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Performance Evaluation and Optimization

3 various (approximate) methods for evaluating a fixed policy for an MDP.

» evaluate = compute value function

» methods include LSTD, TD(}), ...

Policy Improvement: If v™ is the exact value function for the policy 7, then a
policy 7t that is provably at least as good is given by:

m(x) € argATi)n {c(x,a) +8E[VT(X) | X ~ p(-x,a)]}, xe€X (1)
acA(x

» Discounted Costs: § € [0,1), v™ gives expected discounted total cost

from each state under 7

> Average Costs!: § =1, v™ is the “relative value function” under 7

Policy Iteration is based on this idea.

lwhen the MDP is unichain (e.g., ergodic under every policy)
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Approximate Policy Improvement

‘

If v is replaced with an approximation V™, then the “improved policy”
7t where

it (x) € argmin{c(x, a) + SE[0(X) | X ~p(:|x,a)l}, xeX (2)
acA(x)

is not necessarily better than 7.

Questions:
1. When is (2) computationally tractable?
2. When is " close to being optimal?

Our focus is on MDPs modeling queueing systems.
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Outline

Part 1: Using Analytically Tractable Policies?

» Average Costs

Part 2: Using Simulation and Interpolation?

> Average Costs

Part 3: Using Lagrangian Relaxations*

» Discounted Costs

2Bhu|ai, S. (2017). Value Function Approximation in Complex Queueing Systems. In Markov Decision
Processes in Practice (pp. 33-62). Springer.
3James, T., Glazebrook, K., & Lin, K. (2016). Developing effective service policies for multiclass queues with
abandonment: asymptotic optimality and approximate policy improvement. INFORMS Journal on Computing,
28(2), 251-264.
ABrown, D. B., & Haugh, M. B. (2017). Information relaxation bounds for infinite horizon Markov decision
processes. Operations Research, 65(5), 1355-1379. 327



Part 1

Using Analytically Tractable Policies
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Analytically Tractable Queueing Systems

Idea:
1. Start with systems whose Poisson equation is analytically solvable.

2. Use them to suggest analytically tractable policies for more complex
systems.

Examples: (Bhulai 2017)
» M/Cox(r)/1 queue
> M/M/s queue
» M/M/s/s blocking system

> priority queue

Analytically Tractable Policies Simulation & Interpolation Lagrangian Relaxation Research Questions
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The Poisson Equation

Let 7t be a policy (e.g., a fixed admission rule, a fixed priority rule).

In general, the Poisson equation looks like this:

g+ h(x) = clx,m(x)) + )_plylx,n(x)h(y), xeX.

yeX

We want to solve for the average cost g and the relative value function h(x) of
L.

The Poisson equation is also called the “evaluation equation”.

> e.g., Puterman, M. L. (2005). Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons.
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The Poisson Equation for Queueing Systems

For queueing systems, the Poisson equation is often a linear difference
equation.

> See e.g., Mickens, R. (1991). Difference Equations: Theory and
Applications. CRC Press.

Example: Poisson equation for a uniformized M/M/1 queue with A+ p <1
and linear holding cost rate c:

g+h(x)=cx+A(x+1)+ph(x—1)+(1—A—wh(x), xe{l,2,...},
g -+ h(0) = Ah(1) + (1 — A)h(0).

This is a “second-order” difference equation.
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Linear Difference Equations

Theorem (Bhulai 2017, Theorem 2.1)
Suppose f :{0,1, ...} — R satisfies

f(x+1) 4+ a(x)f(x) +B(x)f(x—1)=q(x), x>1
where B(x) # 0 for all x > 1.
Iff,:{0,1,...} = R is a "homogeneous solution”, i.e.,

fr(x+1) + a(x)fu(x) + B(x)fa(x—1) =0, x=>1,
then, letting the empty product be equal to one,

Fx)  f0)  (F(L) £(0) BU) G —1)
fh(x)‘fh(0)+(fh(1) O)ZH fol+ 1)

i=1 j=1

BUIAG—1) ! at)
+ZH ATESY lef(1+1 [T} BT
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Application: M/M/1 Queue

Rewrite the Poisson equation in the form of the Theorem:

Atp B g —cx
_ = — = >
h(x+1)+( . >h(x)+()\>h(x =% x>1
~—— ———
o(x) B(x) q(x)

\

Note that f, = 1 works as the “homogeneous solution”.

We also know that, for an M/M/1 queue with linear holding cost rate c,

cA
p—A

So, according to the Theorem,

X i x jizl j+1 o
-0 Q2G5 [5

i=1 j=1
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Other Analytically Tractable Systems

Relative value functions for the following systems are presented in (Bhulai
2017):

1. M/Cox(r)/1 Queue

> special cases: hyperexponential, hypoexponential, Erlang, and
exponential service times

2. M/M/s Queue
» with infinite buffer, with no buffer (blocking system)

3. 2-class M/M/1 Priority Queue
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Application to Analytically Intractable Systems

Idea:

1. Pick an initial policy whose relative value function can be written in
terms of the relative value functions of simpler systems.

2. Do one-step policy improvement using that policy.
In (Bhulai 2017), this is applied to the following problems:

1. Routing Poisson arrivals to two different M/Cox(r)/1 queues.

> Initial Policy: Bernoulli routing
> Uses relative value function of M/Cox(r)/1 queue

2. Routing in a Multi-Skill Call Center

> Initial Policy: Static randomized policy that tries to route calls to
agents with the fewest skills first
> Uses relative value function of M/M/s queue

3. Controlled Polling System with Switching Costs

> Initial Policy: cu-rule
> Uses relative value function of priority queue
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Controlled Polling System with Switching Costs

Two queues with independent Poisson arrivals at rates A, A, exponential
service times with rates (11, 1, and holding cost rates ci, ¢, respectively.

If queue i is currently being served, switching to queue j # i costs s;, i =1, 2.

Problem: Dynamically assign the server to one of the two queues, so that the
average cost incurred is minimized.

Do one-step policy improvement on the cpi-rule.

Results for Ay =A, =1, 11 =6, ib, =3, 1 =2, =1, 5y = 5, = 2:

Policy Average Cost
cp-Rule 3.62894
One-Step Improvement 3.09895
Optimal Policy 3.09261
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Part 2

Using Simulation and Interpolation
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Scheduling a Multiclass Queue with Abandonments

k queues with independent Poisson arrivals at rates A, ..., A, exponential
service times with rates i, ..., W, and holding cost rates ¢, ..., ¢,
respectively.

Each customer in queue i =1,..., k remains available for service for an
exponentially distributed amount of time, with rate 0;.

Each service completion from queue i =1, ..., k earns R;; each abandonment
from queue i costs D;.

Problem: Dynamically assign the server to one of the k queues, so that the
average cost incurred is minimized.
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Relative Value Function

Let 7t be a policy, and select any reference state

x, € X={(h,..., i) €{0,1,... 7

g™ = average cost incurred under 7
r™(x) = expected total cost to reach x, under 7, starting from state x

t™(x) = expected time to reach x, under 7, starting from state x

Then the relative value function is

h"(x) =r"(x) —g"t"(x), xeX.
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Approximate Policy Improvement

Exact DP is infeasible for k > 3 classes.

(James, Glazebrook, Lin 2016) propose an approximate policy improvement
algorithm.

Idea: Given a policy 7, approximate its relative value function h™ as follows:

1. Simulate 7t to estimate its average cost g™ and the long-run frequency
with which each state is visited.

2. Based on Step 1, select a set of initial states from which the relative
value under 7t is estimated via simulation.

3. Estimate the relative value function by interpolating between the values
estimated in Step 2.

4. Do policy improvement using the estimated relative value function.
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Selecting States (Step 2)

S = set of initial states selected in Step 2, from which the relative value is
estimated via simulation

S= Sanchor + SSupportr
where
1. Sinchor = set of most frequently visited states (based on Step 1)

2. Ssupport = set of regularly spaced states

Parameters: How many states to include in Syhchor and Sgupport -
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Interpolation (Step 3)

Use an (augmented) radial basis function

n d

h"(x) ~ Z i d([[x = xil|) + Z Bjpi(x)

i=1 j=1
where

» n = number of selected states in Step 2
x; = it selected state in Step 2
&(r) = r?log(r) (thin plate spline)
-1
d=k+1

p1(x) =1, pj(x) = number of customers in queue j —1

= Euclidean norm

vV Vv vVvyVvVyy
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Computing the Interpolation Parameters

x; = i*" selected state in Step 2
f; = estimated relative value starting from x;
Aj =[x —xl|) fori,j=1,...n

Pj=pj(x) fori=1,...,nand j=1,..., k+1

Solve the following linear system of equations:

Axt PB=f
PTaa=0
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Example

2 classes, initial policy is the “Ru6-rule

m = number of replications for each selected state
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Figure 1 in (James, Glazebrook, Lin 2016)
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Example: Approximate Policy Improvement

Same problem

API = policy from one-step policy improvement
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Figure 2 in (James, Glazebrook, Lin 2016)
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Suboptimality of Heuristics

API(mt) = one-step approximate policy improvement applied to 7

k = 3 classes, p = Z,-kzl(?\,-/u.-)
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Figure 3 in (James, Glazebrook, Lin 2016); see the paper details on this and
other numerical studies.
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Part 3

Using Lagrangian Relaxations
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Multiclass Queue with Convex Holding Costs

k queues with independent Poisson arrivals at rates A1, ..., A, and exponential
service times with rates Wy, ..., [k, respectively.

If there are x; customers in queue i, the holding cost rate is ¢;(x;) where
¢ :{0,1,...} — R is nonnegative, increasing, and convex.

Each queue i has a buffer of size B;

Problem: Dynamically assign the server to one of the k queues, so that the
discounted cost incurred is minimized.
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Relaxed Problem

The following relaxation is considered in (Brown, Haugh 2017):

» The queues are grouped into G groups.

» The server can serve at most one queue per group; can serve multiple
groups simulataneously.

» Penalty £ for serving multiple groups simultaneously.

Under this relaxation, the value function decouples across groups (« =
discount factor):

v% can be used in both one-step “policy improvement”, and to construct a

lower bound on the optimal cost via an information relaxation.
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Analytically Tractable Policies

Myopic: use one-step improvement with the value function v™(x)

Suboptimality of Heuristics

> iclx)

Approximate value function (v), used in heuristic policy and in penalty

Myopic LR, groups of size 1 LR, groups of size 2 LR, groups of size 4
Gap Time Gap Time Gap Time Gap Time
Mean SE % () Mean SE % () Mean SE % (s) Mean SE % (s)
6=09
Cost of heuristic policy 1405 110 — 16 1320 005 — 16 1323 007 — 21 1321 005 — 16
Gap from heuristic to v 1405 1.10 1000 — 130 005 9.84 15 122 007 921 05 1.00 0.05 7.58 18.6
Gap from heuristic to 612 090 436 05 019 004 147 05 032 006 244 11 025 0.04 186 0.7
information relaxation
6=0.99
Cost of heuristic policy 20173 165 —  18.6 20400 068 — 183 203.66 044 — 29.8 203.39 0.09 — 26.6
Gap from heuristic to v 20173 165 1000 — 1212 0.68 597 13.1 10.16 044 499 6.9 432 0.09 212 3402
Gap from heuristic to 19798 165 981 52 812 067 398 51 644 043 316 99 124 0.06 0.61 6.5
information relaxation
6=0.999
Cost of heuristic policy ~ 1,058.58 44.0 ~— 204.1 94482 1.02 — 1968 947.14 091 — 3629 94393 056 — 330.1
Gap from heuristictov  1,058.58 44.0 1000 — 2598 1.02 275 113.8 2347 091 248 60.1 13.36 0.56 142 3,665.2
Gap from heuristic to 1,058.10 44.0 999 51.8 2425 1.02 257 505 2179 091 230 985 11.98 0.56 1.27 63.8

information relaxation

Notes. The perfect information relaxations use the uncontrolled formulation, and the heuristic policy selects actions using v as an approximate
value function in (20). Bold highlights the results for the best gap for each §. LR denotes Lagrangian relaxation.

From (Brown, Haugh 2017); see the paper for details.
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Research Questions

. Applications to other systems?
. Performance guarantees for one-step improvement?

. Other functions to use in one-step improvement?

A WD =

. Conditions under which one-step improvement is practical?
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