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What This Talk is About

Transformations of certain undiscounted Markov decision processes
(MDPs) and zero-sum stochastic games to discounted ones.

I Undiscounted = Total or Average Costs

I For total costs, the “transition rates” may not be substochastic

I Generalization of work done by [Akian & Gaubert, Hoffman &
Veinott, Ross]

Lead to reductions of the original model to a (standard) discounted one

I Validity of optimality equations, existence of optimal policies,
complexity estimates for algorithms for the original model.

Often easier to study a discounted model than an undiscounted one.
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Outline

1. Total-Cost MDPs
I Transience Assumption

I Reduction to Discounted MDP

2. Average-Cost MDPs
I Recurrence Assumption

I Reduction to Discounted MDP

3. Two-Player Zero-Sum Stochastic Games
I Reduction of Total Costs to Discounting

I Reduction of Average Costs to Discounting
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Markov Decision Process: Model Definition

X = state space = countable set

A = action space = countable set

A(x) = set of available actions at state x = subset of A

c(x , a) = one-step cost when state is x and action a is performed

q(y |x , a) = “transition rate” to state y when current state is x and
action a is performed

I Not necessarily substochastic!

For the case of Borel state and action spaces, see [Feinberg & H].
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Super-Stochastic Transition Rates

We allow q(·|x , a) to take values greater than one.

Possible Interpretations:

I Controlled Multitype Branching Processes [Eaves, Pliska, Rothblum,
Veinott]: q(y |x , a) = expected number of type y individuals born
from from a type x individual when action a is applied.

I Multi-Armed Bandits with Risk-Seeking Utilities [Denardo, Feinberg,
Rothblum]: q(y |x , a) = p(y |x , a)eλr(x ,y), where λ > 0 and r(x , y) is
the payoff earned when bandit a transitions from state x to y .

I Discount Factors Greater Than One [Hinderer, Waldmann]:
Equivalently consider discount factors α(x , a) :=

∑
y∈X q(y |x , a)

and transition probabilities p(y |x , a) := q(y |x , a)/q(X|x , a).
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Optimality Criterion

F = set of all deterministic stationary policies

For x ∈ X and φ ∈ F, let cφ(x) := c(x ,φ(x)) and

Qφ(x , y) := q(dy |x ,φ(x))

Total costs:

vφ(x) :=
∞∑
t=0

Qt
φcφ(x)

φ∗ ∈ F is optimal if

vφ∗(x) = inf
φ∈F

vφ(x) ∀x ∈ X.

It sufficies to consider deterministic stationary policies [Feinberg & H].
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Transience Assumption

Assumption (T)

There is a “weight function” V : X→ [1,∞) and a constant K <∞
satsfying

V (x)−1
∞∑
t=0

Qt
φV (x) 6 K ∀x ∈ X, φ ∈ F.

[Denardo, Hernández-Lerma, Lasserre, Pliska, Rothblum, Veinott]

Implies that for B ⊆ X, the “occupation time”

∞∑
t=1

Qt
φ1B(x) 6 KV (x) ∀x ∈ X, φ ∈ F.
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An Equivalent Condition

Theorem (Feinberg & H)

Assumption (T) holds iff there exist functions V : X→ [1,∞),
µ : X→ [1,∞) and a constant K <∞ that satisfy

V (x) 6 µ(x) 6 KV (x) ∀x ∈ X

and
µ(x) > V (x) +

∑
y∈X

q(y |x , a)µ(y) ∀x ∈ X, a ∈ A(x).

Was known to hold under additional compactness-continuity conditions,
e.g., [Hernández-Lerma & Lasserre].
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Example: Single-Server Arrival and Service Control

At most 1 arrival and 1 service completion per decision epoch.

X = number of customers in the queue = {0, 1, 2, . . . }

A = A(x) = [amin, amax]× [smin, smax] ⊆ (0, 1)× (0, 1), where amax < smin

I Prob{1 arrival} = a ∈ [amin, amax]

I Prob{1 service completion} = s ∈ [smin, smax]

c(x , (s, a)) = c(x) + dArr(a) + dServ(s)

I c is polynomially bounded

I dArr decreasing in a; dServ increasing in s

Transition rates:

q(y |x , (s, a)) :=


(1 − a)s x > 1, y = x − 1

as + (1 − a)(1 − s) x > 1, y = x

a(1 − s) x > 0, y = x + 1

0 x = y = 0
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Example: Single-Server Arrival and Service Control

vφ(x) = expected total cost incurred to empty the queue starting from a
queue size of x .

Let ρ := amax(1−smin)
(1−amax)smin

< 1, r ∈ (1, ρ−1), and

γ := (r − 1)r−1amax(1 − smin)(ρ
−1 − r) > 0

For sufficiently large C > 0, the functions

V (x) := γCr x µ(x) := Cr x

and K := γ−1 satisfy the hypotheses of the necessary and sufficient
condition for Assumption (T).
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Transformation to a (Standard) Discounted MDP

β̃ := (K − 1)/K

X̃ := X ∪ {x̃}, and Ã := A ∪ {ã}

Ã(x) := A(x) if x ∈ X and Ã(x̃) := {ã}.

p̃(y |x , a) :=


1

β̃µ(x)
µ(y)q(y |x , a), x , y ∈ X, a ∈ A(x),

1 − 1
β̃µ(x)

∑
y∈X µ(y)q(y |x , a), y = x̃ , x ∈ X, a ∈ A(x),

1 y = x̃ , (x , a) = (x̃ , ã).

c̃(x , a) :=

{
c(x , a)/µ(x), x ∈ X, a ∈ A(x),

0, (x , a) = (x̃ , ã).

ṽφ
β̃
(x) := Ẽφx

∞∑
t=0

β̃t c̃(xt , at) x ∈ X̃, φ ∈ F
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Reduction to a Discounted MDP

Theorem (Feinberg & H)

Suppose Assumption (T) holds, and that the constant c <∞ satisfies

|c(x , a)| 6 cV (x) ∀x ∈ X, a ∈ A(x).

Then
vφ(x) = µ(x)ṽφ

β̃
(x) ∀x ∈ X, φ ∈ F.

Proof. Let c̃φ(x) := c̃(x ,φ(x)) and P̃φ(x , y) := p̃(y |x ,φ(x)). Then

β̃nP̃n
φc̃φ(x) = µ(x)

−1Qn
φcφ(x) ∀n ∈ {0, 1, . . . }

�

Implies that to minimize vφ, it suffices to minimize ṽφ
β̃

.

Leads to results on validity of optimality equation and existence and
characterization of optimal policies for the original MDP [Feinberg & H].
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Complexity of Policy Iteration

Provides alternative proof of the iteration bound for Howard’s policy iteration
derived by [Denardo].

I Compute vφ for current policy, let φ+ satisfy Tφ+vφ = TVφ, replace φ
with φ+, repeat . . .

m := number of state-action pairs (x , a)

Theorem (Denardo)

The number of iterations required by Howard’s policy iteration (HPI) algorithm
to compute an optimal policy for the original MDP is

O(mK logK ).

Proof. [Feinberg & H] Reduce the original MDP to a discounted one, show
that (HPI) for the discounted one corresponds to (HPI) for the original one,
and use the bound derived by [Scherrer] for discounted MDPs. �
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Optimality Criterion

F = set of all deterministic stationary policies

For x ∈ X and φ ∈ F, let cφ(x) := c(x ,φ(x)) and

Qφ(x , y) := q(dy |x ,φ(x))

Average costs:

wφ(x) := lim sup
T→∞

1

T

T∑
t=0

Qt
φcφ(x)

φ∗ ∈ F is optimal if

wφ∗(x) = inf
φ∈F

wφ(x) ∀x ∈ X.

It sufficies to consider deterministic stationary policies [Feinberg & H].
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Recurrence Assumption

Let

`Qφ(x , y) :=

{
q(y |x ,φ(x)) y 6= `
0 y = `

Assumption (HT)

There is a “weight function” V : X→ [1,∞) and a constant K <∞ satsfying

V (x)−1

∞∑
t=0

`Q
t
φV (x) 6 K ∀x ∈ X, φ ∈ F.

When X and A are finite, Assumption (HT) means

I MDP is unichain, and state ` is recurrent under all φ.

I Hitting time to state ` is uniformly bounded in x and φ.

I wφ is constant for every φ.

Generalizes a condition used by [Ross] to reduce average-cost MDPs to
discounted ones.
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An Equivalent Assumption

Theorem (Feinberg & H)

Assumption (HT) holds iff there exist functions V : X→ [1,∞),
µ : X→ [1,∞) and a constant K <∞ that satisfy

V (x) 6 µ(x) 6 KV (x) ∀x ∈ X

and
µ(x) > V (x) +

∑
y 6=`

q(y |x , a)µ(y) ∀x ∈ X, a ∈ A(x).
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Example: Single-Server Arrival and Service Control

Consider the queueing control model from Slide 8, with transition probabilities

q(y |x , (s, a)) :=


(1 − a)s x > 1, y = x − 1

as + (1 − a)(1 − s) x > 1, y = x

a(1 − s) x > 0, y = x + 1

1 − a(1 − s) x = y = 0

Let ρ := amax(1−smin)
(1−amax)smin

< 1, r ∈ (1, ρ−1), and

γ := (r − 1)r−1amax(1 − smin)(ρ
−1 − r) > 0

Then for sufficiently large C , the functions V (x) := γCr x and µ := Cr x and the
constant K := γ−1 satisfy V 6 µ 6 KV and

µ(x) > V (x) +
∑
y 6=0

q(y |x , (a, s))µ(y) ∀x ∈ X, (a, s) ∈ A.

and hence satisfies Assumption (HT).
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Transformation to a (Standard) Discounted MDP

β̄ := (K − 1)/K

X̄ := X ∪ {x̄}, and Ā := A ∪ {ā}

Ā(x) := A(x) if x ∈ X and Ā(x̄) := {ā}.

p̄(y |x , a) :=


1

β̄µ(x)
µ(y)q(y |x , a), y 6= `, x ∈ X;

1
β̄µ(x)

[µ(x) − 1 −
∑

y 6=` µ(y)q(y |x , a)] y = `, x ∈ X;

1 − 1
β̄µ(x)

[µ(x) − 1], y = x̄ , x ∈ X;

1 y = x̄ , (x , a) = (x̄ , ā).

c̄(x , a) :=

{
c(x , a)/µ(x), x ∈ X, a ∈ A(x),

0, (x , a) = (x̄ , ā).

v̄φ
β̄
(x) := Ēφx

∞∑
t=0

β̄t c̄(xt , at) x ∈ X̄, φ ∈ F.
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Reduction to a Discounted MDP

Theorem (Feinberg & H)

Suppose Assumption (HT) holds, that
∑

y∈X q(y |x , a) = 1 for all x ∈ X and
a ∈ A(x), and that the constant c <∞ satisfies

|c(x , a)| 6 cV (x) ∀x ∈ X, a ∈ A(x).

Then
wφ(x) = v̄φ

β̄
(`) ∀x ∈ X, φ ∈ F.

Proof. Show that for every φ, the function hφ(x) := µ(x)[v̄β̄(x) − v̄β̄(`)]
satisfies

v̄φ
β̄
(`) + hφ(x) = cφ(x) +Qφh

φ(x) ∀x ∈ X,

and that

lim
T→∞

1

T
QT
φh

φ(x) = 0.

�
Can be used to verify the validity of the average-cost optimality equation and
the existence of stationary optimal policies [Feinberg & H]
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Model Definition: Two-Player Zero-Sum Stochastic Game

X = state space = countable set

Ai = action space = countable set, i = 1, 2

Ai (x) = {set of available actions for player i = 1, 2 at state x} ⊆ Ai

c(x , a1, a2) = one-step cost when state is x and player i = 1, 2 plays
action ai

q(y |x , a1, a2) = “transition rate” to state y when current state is x and
player i = 1, 2 plays action ai

I Not necessarily substochastic!
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Total-Cost Criterion

Φi = set of all randomized stationary policies for player i = 1, 2

For x ∈ X and (φ1,φ2) ∈ Φ1 ×Φ2, let

cφ1,φ2(x) :=
∑

a1∈A1(x)

∑
a2∈A2(x)

φ1(a1|x)φ2(a2|x)c(x , a1, a2)

and
Qφ1,φ2(x , y) :=

∑
a1∈A1(x)

∑
a2∈A2(x)

φ1(a1|x)φ2(a2|x)q(y |x , a1, a2)

Total costs:

vφ
1,φ2

(x) :=
∞∑
t=0

Qt
φ1,φ2cφ1,φ2(x)
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Total-Cost Criterion

φ∗ ∈ Φ1 is optimal for player 1 if

inf
φ2∈Φ2

vφ∗,φ2

(x) = inf
φ2∈Φ2

sup
φ1∈Φ1

vφ
1,φ2

(x) ∀x ∈ X.

φ∗ ∈ Φ2 is optimal for player 2 if

sup
φ1∈Φ1

vφ
1,φ∗(x) = sup

φ1∈Φ1

inf
φ2∈Φ2

vφ
1,φ2

(x) ∀x ∈ X.

The game has a value v if

v(x) := inf
φ2∈Φ2

sup
φ1∈Φ1

vφ
1,φ2

(x) = sup
φ1∈Φ1

inf
φ2∈Φ2

vφ
1,φ2

(x) ∀x ∈ X.
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Transience Assumption

Fi = set of all deterministic stationary policies for player i = 1, 2.

Assumption (T)

There is a “weight function” V : X→ [1,∞) and a constant K <∞
satsfying

V (x)−1
∞∑
t=0

Qt
φ1,φ2V (x) 6 K ∀x ∈ X, (φ1,φ2) ∈ F1 × F2.

Implies that for B ⊆ X, the “occupation time”

∞∑
t=1

Qt
φ1,φ21B(x) 6 KV (x) ∀x ∈ X, (φ1,φ2) ∈ F1 × F2.
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An Equivalent Condition

Theorem (Feinberg & H)

Assumption (T) holds iff there exist functions V : X→ [1,∞),
µ : X→ [1,∞) and a constant K <∞ that satisfy

V (x) 6 µ(x) 6 KV (x) ∀x ∈ X

and

µ(x) > V (x) +
∑
y∈X

q(y |x , a1, a2)µ(y) ∀x ∈ X, ai ∈ Ai (x), i = 1, 2.
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Example: Robust Single-Server Service Control

Consider the queueing control model from Slide 8, where the
arrival controller wants to maximize the total cost incurred before
the queue becomes empty.

Interpretation: Don’t know the arrival rate, want to control the
service rate the minimize the worst-case total cost incurred before
the queue becomes empty.

Using the arguments from Slide 9, this model satisfies
Assumption (T).
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Reduction to a (Standard) Discounted Zero-Sum Game

β̃ := (K − 1)/K

X̃ := X ∪ {x̃}, and Ãi := Ai ∪ {ãi } for i = 1, 2

For i = 1, 2, Ãi (x) := Ai (x) if x ∈ X and Ãi (x̃) := {ã}.

p̃(y |x , a1, a2) :=

{ 1
β̃µ(x)

µ(y)q(y |x , a1, a2), x , y ∈ X, (a1, a2) ∈ A1(x)× A2(x),

1 − 1
β̃µ(x)

∑
y∈X µ(y)q(y |x , a1, a2), y = x̃ , x ∈ X, (a1, a2) ∈ A1(x)× A2(x),

1 y = x̃ , (x , a1, a2) = (x̃ , ã1, ã2).

c̃(x , a1, a2) :=

{
c(x , a1, a2)/µ(x), x ∈ X, (a1, a2) ∈ A1(x)× A2(x),

0, (x , a1, a2) = (x̃ , ã1, ã2).

Use results for the discounted game (e.g., [Nowak]) to derive the existence of
the value and optimal randomized stationary strategies for the original game
[Feinberg & H].
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Average-Cost Criterion

Φi = set of all randomized stationary policies for player i = 1, 2

For x ∈ X and (φ1,φ2) ∈ Φ1 ×Φ2, let

cφ1,φ2(x) :=
∑

a1∈A1(x)

∑
a2∈A2(x)

φ1(a1|x)φ2(a2|x)c(x , a1, a2)

and
Qφ1,φ2(x , y) :=

∑
a1∈A1(x)

∑
a2∈A2(x)

φ1(a1|x)φ2(a2|x)q(y |x , a1, a2)

Total costs:

wφ
1,φ2

(x) := lim sup
T→∞

1

T

T∑
t=0

Qt
φ1,φ2cφ1,φ2(x)
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Average-Cost Criterion

φ∗ ∈ Φ1 is optimal for player 1 if

inf
φ2∈Φ2

wφ∗,φ2

(x) = inf
φ2∈Φ2

sup
φ1∈Φ1

wφ
1,φ2

(x) ∀x ∈ X.

φ∗ ∈ Φ2 is optimal for player 2 if

sup
φ1∈Φ1

wφ
1,φ∗(x) = sup

φ1∈Φ1

inf
φ2∈Φ2

wφ
1,φ2

(x) ∀x ∈ X.

The game has a value w if

w(x) := inf
φ2∈Φ2

sup
φ1∈Φ1

wφ
1,φ2

(x) = sup
φ1∈Φ1

inf
φ2∈Φ2

wφ
1,φ2

(x) ∀x ∈ X.
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Recurrence Assumption

Let

`Qφ1,φ2(x , y) :=

{
Qφ1,φ2(x , y) y 6= `
0 y = `

Assumption (HT)

There is a “weight function” V : X→ [1,∞) and a constant K <∞ satsfying

V (x)−1

∞∑
t=0

`Q
t
φ1,φ2V (x) 6 K ∀x ∈ X, (φ1,φ2) ∈ F1 × F2.

When X, A1, and A2 are finite, Assumption (HT) means

I state ` is recurrent under all (φ1,φ2) ∈ F1 × F2.

I Hitting time to state ` is uniformly bounded in x and (φ1,φ2) ∈ F1 × F2.

I wφ
1,φ2

is constant for every (φ1,φ2) ∈ F1 × F2.

Generalizes the assumption used by [Akian & Gaubert] to reduce the original
average-cost game to a discounted one.
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Example: Robust Single-Server Service Control

Consider the version of the queueing control model described on
Slide 16, where the arrival controller wants to maximize the
average cost incurred.

Interpretation: Don’t know the arrival rate, want to control the
service rate the minimize the worst-case average cost.

Using the arguments from Slide 16, this model satisfies
Assumption (HT).
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Reduction to a (Standard) Discounted Zero-Sum Game

β̄ := (K − 1)/K

X̄ := X ∪ {x̄}, and Āi := Ai ∪ {āi } for i = 1, 2

For i = 1, 2, Āi (x) := Ai (x) if x ∈ X and Āi (x̄) := {ā}.

p̄(y |x , a1, a2) :=


1

β̄µ(x)
µ(y)q(y |x , a1, a2), y 6= `, x ∈ X;

1
β̄µ(x)

[µ(x) − 1 −
∑

y 6=` µ(y)q(y |x , a1, a2)] y = `, x ∈ X;

1 − 1
β̄µ(x)

[µ(x) − 1], y = x̄ , x ∈ X;

1 y = x̄ , (x , a1, a2) = (x̄ , ā1, ā2).

c̄(x , a1, a2) :=

{
c(x , a1, a2)/µ(x), x ∈ X, (a1, a2) ∈ A1(x)× A2(x),

0, (x , a1, a2) = (x̄ , ā1, ā2).

Use results for the discounted game (e.g., [Nowak]) to derive the existence of
the value and optimal randomized stationary strategies for the original game
[Feinberg & H].
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Summary

1. Conditions under which undiscounted MDPs and stochastic games
can be reduced to discounted ones.

I Total Costs: Transience

I Average Costs: Recurrence

2. Lead to validity of optimality equations, existence of optimal
policies, complexity estimates for computing an optimal policy.

Future Work:

I Consequences for specific models? (e.g., queueing control,
replacement & maintenance) [Feinberg & H]

I More general conditions under which a reduction holds?

I Complexity estimates for average-cost problems
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