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Markov decision process (MDP)

Defined by 4 objects:

1. state space X

2. sets of available actions A(x) at each state x

3. one-step costs c(x , a): incurred whenever the state is x and action
a ∈ A(x) is performed

4. transition probabilities p(y |x , a): probability that the next state is
y , given that the current state is x & action a ∈ A(x) is performed

Initial Distribution

State x0 x1 x2 x3 · · ·

c(x0, a0) c(x1, a1) c(x2, a2)

p(x1|x0,a0)
a0

p(x2|x1,a1)
a1

p(x3|x2,a2)
a2
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Policies & cost criteria

A policy φ prescribes an action for every state.

Common cost criteria for policies:

I Total (discounted) costs: for β ∈ [0, 1],

vφβ (x) := Eφx
∞∑
n=0

βnc(xn, an)

I Average costs:

wφ(x) := lim sup
N→∞

1

N
Eφx

N∑
n=0

c(xn, an)

A policy is optimal if it minimizes the chosen cost criterion for every
initial state.
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Examples of MDPs

I Operations Research: inventory control, control of queues,
vehicle routing, job shop scheduling

I Finance: Option pricing, portfolio selection, credit granting

I Healthcare: medical decision making, epidemic control

I Power Systems: Voltage & reactive power control, economic
dispatch, bidding in electricity markets with storage, charging
electric vehicles

I Computer Science: model checking, robot motion planning,
playing classic games
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Computing optimal policies

3 main (and related) approaches:

1. Value iteration (VI) (Shapley 1953)
I Iteratively approximate the optimal cost function.

2. Policy iteration (PI) (Howard 1960)
I Iteratively improve a starting policy.

3. Linear programming (LP) (early 1960s)
I Compute the optimal frequencies with which each state-action

pair should be used.
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Complexity of computing optimal policies

Optimal policies can be computed in (weakly) polynomial time:

I for discounted MDPs, via value iteration (Tseng 1990),
policy iteration (Meister & Holzbaur 1986), or linear
programming (Khachiyan 1979);

I for average-cost MDPs and certain undiscounted total-cost
MDPs, via linear programming.

Computing an optimal policy is P-complete: Papadimitriou &
Tsitsiklis (1987).

Solving constrained MDPs and partially observable MDPs is
harder: Feinberg (2000), Papadimitriou & Tsitsiklis (1987)
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Applications to the complexity of the simplex method

Policy iteration (PI) is closely related to the simplex method for
linear programming.

This has been used to show that:

I many simplex pivoting rules may need a super-polynomial
number of iterations: Melekopoglou & Condon (1994),
Friedmann (2011, 2012), Friedmann Hansen & Zwick (2011);

I for certain problems, classic simplex pivoting rules (e.g.,
Dantzig, Gass-Saaty) are strongly polynomial: Ye (2011),
Kitahara & Mizuno (2011), Even & Zadorojniy (2012),
Feinberg & H. (2013)
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Complexity of computing optimal policies

This talk:

I Value iteration and many of its generalizations aren’t
strongly polynomial for discounted MDPs.

I Under certain conditions, undiscounted total-cost and
average-cost MDPs can be reduced to discounted ones.

I Discounted MDPs are generally easier to study
I Leads to attractive iteration bounds for algorithms
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Notation

Here, the state & action sets are finite.

One-step operator:

Tφf (x) := c(x , φ(x)) + β
∑
y∈X

p(y |x , φ(x))f (y)

Dynamic Programming (DP) operator:

Tf (x) := min
a∈A(x)

c(x , a) + β
∑
y∈X

p(y |x , a)f (y)


Value function: vβ(x) := minφ v

φ
β (x)
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Value iteration for discounted MDPs

A policy φ is greedy with respect to f : X→ R if

φ ∈ G(f ) := {ϕ ∈ F | Tϕf = Tf }.

Value Iteration (VI): Select any V0 : X→ R, and iteratively apply the
DP operator.

V0 V1 = TV0 V2 = TV1 · · · Vj = TVj−1 · · ·

φ1 ∈ G(V0) φ2 ∈ G(V1) φ3 ∈ G(V2) φj+1 ∈ G(Vj)

Well-known that for β ∈ [0, 1):

I limj→∞ Vj(x) = vβ(x) for all x ∈ X.

I For some j <∞, φj is optimal.
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Strong polynomiality

m := number of state-action pairs (x , a).

Definition

An algorithm for computing an optimal policy is strongly
polynomial if there’s an upper bound on the required number of
arithmetic operations that’s a polynomial in m only.

Ye (2011): When the discount factor is fixed, Howard’s PI and
the simplex method with Dantzig’s pivoting rule are strongly
polynomial.

Feinberg & H. (2014): VI is not strongly polynomial.

Feinberg H. & Scherrer (2014): many generalizations of VI are
not strongly polynomial.
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The example

Deterministic MDP with m = 4 state-action pairs:

2 1 3
C 0

0 −1

Arcs: correspond to actions, labeled with their one-step costs.

Note: Suppose V0 ≡ 0. Then at state 1, the solid arc is selected
on iteration j only if

C ≥ βVj−1(3).

Idea: Use C to control the required number of iterations.
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The example

2 1 3
C 0

0 −1

Theorem

Let β ∈ (0, 1) and V0 ≡ 0. Then for any positive integer N, there
is a C ∈ R such that VI needs at least N iterations to return the
optimal policy.

Corollary

VI is not strongly polynomial.
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Policy iteration for discounted MDPs

Howard’s PI: Select any V0 : X→ R and iteratively generate
{Vj}∞j=1 as follows:

V0 V1 = vφ1

β V2 = vφ2

β
· · · Vj = vφj

β
· · ·

φ1 ∈ G(V0) φ2 ∈ G(V1) φ3 ∈ G(V2) φj+1 ∈ G(Vj)

vφ
j

β is the solution of a linear system of equations /.

Idea: Replace vφ
j

β with an approximation (be optimistic , about

the need to evaluate φj exactly).
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Generalized optimistic policy iteration

N̄ := {1, 2, . . . } ∪ {∞}

Let {Nj}∞j=1 be a N̄-valued stochastic sequence with associated
probability measure P and expectation operator E .

Generalized Optimistic PI: Select any V0 : X→ R and iteratively
generate {Vj}∞j=1 as follows:

V0 V1 = E [TN1

φ1 V0] V2 = E [TN2

φ2 V1] · · · Vj = E [T
Nj

φj Vj−1] · · ·

φ1 ∈ G(V0) φ2 ∈ G(V1) φ3 ∈ G(V2) φj+1 ∈ G(Vj)

Special cases: VI (Nj ’s ≡ 1), modified PI (Puterman & Shin 1978),
λ-PI (Bertsekas & Tsitsiklis 1996), optimistic PI (Thiéry & Scherrer
2010), Howard’s PI (Nj ’s ≡ ∞)
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Generalized optimistic policy iteration

2 1 3
C 0

0 −1

Theorem

Let β ∈ (0, 1) and V0 ≡ 0. Suppose P{Nj <∞} > 0 for all j .
Then for any positive integer N, there is a C ∈ R such that
generalized optimistic PI needs at least N iterations to return the
optimal policy.

Corollary

VI, modified PI, λ-PI, and optimistic PI are not strongly
polynomial.
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Reductions to discounted MDPs

Discounted MDPs: generally easier to study than undiscounted
ones.

This talk: Reductions to discounted MDPs of:

1. undiscounted total-cost MDPs that are transient;

2. average-cost MDPs satisfying a uniform hitting time
assumption.
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Transient MDPs

Pφ := [p(y |x , φ(x))]x,y∈X = nonnegative matrix associated with policy φ.

For a matrix B = [B(x , y)]x,y∈X, let ‖B‖ := supx∈X
∑

y∈X |B(x , y)|.

Assumption T (Transience)

The MDP is transient, i.e., there is a constant K satisfying

‖
∞∑
n=0

Pn
φ‖ ≤ K <∞ for all policies φ.

Interpretation: the “lifetime” of the process is bounded over all policies
and initial states.

Veinott (1969): There’s a strongly polynomial algorithm for checking if
Assumption T holds.
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Transient MDPs

Note: Here, p(y |x , a) ≥ 0 may satisfy
∑

y∈X p(y |x , a) 6= 1.

Can be used to model:

I stochastic shortest path problems (e.g., Bertsekas 2005)

I controlled multitype branching processes (e.g., Pliska 1976,
Rothblum & Veinott 1992)

It’s well-known that discounted MDPs can be reduced to
undiscounted transient ones (e.g., Altman 1999).

Feinberg & H. (2015): conditions under which the converse is
true for infinite-state MDPs.
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Characterization of transience

Proposition

An MDP is transient iff there’s a µ : X→ [1,∞) that’s bounded
above by K and satisfies

µ(x) ≥ 1 +
∑
y∈X

p(y |x , a)µ(y), x ∈ X, a ∈ A(x).

Idea: Use µ to transform the transient MDP into a discounted one
with transition probabilities.
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Hoffman-Veinott transformation

Extension of an idea attributed to Alan Hoffman by Veinott (1969):

State space: X̃ := X ∪ {x̃}
Action space: Ã := A ∪ {ã}
Available actions:

Ã(x) :=

{
A(x), x ∈ X,
{ã}, x = x̃

One-step costs:

c̃(x , a) :=

{
µ(x)−1c(x , a), x ∈ X, a ∈ A(x),

0, (x , a) = (x̃ , ã)
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Hoffman-Veinott transformation (continued)

Choose a discount factor

β̃ ∈
[
K − 1

K
, 1

)
.

Transition probabilities:

p̃(y |x , a) :=


1

β̃µ(x)
p(y |x , a)µ(y), x , y ∈ X,

1− 1
β̃µ(x)

∑
y∈X p(y |x , a)µ(y), y = x̃ , x ∈ X,

1, y = x = x̃
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Representation of total costs

Proposition

Suppose the MDP is transient. Then for any policy φ,

vφ(x) = µ(x)ṽφ
β̃

(x), x ∈ X.

Idea: Rewrite ṽφ
β̃

in terms of the original problem data, and use the

fact that x̃ is a cost-free absorbing state.

Corollary

A policy is optimal for the new discounted MDP iff it’s optimal for
the original transient MDP.
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Computing an optimal policy

To compute a total-cost optimal policy for a transient MDP, solve

minimize
∑
x∈X̃

∑
a∈Ã(x)

c̃(x , a)zx,a

such that
∑

a∈Ã(x)

zx,a − β̃
∑
y∈X̃

∑
a∈Ã(y)

p̃(x |y , a)zy ,a = 1 ∀x ∈ X̃,

zx,a ≥ 0 ∀x ∈ X̃, a ∈ Ã(x).

Scherrer’s (2016) results imply that this linear program can be solved
using

O(mK log K) iterations

of a block-pivoting simplex method corresponding to Howard’s policy
iteration.

I Ye (2011) and Denardo (2016) also provide complexity estimates for
transient MDPs.

26 / 38



Computing the function µ

Choice of µ affects the iteration bound!

When
∑

y∈X p(y |x , a) ≤ 1 for all (x , a), a µ and K can be computed

using O(mn + n3) arithmetic operations. (n = number of states)

I Idea: Construct a “dominating” Markov chain.

In general, a suitable µ ≤ supφ ‖
∑

n≥0 P
n
φ‖ =: K∗ can be computed

using O((mn + n2)mK∗ log K∗) arithmetic operations.

I Idea: Replace all costs with −1 and solve the LP for the resulting
total-cost MDP. For the complexity result, follow the proofs in
Scherrer (2016) using a weighted norm instead of the max-norm.

Theorem

Suppose supφ ‖
∑

n≥0 P
n
φ‖ <∞ is fixed. Then there’s a strongly

polynomial algorithm that returns a total-cost optimal policy for the
transient MDP, which involves the solution of two linear programs.
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Assumption for average-cost MDPs

τx := inf{n ≥ 1|xn = x} = hitting time to x

Assumption HT (Hitting Time)

There’s a state ` and a constant L such that for any policy φ,

Eφx τ` ≤ L <∞ ∀x ∈ X.

Holds for replacement & maintenance problems. (e.g., ` =
machine is broken)

Feinberg & Yang (2008): There’s a strongly polynomial algorithm
for checking if Assumption HT holds.
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Sufficient condition for Assumption HT

Assumption

There’s a positive integer N & constant α where, for all policies φ,

Pφx{xN = `} ≥ α > 0 ∀x ∈ X.

I Special case of Hordijk’s (1974) simultaneous Doeblin
condition.

I Ross’s (1968) assumption: N = 1.

I Implies that for all policies φ

Eφx τ` ≤ N/α <∞ ∀x ∈ X.
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Implications of Assumption HT

Pφ := Markov chain corresponding to policy φ

Assumption HT implies:

I state ` is positive recurrent ∀φ.

I MDP is unichain, i.e. Pφ has a single recurrent class ∀φ.
I If Pφ is aperiodic ∀φ,

I each Pφ has a stationary distribution πφ;
I each Pφ is fast mixing, i.e. ∃ positive integer N and ρ < 1

where

sup
B⊆X

∣∣∣∣∣∣
∑
y∈B

Pn
φ(x , y)−

∑
y∈B

πφ(y)

∣∣∣∣∣∣ ≤ ρbn/Nc ∀x ∈ X, n ≥ 1;

see Federgruen Hordijk & Tijms (1978).

I average cost wφ is constant ∀φ.
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HV-AG transformation

I Modification of Akian & Gaubert’s (2013) transformation for
zero-sum turn-based stochastic games with finite state & action
sets.

I Can be viewed as an extension of the Hoffman-Veinott
transformation.

I Ross’s (1968) transformation can be viewed as a special case.

Proposition

If Assumption HT holds, then there’s a µ : X→ [1,∞) that’s bounded
above by L and satisfies

µ(x) ≥ 1 +
∑

y∈X\{`}
p(y |x , a)µ(y), x ∈ X, a ∈ A(x);
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HV-AG transformation

State space: X̄ := X ∪ {x̄}
Action space: Ā := A ∪ {ā}
Available actions:

Ā(x) :=

{
A(x), x ∈ X,
{ā}, x = x̄

One-step costs:

c̄(x , a) :=

{
µ(x)−1c(x , a), x ∈ X, a ∈ A(x),

0, (x , a) = (x̄ , ā)
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HV-AG transformation (continued)

Choose a discount factor

β̄ ∈
[
L− 1

L
, 1

)
.

Transition probabilities:

p̄(y |x , a) :=


1

β̄µ(x)
p(y |x , a)µ(y), y ∈ X \ {`}, x ∈ X,

1
β̄µ(x)

[µ(x)− 1−
∑

y∈X\{`} p(y |x , a)µ(y)], y = `, x ∈ X,
1− 1

β̄µ(x)
[µ(x)− 1], y = x̄ , x ∈ X,

1, y = x = x̄
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Representation of average costs

Proposition

If the one-step costs c are bounded, then any policy φ satisfies
wφ ≡ v̄φ

β̄
(`).

Idea: Use the fact that hφ(x) := µ(x)[v̄φ
β̄

(x)− v̄φ
β̄

(`)], x ∈ X, satisfies

v̄φ
β̄

(`) + hφ(x) = c(x , φ(x)) +
∑
y∈X

p(y |x , φ(x))hφ(y), x ∈ X.

Corollary

If c is bounded, then any optimal policy for the new discounted MDP is
optimal for the original average-cost MDP.
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Computing an optimal policy

To compute an average-cost optimal policy for an MDP that satisfies
Assumption HT, solve

minimize
∑
x∈X̄

∑
a∈Ā(x)

c̄(x , a)zx,a

such that
∑

a∈Ā(x)

zx,a − β̄
∑
y∈X̄

∑
a∈Ā(y)

p̄(x |y , a)zy ,a = 1 ∀x ∈ X̄,

zx,a ≥ 0 ∀x ∈ X̄, a ∈ Ā(x).

Scherrer’s (2016) results imply that this LP can be solved using

O(mL log L) iterations

of the block-pivoting simplex method corresponding to Howard’s policy
iteration.
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Computing the function µ

If Assumption HT holds, a state ` satisfying Assumption HT can
be found using O(mn2) arithmetic operations (Feinberg & Yang
2008).

A suitable µ ≤ supx∈X supφ E
φ
x τ` =: L∗ can then be computed

using O((mn + n2)mL∗ log L∗) arithmetic operations.

I Idea: Remove state `, set p(`|·) ≡ 0, set all one-step costs to
−1, and consider the LP for the resulting transient total-cost
MDP.

Theorem

Suppose supx∈X supφ E
φ
x τ` <∞ is fixed. Then there’s a strongly

polynomial algorithm that returns an optimal policy for the
average-cost MDP, which involves the solution of two linear
programs.
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Summary

I Any member of a large class of optimistic PI algorithms (e.g.,
VI, λ-PI) is not strongly polynomial.

I Transient MDPs, and average-cost MDPs satisfying a hitting
time assumption, can be reduced to discounted ones.

I These reductions lead to alternative algorithms with
attractive complexity estimates.
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