Dynamic Scheduling and Maintenance of a Deteriorating Server

Jefferson Huang

School of Operations Research & Information Engineering
Cornell University

March 28, 2018

Seminar on Combinatorics, Games and Optimisation
London School of Economics and Political Science
A Single-Server Queue

The times between successive arrivals of jobs are random.

\[T_i = \text{time between } (i - 1)^{\text{st}} \text{ and } i^{\text{th}} \text{ arrival} \]

The required service times of the arrivals are random.

\[S_i = \text{service time of the } i^{\text{th}} \text{ arrival.} \]

An “arrival” could be:

1. a customer/order;
2. someone calling a tech support hotline;
3. an injured person arriving at an emergency room; ...
A Single-Server Markovian Queue

For \(i = 1, 2, \ldots \),

- \(T_i = \) time between \((i - 1)\)st and \(i\)th arrival \(\sim\) Exponential(\(\lambda\))
- \(S_i = \) service time of the \(i\)th arrival \(\sim\) Exponential(\(\mu\))
- \(T_1, T_2, \ldots \) and \(S_1, S_2, \ldots \) are independent.

\[Q(t) = \text{number of jobs in the system at time } t \in [0, \infty) \in \{0, 1, 2, \ldots\} \]

\(\{Q(t), t \geq 0\} \) is a continuous-time Markov chain (CTMC)

- This kind of queue is called an “\textbf{M}/\textbf{M}/1 queue”.
- It’s analytically tractable.
Parallel Markovian Queues

2 M/M/1 queues, 1 server:

The M/M/1 queues can have different parameters λ_1, λ_2 and μ_1, μ_2.

- Each queue holds a different class of arrival.

The server can only serve one arrival at a time.

Question: How should the server allocate its time?

Examples:

1. different kinds of orders;
2. different kinds of callers;
3. patients with ailments of varying severity, ...
Outline

Part 1: Optimally Scheduling Parallel Markovian Queues

Part 2: Optimal Scheduling with a Deteriorating Server

Part 3: Optimal Joint Scheduling and Maintenance
Part 1

Optimally Scheduling Parallel Markovian Queues
Costs

For each unit of time that an arrival in queue $i \in \{1, 2\}$ is in the system, a holding cost c_i is incurred.

A policy specifies, for all $t \in [0, \infty)$, which queue (if any) should be served at time t.

- Can be based on the past (but not future) evolution of the system.
- Should not idle the server when there are jobs waiting.

$Q^\pi_i(t) = \text{number of class } i \text{ jobs in the system at time } t, \text{ under policy } \pi$

Objective: Find a policy π minimizing the long-run expected average cost

$$\limsup_{t \to \infty} \frac{1}{t} \mathbb{E} \left[\int_0^t \left(c_1 Q_1^\pi(x) + c_2 Q_2^\pi(x) \right) \, dx \right]$$
An Optimal Policy: The “$c\mu$-Rule”

$c_i = \text{holding cost rate for class } i \text{ arrivals.}$

$1/\mu_i = \text{expected service time for a class } i \text{ arrival}$

$c\mu$-Rule: Prioritize class 1 if $c_1\mu_1 \geq c_2\mu_2$; otherwise, prioritize class 2.

Theorem (e.g., Buyukkoc Varaiya Walrand 1985)

The $c\mu$-rule is optimal, i.e., minimizes the long-run expected average cost.
Intuition

$c_i \mu_i$ is the expected cost decrease per class i job served

$A_i(t) = \text{total number of class } i \text{ arrivals during } [0, t]$

Assume there are no class i jobs in the system at time 0.

\[
\text{total class } i \text{ cost up to time } t = \mathbb{E} \left[\int_0^t c_i Q_i^\pi(x) \, dx \right] \\
= \mathbb{E} \left[\int_0^t c_i A_i(x) \, dx \right] \\
- \mathbb{E} \left[\int_0^t c_i \mu_i 1\{\text{class } i \text{ served at time } x\} \, dx \right]
\]
An “Interchange” Argument

Idea: Switching to the $c\mu$-rule never increases the cost incurred.

Example: One class 1 arrival, one class 2 arrival

$s_i = 1/\mu_i =$ service time of class i arrival

$v_{1\rightarrow2} =$ cost to serve class 1, then class 2 = $c_1s_1 + c_2(s_1 + s_2)$

$v_{2\rightarrow1} =$ cost to serve class 2, then class 1 = $c_2s_2 + c_1(s_2 + s_1)$

Then

$v_{1\rightarrow2} \leq v_{2\rightarrow1} \iff c_1\mu_1 \geq c_2\mu_2$

Can be made to work for every sample path of the process (e.g., Nain 1989).
A Mathematical Programming Argument

Idea: The problem can be formulated as a **nice** mathematical program. (e.g., Coffman Mitrani 1980)

\[
\pi_i = \limsup_{t \to \infty} \frac{\frac{1}{t} \mathbb{E} \left[\int_0^t Q^\pi_i(x) \, dx \right]}{\mu_i}
\]

= long-run expected average amount of work in the system under policy \(\pi \)

\[X = \{(x_1^\pi, x_2^\pi) : \pi \text{ is a policy}\}\]

Mathematical Programming Formulation:

\[
\begin{align*}
\text{minimize} & \quad c_1 \mu_1 x_1 + c_2 \mu_2 x_2 \\
\text{subject to} & \quad (x_1, x_2) \in X
\end{align*}
\]
A Mathematical Programming Argument

\[\rho_i = \lambda_i / \mu_i = \text{average class } i \text{ utilization} \]

It turns out that \(X \) is a line segment:

\[
X = \left\{ (x_1, x_2) : x_1 \geq \frac{\rho_1 / \mu_1}{1 - \rho_1}, \ x_2 \geq \frac{\rho_2 / \mu_2}{1 - \rho_2}, \ x_1 + x_2 = \frac{\rho_1 / \mu_1 + \rho_2 / \mu_2}{1 - \rho_1 - \rho_2} \right\}
\]

The extreme points of \(X \) correspond to priority policies:

\[
\left(\frac{\rho_1 / \mu_1}{1 - \rho_1}, \frac{\rho_1 / \mu_1 + \rho_2 / \mu_2}{1 - \rho_1 - \rho_2} - \frac{\rho_1 / \mu_1}{1 - \rho_1} \right) \leftrightarrow \text{prioritize class 1}
\]

\[
\left(\frac{\rho_1 / \mu_1 + \rho_2 / \mu_2}{1 - \rho_1 - \rho_2} - \frac{\rho_2 / \mu_2}{1 - \rho_2}, \frac{\rho_2 / \mu_2}{1 - \rho_2} \right) \leftrightarrow \text{prioritize class 2}
\]
A Linear Programming Argument

The solution to the linear program

\[
\begin{align*}
\text{minimize} & \quad c_1 \mu_1 x_1 + c_2 \mu_2 x_2 \\
\text{subject to} & \quad (x_1, x_2) \in X
\end{align*}
\]

is

\[
\left(\frac{\rho_1}{1 - \rho_1}, \frac{\rho_1 + \rho_2 \mu_2}{1 - \rho_1 - \rho_2} - \frac{\rho_1}{1 - \rho_1} \right) \leftrightarrow \text{prioritize class 1}
\]

if \(c_1 \mu_1 \geq c_2 \mu_2 \), and is

\[
\left(\frac{\rho_1 + \rho_2 \mu_2}{1 - \rho_1 - \rho_2} - \frac{\rho_2 \mu_2}{1 - \rho_2}, \frac{\rho_2 \mu_2}{1 - \rho_2} \right) \leftrightarrow \text{prioritize class 2}
\]

otherwise.
Part 2

Optimal Scheduling with a Deteriorating Server
A Deteriorating Server

What if the service time distributions vary with time?

\[S_i = \text{service time for class } i \text{ arrival } \sim \text{Exponential}(\mu_i(t)), \quad t \in [0, \infty). \]

Can reflect changes in the condition of the server.

Examples:

1. Machine processing parts on a manufacturing line, that is subject to wear (e.g., in a semiconductor wafer fab)
2. Human subject to fatigue (e.g. customer service rep, nurse)

Question: Given the state of the server, which class (if any) should be served?
A Natural Extension of the $c\mu$-Rule

$S(t) = \text{state of the server at time } t \in [0, \infty)$

- Assume $\{S(t), t \geq 0\}$ is a continuous-time Markov chain.

Assume that if the server is in state s, then the service time of class i arrivals is

$$S_i \sim \text{Exponential}(\mu_i^s)$$

State-Dependent $c\mu$-Rule:

If the server is currently in state s, prioritize class 1 if

$$c_1 \mu_1^s \geq c_2 \mu_2^s;$$

otherwise, prioritize class 2.

Is the state-dependent $c\mu$-rule optimal?
The State-Dependent $c\mu$-Rule Can Be Very Suboptimal!

Example:
- Arrival Rates: $\lambda_1 = 5$, $\lambda_2 = 0.75$
- $\{S(t), t \geq 0\}$ cycles between states 1 and 2 at rate 1
- Service Rates:
 \[
 \mu^1_1 = 10, \quad \mu^1_2 = 10 \\
 \mu^2_1 = 1, \quad \mu^2_2 = 2
 \]

Proposition (Huang et al. 2018)

1. Under the state-dependent $c\mu$-rule, the long-run average number of jobs in queue 2 is infinite.
2. There exists a policy under which the long-run average numbers of jobs in both queues are finite.
Unstable System Under the $c\mu$-Rule
Can the State-Dependent $c\mu$-Rule Be Optimal?

Constant-Ratio Assumption (CR): As the server changes states, the ratio between the service rates remains constant:

$$\frac{\mu^s_1}{\mu^s_2} = \frac{\mu^{s'}_1}{\mu^{s'}_2} \quad \forall \text{ server states } s, s'$$

(assume that $\mu^s_1 = 0 \implies \mu^s_2 = 0$ for all s)

Theorem (Huang et al. 2018)

If (CR) holds, then the state-dependent $c\mu$-rule is optimal.

- Doesn’t depend on any parameters of the server state process.
- Under (CR), a version of the classical interchange argument can be used.
- If (CR) is violated, then the state-dependent $c\mu$-rule may be very suboptimal (see preceding slide).
Part 3

Optimal Joint Scheduling and Maintenance
Suppose the set of possible server states is

$$\{0, 1, 2, \ldots, B\}$$

where

- higher state = higher service rates ($$\mu_i^{s-1} \leq \mu_i^s \forall s \geq 1, \ i \in \{1, 2\}$$)
- 0 = server has failed ($$\mu_1^0 = \mu_2^0 = 0$$)
- B = server is in perfect condition

The server deteriorates, and maintenance is initiated upon reaching state 0:

- current state is $$s \geq 1 \implies$$ next state is $$s - 1$$
- current state is 0 $$\implies$$ next state is B
Preventive Maintenance

Can bring the server down for preventive maintenance before it fails on its own.

- Pay cost K each time this is done.

If there are jobs in the system, and the server has not failed on its own, the decision-maker can elect to either

1. serve one of the classes present, or
2. initiate preventive maintenance.

Question: How should the decision-maker jointly allocate the server’s time and make maintenance decisions?

This is a difficult problem! (e.g., Kaufman Lewis 2007)
A maintenance policy stipulates whether preventive maintenance should be initiated.

A maintenance policy is queue-oblivious if it does not depend on the queue lengths.

- e.g., a threshold policy: initiate maintenance iff. the server state $s < s^*$

Theorem (Huang et al. 2018)

If one is restricted to queue-oblivious maintenance policies, then scheduling according to the state-dependent $c\mu$-rule is optimal.

- Show that under any fixed queue-oblivious maintenance policy, scheduling according to the state-dependent $c\mu$-rule is optimal.

- Classic interchange approach doesn’t work if maintenance policies need not be queue-oblivious!
What's the Structure of Optimal Policies?

When is there an optimal policy with a nice structure?
Conclusions

Some conclusions on scheduling parallel Markovian queues:

1. When the server is reliable, the $c\mu$-rule is optimal.

2. When the server is unreliable, the state-dependent $c\mu$ rule can be very bad.
 ▶ We provided a condition under which it’s optimal.

3. The joint scheduling and maintenance problem is difficult.
 ▶ We gave a partial result on the optimality of $c\mu$-based scheduling.

Research Directions:

1. Heuristics with performance guarantees
2. State-dependent deterioration
3. Non-exponential interarrival times and service times