodiment of the disclosure is directed to a
computer system for forecasting leaks in a fluid-delivery
pipeline network. The computer system includes one or
more non-transitory computer readable storage media and
program instructions, stored on the one or more non-tran-
sitory computer-readable storage media, which when imple-
mented by a user interface accessing a service provider
website, cause the computer system to perform the steps of
identifying a subsystem in the pipeline network, which
comprises a plurality of stations that are topologically con-
nected. The method then includes accessing historical tem-
poral sensor measurements of a plurality of variables from
the stations in the subsystem that are directly connected
Next, the method includes generating a temporal causal
dependency model for a first control variable at the first
station in the subsystem, based on the plurality of time series
of sensor measurements of a second variable of the first
station, and temporal delay characteristics of the plurality of
time series of sensor measurements of the second variable at
the stations directly connected to the first station. The
method further includes automatically calculating a normal
operating value of the first control variable at the first station
by applying a learning algorithm to train the temporal causal
dependency model over a first training period comprising
one or more time series of sensor measurements made under
normal operating conditions. Then, the method includes
calculating deviations between actual measured values of
the first control variable at the first station and the normal
operating value of the first control variable at the first station
over the first training period. Further, the method includes
determining a threshold deviation of the first control variable
that indicates a leak event by calculating the deviations of
the first control variable for a second training period com-
prising a plurality of time series of sensor measurements
made under both normal operating conditions and leak event
operating conditions.

[0011] One embodiment of the disclosure is directed to a
non-transitory article of manufacture tangibly embodying
computer readable instructions, which when implemented,
cause a computer to perform the steps of identifying a
subsystem in the pipeline network, which comprises a
plurality of stations that are topologically connected. The
method then includes accessing historical temporal sensor
measurements of a plurality of variables from the stations in
the subsystem that are directly connected Next, the method
includes generating a temporal causal dependency model for
a first control variable at the first station in the subsystem,
based on the plurality of time series of sensor measurements
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of a second variable of the first station, and temporal delay
characteristics of the plurality of time series of sensor
measurements of the second variable at the stations directly
connected to the first station. The method further includes
automatically calculating a normal operating value of the
first control variable at the first station by applying a learning
algorithm to train the temporal causal dependency model
over a first training period comprising one or more time
series of sensor measurements made under normal operating
conditions. Then, the method includes calculating deviations
between actual measured values of the first control variable
at the first station and the normal operating value of the first
control variable at the first station over the first training
period. Further, the method includes determining a threshold
deviation of the first control variable that indicates a leak
event by calculating the deviations of the first control
variable for a second training period comprising a plurality
of time series of sensor measurements made under both
normal operating conditions and leak event operating con-
ditions.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] These and other objects, features and advantages of
the present invention will become apparent from the fol-
lowing detailed description, which is to be read in connec-
tion with the accompanying drawings, in which:

[0013] FIG.1is ablock diagram of one embodiment of the
fluid-delivery pipeline network.

[0014] FIG. 2 is a block diagram of an exemplary com-
puting system suitable for implementation of this invention.
[0015] FIG. 3 is a flow chart of the steps of one embodi-
ment of the method of the invention.

DETAILED DESCRIPTION

[0016] This invention is a system and method for fore-
casting leaks in a fluid-delivery pipeline network. A physical
delivery system includes multiple stations directly con-
nected by a pipeline network to deliver fluids including
liquid and/or gas.

[0017] In one embodiment, the technical solutions deter-
mine topological connectivity and relative distance from
temporal sensor measurements of a gas transmission system;
estimate temporal delays between connected delivery points
in the high-pressure gas transmission system; and forecast
leaks in the gas transmission system. The leaks may be
caused, for example, by a rupture of the gas pipeline
infrastructure. In another example, the leaks may be caused
by small damage to the pipeline network, which over an
extended period of time, such as days, weeks, months, or any
other period of time, leads to a rupture event. The technical
solutions forecast the leaks based on identification of pat-
terns in the temporal sensor measurements captured at the
stations in the gas transmission system. The system gener-
ates a model to forecast leaks with the consideration of
interactions between different variables, which means that
the generated model is for a control variable different from
the variables with temporal sensor measurements that are
captured at the stations. Accordingly, the technical solutions
facilitate a real-time leak detection, to prevent rupture leak
events in the future.

[0018] FIG. 1 depicts one embodiment of a fluid-delivery
pipeline network 10. The pipeline network 10 comprises
multiple stations 12, each station 12 connected with at least
one other station 12 via a pipeline that carries fluid between
the stations. In an example, as illustrated, sensors at each
station 12 acquire measurements 15. The measurements 15
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may be transmitted for reception by a server 20 over a
communication network 165. The server 20 may store the
measurements 15 from each station 12 in a data repository
30.

[0019] The station 12 in the pipeline network 10 may be
a supply station, a destination station, or a combination
thereof. For example, a supply station (such as X,) for-
wards fluid received to one or more other stations in the
pipeline network 10. A destination station (such as X ,;,,)
receives the fluid via the pipelines for using the fluid,
without forwarding any fluid to other stations. A combina-
tion station may receive the fluid, out of which a part may
be used at the station and the rest forwarded to other stations.

[0020] The station 12 may include a compressor, a fork, or
any other equipment to direct the flow of the fluid via the
pipeline network 10. In addition, the station 12 may be
equipped with sensors to acquire the measurements 15, such
as a volume, a flow-rate, a pressure, or any other attribute of
the fluid received at the station 12 and/or the fluid being
transported from the station 12. The station 12 may further
be equipped with transmitters to transmit the measurements
15. In another example, the sensors may be equipped for the
transmission of the measurements 15.

[0021] The server 20 may receive the measurements 15
and store the measurements from each station 12 in the data
repository 30. The server 20 may store a temporal series of
sensor measurements from each station 12 that includes
measurements 15 from each station over a predetermined
time-span. For example, the temporal series of sensor mea-
surement for station X~ may include measurements 15
acquired at X, over the predetermined time-span, such as
fifteen minutes, two hours, three days, two months, or any
other time-span. The repository 30 that stores the temporal
measurements from each station 12 may be a database, a
data warehouse or any other computer readable storage
accessible by the server 20. In an example, the data reposi-
tory 30 may be part of the server 20. In another example, the
data repository 30 may be at a remote location relative to the
server 20. The server 20 and the data repository 30 com-
municate over the communication network 165. The com-
munication network 165 may be a wired or a wireless
communication network, or a combination of both. The
communication network 165 may use a communication
protocol such as transmission control protocol/internet pro-
tocol (TCP/IP), user datagram protocol (UDP), or any other
protocol or a combination thereof.

[0022] FIG. 2 illustrates an example block diagram of the
server 20. The server 20 may be a communication apparatus,
such as a computer. For example, the server 20 may be a
desktop computer, a tablet computer, a laptop computer, a
phone, such as a smart phone, a server computer, or any
other device that communicates via the network 165. The
server 20 includes hardware, such as electronic circuitry.

[0023] For example, the server 20 includes, among other
components, a processor 105, memory 110 coupled to a
memory controller 115, and one or more input devices 145
and/or output devices 140, such as peripheral or control
devices, which are communicatively coupled via a local [/O
controller 135. These devices 140 and 145 may include, for
example, battery sensors, position sensors (such as an altim-
eter, an accelerometer, a global positioning satellite
receiver), indicator/identification lights and the like. Input
devices such as a conventional keyboard 150 and mouse 155
may be coupled to the /O controller 135. The I/O controller
135 may be, for example, one or more buses or other wired
or wireless connections, as are known in the art. The I/O
controller 135 may have additional elements, which are
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omitted for simplicity, such as controllers, buffers (caches),
drivers, repeaters, and receivers, to enable communications.
[0024] The /O devices 140, 145 may further include
devices that communicate both inputs and outputs, for
instance disk and tape storage, a network interface card
(NIC) or modulator/demodulator (for accessing other files,
devices, systems, or a network), a radio frequency (RF) or
other transceiver, a telephonic interface, a bridge, a router,
and the like.

[0025] The processor 105 is a hardware device for execut-
ing hardware instructions or software, particularly those
stored in memory 110. The processor 105 may be a custom
made or commercially available processor, a central pro-
cessing unit (CPU), an auxiliary processor among several
processors associated with the server 20, a semiconductor
based microprocessor (in the form of a microchip or chip
set), a macro processor, or other device for executing
instructions. The processor 105 includes a cache 170, which
may include, but is not limited to, an instruction cache to
speed up executable instruction fetch, a data cache to speed
up data fetch and store, and a translation lookaside buffer
(TLB) used to speed up virtual-to-physical address transla-
tion for both executable instructions and data. The cache 170
may be organized as a hierarchy of more cache levels (L1,
L2, and so on.).

[0026] The memory 110 may include one or combinations
of volatile memory elements (for example, random access
memory, RAM, such as DRAM, SRAM, SDRAM) and
nonvolatile memory elements (for example, ROM, erasable
programmable read only memory (EPROM), electronically
erasable programmable read only memory (EEPROM), pro-
grammable read only memory (PROM), tape, compact disc
read only memory (CD-ROM), disk, diskette, cartridge,
cassette or the like). Moreover, the memory 110 may incor-
porate electronic, magnetic, optical, or other types of storage
media. Note that the memory 110 may have a distributed
architecture, where various components are situated remote
from one another but may be accessed by the processor 105.
[0027] The instructions in memory 110 may include one or
more separate programs, each of which comprises an
ordered listing of executable instructions for implementing
logical functions. In the example of FIG. 2, the instructions
in the memory 110 include a suitable operating system (OS)
111. The operating system 111 essentially may control the
execution of other computer programs and provides sched-
uling, input-output control, file and data management,
memory management, and communication control and
related services.

[0028] Additional data, including, for example, instruc-
tions for the processor 105 or other retrievable information,
may be stored in storage 120, which may be a storage device
such as a hard disk drive or solid state drive. The stored
instructions in memory 110 or in storage 120 may include
those enabling the processor to execute one or more aspects
of the systems and methods of this disclosure.

[0029] The server 20 may further include a display con-
troller 125 coupled to a user interface or display 130. In
some embodiments, the display 130 may be an LCD screen.
In other embodiments, the display 130 may include a
plurality of LED status lights. In some embodiments, the
server 20 may further include a network interface 160 for
coupling to a network 165. The network 165 may be an
IP-based network for communication between the server 20
and an external server, client and the like via a broadband
connection. In an embodiment, the network 165 may be a
satellite network. The network 165 transmits and receives
data between the server 20 and external systems. In some
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embodiments, the network 165 may be a managed IP
network administered by a service provider. The network
165 may be implemented in a wireless fashion, for example,
using wireless protocols and technologies, such as WiFi,
WiMax, satellite, or any other. The network 165 may also be
a packet-switched network such as a local area network,
wide area network, metropolitan area network, the Internet,
or other similar type of network environment. The network
165 may be a fixed wireless network, a wireless local area
network (LAN), a wireless wide area network (WAN) a
personal area network (PAN), a virtual private network
(VPN), intranet or other suitable network system and may
include equipment for receiving and transmitting signals.

[0030] The server 20 may be part of a supervisory control
and data acquisition (SCADA) system. The technical solu-
tions facilitate the SCADA system to obtain, in an automated
manner, a physical/topological network of the pipeline net-
work 10 by mapping of the measurements 15 between the
stations of the pipeline network 10. The technical solutions
determine the topological network based on the measured
physical properties of the fluid being delivered, such as,
pressure, flow rate, by identifying a time delayed effect from
one station in the pipeline network 10 to a directly connected
station in the pipeline network 10. Two directly connected
stations are stations connected directly by pipelines, without
any other stations in between. In an example, the delayed
effects may be statistically evaluated to automate the process
of mapping the measurements 15 to the topological network.
[0031] One embodiment of establishing the topological
connectivity of a pipeline network is disclosed in U.S. patent
application Ser. No. 14/976,820, filed on Dec. 21, 2015 and
assigned to the same assignee as the present application.

[0032] To determine the topological connectivity of a
pipeline network, the server receives or accesses the tem-
poral sensor measurements of the stations of the fluid-
delivery pipeline network. For example, the server receives
the measurements from the sensors at the stations, or alter-
natively accesses the measurements from the data reposi-
tory. The server cleans the data in the measurements in
preparation of determining the topological network of the
pipeline network. For example, the cleaning may include
removal of outliers in each temporal series of respective
stations. In addition or alternatively, the server may smooth
each temporal series of sensor measurements. In addition or
alternatively, the server may remove short spikes from each
series of sensor measurements. In addition or alternatively,
the server may perform other data cleaning operations on the
temporal sensor measurements in other examples.

[0033] The server further analyzes the temporal sensor
measurements to determine causality between temporal sen-
sor measurements of the stations in the pipeline network. For
example, the server analyzes the temporal sensor measure-
ments of the stations in a pairwise manner, to identify if
measurements observed at a first station affect the measure-
ments at a second station. For example, if a compressor
operation at an upstream station may have an effect at a
downstream station. The effect at the downstream station
may be observed after a time delay, for example due to the
time taken by the fluid to flow to the downstream station.

[0034] For example, the server determines a causality
model using the multiple series of measurement data from
each of the stations. For example, the causality model may
be determined based on multivariate regression, such as
using Granger model, in which given P number of time
series, X,-Xp, the model may determine each time series X,
that represents the causes. Table 1 illustrates an example
causality model.
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TABLE 1
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p
Logged
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=

where:
Xhosged = X (t- L), ...
= i1 - -+ » Q7] is the coeflicient vector,

o =[o
Ifany ofthe oy gy, ..., 3= 02X, = X;

, X;(t = 1)] is the lagged time series

possible challenges: for high dimensional data, when L is large, we have p x L number of
features in the regression, it is possible that the model picks up smalle causal effects. Therefore,
it is important to have some penalization so that the causal relationship is most significant.

[0035] Thus, the server computes a plurality of temporal
lags X,(t) and corresponding coefficients a,, such as using
multivariate regression analysis using [.1 penalty. The server
identifies the temporal lag X, (t) that has the maximum
corresponding coeflicient c,. The identified temporal lag
X, (1) is then used in subsequent computations and identifi-
cation of the temporal connectivity of the pipeline network.
[0036] The server further identifies pairwise connectivity
of the stations based on the causality, and generates a
causality graph. For example, the server identifies a penal-
ization model to filter the causality relationships identified.
For example, the penalization model may be based on one
of several techniques such as a Grouped-Lasso-Granger, a
Lasso regression, or a Grouped-Lasso regression, among
others. Table 2 illustrates models of example penalization
models.

TABLE 2

traversing the causality graph to identify a node that is
directly linked with N_0. Once a node is identified as being
directly linked with NO, the server adds the node to the set
of first-level connections corresponding to N_0. The server
ranks the nodes in the set of first-level connections accord-
ing to temporal lags of the nodes. Thus, the set of first-level
connections {N_1, N_2, . . . N_q} includes nodes that are
ordered according to the temporal lags. In an example, the
ordering may be in an increasing manner, thus N_1 has least
temporal lag in the ordered set. In another example, the
ordering may be in decreasing manner, in which case N_q
has the least temporal lag. The server filters the set of
first-level connections {N_1, N_2, ... N_q} by removing
nodes in the set that have a direct connection with the node
with the least temporal lag. For example, for all the nodes
N_i, where i is from 2 to q, the server deletes N_i from the

Grouped-Lasso-Granger

Grouped-Lasso (#1) penalty is used to obtain a sparse graph structure:

T P
8}

t=L+1 i=1

,
X;() - Y Bl X
i=1

2 P
2" 1B,
2 i=1

Lasso regression uses £1 penalty, which tend to “push” coeflicients to zero, therefore, arrives at
a sparse structure, capturing the most important temporal dependency between time series.
Grouped-Lasso regression penalize the sum of the coefficients of lagged series from one time
series, therefore will arrive at a sparse structure in pair wise causal graph. In other words, we
can reduce the number of non-zero coefficients on the causal effect from one time series to
effect time series, thus reduce multiple temporal causality problem.

[0037] Based on the causality model and the penalization
model, the server generates a causality graph of the temporal
sensor measurements. The causality graph includes a set of
nodes and a set of links. The nodes are representative of the
stations of the pipeline network. A pair of nodes in the
causality graph is connected by a link in response to the
corresponding pair of stations being temporally dependent.
The causality graph is non-cyclical.

[0038] The server determines a topological network of the
pipeline network based on the causality graph. The server
traverses the causality graph recursively to identify nodes
with at least one-level subnetworks. A node with at least
one-level subnetwork is a node that is connected to at least
one other node that corresponds to a downstream station.
The server further selects a node from the nodes with at least
one-level subnetworks and identifies the first-level connec-
tions of that node. The first level connections are direct
connections. Consider that the selected node is N_0 with a
set of first-level connections {N_1, N_2, ... N_q}. The set
of first-level connections is identified by starting at N_0 and

ordered set {N_1, N_2, . . . N_q}, if there is a connection
between N_1 and N_(i-1). The server further recursively
repeats the process for all the nodes in the set of first-level
connections {N_1, N_2, . . . N_q}. The server ensures that
all the nodes in the causality graph are analyzed in this
manner. The resulting first-level connection sets for each
respective node in the causality graph is the temporal
connectivity of the pipeline network according to pairwise
causality among the stations in the pipeline network.

[0039] The server determines relative distances between
the stations of the pipeline network based on the topological
network. For example, the relative distances may be the
temporal lags of the nodes in the topological network. In an
example, the relative distance of a node may be a scaled
value based on the temporal lag of that node and a prede-
termined scaling value. The server further communicates the
topological network and/or the relative distances for display.
[0040] As is shown in FIG. 3, one embodiment of the
method of the invention begins with step S100 of identifying
a subsystem in the pipeline network, which comprises a
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plurality of stations that are topologically connected. At step
S102, the system accesses historical temporal sensor mea-
surements of a plurality of variables from the stations in the
subsystem that are directly connected. Directly connected
stations are illustrated in FIG. 1 as stations connected
directly by pipelines, without any other stations in between.
The identification of stations directly connected to each
station is obtained from the topological connectivity obtain,
for example, from the method described above. The histori-
cal temporal sensor measurements include a plurality of time
series of sensor measurements captured at corresponding
timestamps over a predetermined time-span.

[0041] At step S104, the system generates a temporal
causal dependency model for a first control variable at the
first station in the subsystem, based on the plurality of time
series of sensor measurements of a second variable of the
first station, and temporal delay characteristics of the plu-
rality of time series of sensor measurements of the second
variable at the stations directly connected to the first station.
The plurality of time series of sensor measurements is
accessed from historical temporal sensor measurements in
step S102. The first control variable is a different variable
from the second variable. The temporal casual dependency
model is generated for a control variable based on values of
one or more variables other than the control variable. The
model is generated for one of the stations in the subsystem
and each station in the subsystem has a model for that
station. One example of the temporal causal dependency
model is illustrated in table 3:

TABLE 3
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at the first station and the normal operating value of the first
control variable at the first station over the first training
period. The actual measured values of the first control
variable at the first station are generated from the temporal
causal dependency model of the first station from S104.
Each actual measured value is based on a different time-
stamp over a predetermined time-span, upon which the
sensor measurements of each time series are captured.

[0044] At step S110, the system determines a threshold
deviation of the first control variable that indicates a leak
event by calculating the deviations of the first control
variable for a second training period comprising a plurality
of time series of sensor measurements made under both
normal operating conditions and leak event operating con-
ditions. An example of determining a threshold deviation of
the first control variable is to plot the deviations of the first
control variable over a second training period and fit a
Gaussian distribution. The second training period is a pre-
determined time-span. The plurality of time series of sensor
measurements made under both normal operating conditions
and leak event operating conditions are from historical
temporal sensor measurements accessed in step S102.

[0045] In one embodiment, the plurality of time series of
sensor measurements of a second variable of the plurality of
variables at the first station are current values of the sensor
measurements. In another embodiment, the temporal delay
characteristics of the plurality of time series of sensor
measurements of the second variable at the stations directly
connected to the first station are lagged values of the sensor

In a high pressure gas pipeline system,

there are n stations. For station i = 1, . .
the number of
time series measurements from immediately connected stations:
d d
b yl'(t)"‘F(Xi,l(t)a c s XppilD), Xiltlagge sy Xi,qitlagge )
where:

y(t) is the control variable for station i, e.g., pressure measurementat station i;

x;,(t) is thecurrent value of the j* time series for station i, eg., flow
measurement at station i;

d
Xi,ktlagge =X (t-1), ...
denotes

s Xp(t= 1), ., Xt - 1), .

., I, we have p; time series, and q; is

s Xt = D]

the k,, lagged values of the time series available at immediately connected stations.

[0042] Further at step S106, the system automatically
calculates a normal operating value of the first control
variable at the first station by applying a learning algorithm
to train the temporal causal dependency model over a first
training period comprising one or more time series of sensor
measurements made under normal operating conditions.
One example of the learning algorithm is a Lasso Linear
Regression. The time series of sensor measurement made
under normal operating conditions are accessed from his-
torical temporal sensor measurements in step S102. The
training period is a predetermined time-span.

[0043] At step S108, the system calculates deviations
between actual measured values of the first control variable

measurements. The current characteristic of current values
and the lagged characteristic of lagged values are compara-
tive to each other in a time-span.

[0046] In an embodiment, the system further applies the
learning algorithm to the temporal causal dependency model
to compute a risk score of the first control variable. The risk
score is based on differences between the calculated devia-
tions and the threshold deviation.

[0047] In one embodiment, the learning algorithm is a
Lasso model. On example of the Lasso Model is illustrated
in Table 4. € is an allowable error, T is the ending time of
the time series data collected, and L. is the max lagged value.

TABLE 4

|3i = [ﬁi,la ..

T
301 = X0+ € fy =avegmin 3 i) = BX,0F + MBI,

t=L+1

where:

s Bips B Fssed, L, [SiqiL"ggEd] is how the row vector of all the coefficients

for



US 2017/0308796 Al

TABLE 4-continued
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station i, where [Sl-ykL"ggEd denotes all the coefficients for the lagged variables at station k,

which is connected to station i;

X{(t) = [Xi,l(t)a cees Xipi(t)5 Xi,ltla‘gg2d> cee
of

the variables for station i at time t.

A is a tuning parameter (can be set e.g. by cross-validation).

s xiyqi’L"ggEd] is the column vector of all the values

The #1 penalty tends to “push” coefficients to zero. This leads to a sparse structure that
indicates the most important temporal dependencies between the time series.

[0048] In another embodiment, the system further applies
the learning algorithm for ranking the time series of sensor
measurements of the plurality of variables for generating the
temporal causal dependency model for the first control
variable. A Lasso Model provides one example of ranking
the time series of sensor measurement of the plurality of
variables. Table 5 illustrates the ranking feature embodied in
the Lasso coefficients. L is the max lagged value.

TABLE 5

maXe<y, Bye

importance of time series X, = ———————
max, (maxesz, fg,)

ﬂq.l is the LASSO coeflicient for measurement q for the lag {

[0049] In one embodiment, the historical temporal sensor
measurements of the plurality of control variables are
accessed from a data repository of a SCADA system moni-
toring the fluid-delivery pipeline network. One example of
accessing the historical temporal sensor measurements is
using data acquisition (SCADA) system. The SCADA sys-
tem may visualize the physical delivery system as a network
of stations and the directly connected pipelines, wherein the
visualization is based on the operator manually identifying
the connections between the stations. The SCADA system
may be connected to one or more measurement sensors that
measure attributes of the fluid transportation in the delivery
system. For example, the sensors may measure flow-rate,
pressure, volume, or any other attribute of the flow of the
fluid through the delivery system. The sensors may be
located at one or more stations. Alternatively or in addition,
the sensors may be located on the pipeline network, between
the stations. Throughout the present disclosures, the
examples consider that the sensors are located at the stations
in the delivery stations. However, it will be obvious to a
person skilled in the art that the technical solutions are
applicable to the sensors irrespective of where the sensors
are located in the delivery system.

[0050] In another embodiment, the system further pro-
cesses the accessed historical temporal sensor measurements
of the plurality of control variables by removing outliers,
removing short spikes and smoothing.

[0051] In one embodiment, the system further generates
the temporal causal dependency model for the first control
variable of the plurality of control variables at the first
station in the subsystem, based on the plurality of time series
of sensor measurements of a plurality of variables at the first
station, and temporal delay characteristics of the plurality of
time series of sensor measurements of the plurality of
variables at the stations directly connected to the first station.

What is claimed is:

1. A computer implemented method for forecasting leaks
in a fluid-delivery pipeline network, the method comprising:

identifying a subsystem in the pipeline network, the
subsystem comprising a plurality of stations that are
topologically connected;

accessing historical temporal sensor measurements of a
plurality of variables from a first station and from
stations directly connected to the first station of the
plurality of stations in the subsystem, the historical
temporal sensor measurements comprising a plurality
of time series of sensor measurements of the plurality
of wvariables, the sensor measurements of each time
series being captured at corresponding timestamps over
a predetermined time-span;

generating a temporal causal dependency model for a first
control variable of the plurality of variables at the first
station in the subsystem, based on the plurality of time
series of sensor measurements of a second variable of
the plurality of variables at the first station, and tem-
poral delay characteristics of the plurality of time series
of sensor measurements of the second variable at the
stations directly connected to the first station;

automatically calculating a normal operating value of the
first control variable at the first station by applying a
learning algorithm to train the temporal causal depen-
dency model over a first training period comprising one
or more time series of sensor measurements made
under normal operating conditions;

automatically calculating deviations between actual mea-
sured values of the first control variable at the first
station and the normal operating value of the first
control variable at the first station over the first training
period; and

determining a threshold deviation of the first control
variable that indicates a leak event by calculating the
deviations of the first control variable for a second
training period comprising a plurality of time series of
sensor measurements made under both normal operat-
ing conditions and leak event operating conditions.

2. The computer implemented method of claim 1, wherein
the plurality of time series of sensor measurements of a
second variable of the plurality of variables at the first
station are current values of the sensor measurements.

3. The computer implemented method of claim 1, wherein
the temporal delay characteristics of the plurality of time
series of sensor measurements of the second variable at the
stations directly connected to the first station are lagged
values of the sensor measurements.

4. The computer implemented method of claim 1, further
comprising applying the learning algorithm to the temporal
causal dependency model to compute a risk score of the first
control variable, the risk score being based on differences
between the calculated deviations and the threshold devia-
tion.

5. The computer implemented method of claim 1, further
comprising applying the learning algorithm for ranking the
time series of sensor measurements of the plurality of
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variables for generating the temporal causal dependency
model for the first control variable.

6. The computer implemented method of claim 1, wherein
the historical temporal sensor measurements of the plurality
of control variables are accessed from a data repository of a
SCADA system monitoring the fluid-delivery pipeline net-
work.

7. The computer implemented method of claim 1, further
comprising processing the accessed historical temporal sen-
sor measurements of the plurality of control variables by
removing outliers, removing short spikes and smoothing.

8. The computer implemented method of claim 1, wherein
the learning algorithm is a Lasso model.

9. The computer implemented method of claim 1, further
comprising generating the temporal causal dependency
model for the first control variable of the plurality of control
variables at the first station in the subsystem, based on the
plurality of time series of sensor measurements of a plurality
of variables at the first station, and temporal delay charac-
teristics of the plurality of time series of sensor measure-
ments of the plurality of variables at the stations directly
connected to the first station.

10. A computer system for forecasting leaks in a fluid-
delivery pipeline network, comprising:

a memory; and

a processor configured to:

identify a subsystem in the pipeline network, the sub-
system comprising a plurality of stations that are
topologically connected;

access historical temporal sensor measurements of a
plurality of variables from a first station and from
stations directly connected to the first station of the
plurality of stations in the subsystem, the historical
temporal sensor measurements comprising a plural-
ity of time series of sensor measurements of the
plurality of variables, the sensor measurements of
each time series being captured at corresponding
timestamps over a predetermined time-span;

generate a temporal causal dependency model for a first
control variable of the plurality of variables at the
first station in the subsystem, based on the plurality
of time series of sensor measurements of a second
variable of the plurality of variables at the first
station, and temporal delay characteristics of the
plurality of time series of sensor measurements of
the second variable at the stations directly connected
to the first station;

automatically calculate a normal operating value of the
first control variable at the first station by applying a
learning algorithm to train the temporal causal
dependency model over a first training period com-
prising one or more time series of sensor measure-
ments made under normal operating conditions;

automatically calculate deviations between actual mea-
sured values of the first control variable at the first
station and the normal operating value of the first
control variable at the first station over the first
training period; and

determine a threshold deviation of the first control
variable that indicates a leak event by calculating the
deviations of the first control variable for a second
training period comprising a plurality of time series
of sensor measurements made under both normal
operating conditions and leak event operating con-
ditions.

11. A computer system of claim 10, wherein the plurality
of time series of sensor measurements of a second variable
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of the plurality of variables at the first station are current
values of the sensor measurements, and the temporal delay
characteristics of the plurality of time series of sensor
measurements of the second variable at the stations directly
connected to the first station are lagged values of the sensor
measurements.

12. A computer system of claim 10, wherein the processor
is further configured to apply the learning algorithm to the
temporal causal dependency model to compute a risk score
of the first control variable, the risk score being based on
differences between the calculated deviations and the thresh-
old deviation, and the learning algorithm is a Lasso model.

13. A computer system of claim 10, wherein the historical
temporal sensor measurements of the plurality of control
variables are accessed from a data repository of a SCADA
system monitoring the fluid-delivery pipeline network.

14. A computer system of claim 10, wherein the processor
is further configured to process the accessed historical
temporal sensor measurements of the plurality of control
variables by removing outliers, removing short spikes and
smoothing.

15. A computer system of claim 10, wherein the processor
is further configured to generate the temporal causal depen-
dency model for the first control variable of the plurality of
control variables at the first station in the subsystem, based
on the plurality of time series of sensor measurements of a
plurality of variables at the first station, and temporal delay
characteristics of the plurality of time series of sensor
measurements of the plurality of variables at the stations
directly connected to the first station.

16. A non-transitory article of manufacture tangibly
embodying computer readable instructions, which when
implemented, cause a computer to perform the steps of a
method for forecasting leaks in a fluid-delivery pipeline
network, comprising:

identifying a subsystem in the pipeline network, the

subsystem comprising a plurality of stations that are
topologically connected;

accessing historical temporal sensor measurements of a
plurality of variables from a first station and from
stations directly connected to the first station of the
plurality of stations in the subsystem, the historical
temporal sensor measurements comprising a plurality
of time series of sensor measurements of the plurality
of wvariables, the sensor measurements of each time
series being captured at corresponding timestamps over
a predetermined time-span;

generating a temporal causal dependency model for a first
control variable of the plurality of variables at the first
station in the subsystem, based on the plurality of time
series of sensor measurements of a second variable of
the plurality of variables at the first station, and tem-
poral delay characteristics of the plurality of time series
of sensor measurements of the second variable at the
stations directly connected to the first station;

automatically calculating a normal operating value of the
first control variable at the first station by applying a
learning algorithm to train the temporal causal depen-
dency model over a first training period comprising one
or more time series of sensor measurements made
under normal operating conditions;

automatically calculating deviations between actual mea-
sured values of the first control variable at the first
station and the normal operating value of the first
control variable at the first station over the first training
period; and
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determining a threshold deviation of the first control
variable that indicates a leak event by calculating the
deviations of the first control variable for a second
training period comprising a plurality of time series of
sensor measurements made under both normal operat-
ing conditions and leak event operating conditions.

17. A non-transitory article of manufacture of claim 16,
wherein the plurality of time series of sensor measurements
of a second variable of the plurality of variables at the first
station are current values of the sensor measurements, and
the temporal delay characteristics of the plurality of time
series of sensor measurements of the second variable at the
stations directly connected to the first station are lagged
values of the sensor measurements.

18. A non-transitory article of manufacture of claim 16,
further comprising applying the learning algorithm to the
temporal causal dependency model to compute a risk score
of the first control variable, the risk score being based on
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differences between the calculated deviations and the thresh-
old deviation, and the learning algorithm is a Lasso model.

19. A non-transitory article of manufacture of claim 16,
wherein the historical temporal sensor measurements of the
plurality of control variables are accessed from a data
repository of a SCADA system monitoring the fluid-delivery
pipeline network, and further comprising processing the
accessed historical temporal sensor measurements of the
plurality of control variables by removing outliers, removing
short spikes and smoothing.

20. A non-transitory article of manufacture of claim 16,
further comprising generating the temporal causal depen-
dency model for the first control variable of the plurality of
control variables at the first station in the subsystem, based
on the plurality of time series of sensor measurements of a
plurality of variables at the first station, and temporal delay
characteristics of the plurality of time series of sensor
measurements of the plurality of variables at the stations
directly connected to the first station.
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