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Semimartingale reflecting Brownian motion (SRBM)

Z (t) = X (t) + RY (t) for all t ≥ 0,

X is a (µ,Σ) Brownian motion,

Z (t) ∈ Rn
+ for all t ≥ 0,

Y (·) is continuous and nondecreasing with Y (0) = 0,

Yi (·) only increases when Zi (·) = 0, i = 1, . . . , n.

6 

Definition  An  n  n  matrix  R  is said to be an !-matrix if  Rv > 0  for some v  0.  It is 
said to be completely-! if each principal sub-matrix is an !-matrix. 
 
Notation  Let S (mnemonic for state space) denote the n-dimensional non-negative orthant. 
 
 
Let  R  be an  n  n  completely-! matrix,    an  n  n  covariance matrix, and   an n-
dimensional drift vector.  Taylor and Williams (1993) proved the following: there exists a 
diffusion process Z that satisfies the following five conditions, and it is unique in 
distribution. 
 
 
(1) Z(t) = X(t) + RY(t)  for all  t  0 
 
(2) X  is ( , ) Brownian motion 
 
(3) Z(t)  S  for all  t  0 
 
(4) Y( ) is continuous and    with Y(0) = 0 
 
(5) Yi( ) only  increases  when  Zi( ) = 0  (i = 1, …, n) 

 
Z2

Z1

R1

R2

Z2

Z1

R1

R2

We focus on n = 2.

R is assumed to be completely-S

R = (R1,R2) =

(
r11 r12

r21 r22

)
.

Z exists and is unique in
distribution; (Taylor-Williams 92)
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A queueing network
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A Simple Queueing Network 
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Its Approximating SRBM
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Its Approximating SRBM 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Z1(t) =  X1(t)              +  Y2(t) 
 
Z2(t) =  X2(t) + Y1(t) – Y2(t) 
 
 
drift of  X  is    = ( -1, 0) 
 
covariance of  X  is   = 

a20
0   

Z2

Z1

Z2

Z1

Z1(t) = X1(t) + Y1(t),

Z2(t) = X2(t)− Y1(t) + Y2(t)

drift of X is µ = (ρ− 1, 0),

covariance of X is Σ =

(
ρ 0

0 a2

)

R. J. Williams (95), Semimartingale reflecting Brownian motions in the
orthant, in Stochastic Networks, eds. F. P. Kelly and R. J. Williams, the IMA
Volumes in Mathematics and its Applications, Vol. 71 (Springer, New York)

R. J. Williams (96), On the approximation of queueing networks in heavy
traffic, in Stochastic Networks: Theory and Applications, eds. F. P. Kelly, S.
Zachary and I. Ziedens, Royal Statistical Society (Oxford Univ. Press,
Oxford)
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Stationary distribution of an SRBM

Proposition (Hobson-Rogers 94, Harrison-Hasenbein
09)

Assume that

r11 > 0, r22 > 0, r11r22 − r12r21 > 0, (1)

r22µ1 − r12µ2 < 0, and r11µ2 − r21µ1 < 0. (2)

Then SRBM Z has a unique stationary distribution π.

Condition (1): R is a P-matrix.
Condition (2): R−1µ < 0.
Basic adjoint relationship: for each f ∈ C 2

b (R2
+)∫

R2
+

(1

2
〈∇,Σ∇f 〉+ 〈µ,∇f 〉

)
π(dx) +

2∑
i=1

∫
R2

+

〈R i ,∇f 〉νi (dx) = 0,

νi (A) = Eπ
[∫ 1

0 1{Z(u)∈A} dY1(u)
]

defines the ith boundary measure.
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Tail asymptotics of the stationary distribution

Let Z (∞) = (Z1(∞),Z2(∞)) be the random vector that has the
stationary distribution π.

For any c ∈ R2
+, set

〈c ,Z (∞)〉 = c1Z1(∞) + c2Z2(∞).

We are interested in finding a function fc(x) that satisfies

lim
x→∞

P{〈c ,Z (∞)〉 > x}
fc(x)

= b

for some constant b > 0.

The function bfc(x) is said to be the exact asymptotic of
P{〈c ,Z (∞)〉 > x}.
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An overview

Main Result

For an SRBM satisfying (1) and (2), the exact asymptotic is given by

fc(x) = xκc e−αcx .

The decay rate αc and the constant κc can be computed explicitly
from the primitive date (µ,Σ,R).

The constant κc must take one of the values −3/2, −1/2, 0 or 1.

Let pc(x) be the density of 〈c ,Z (∞)〉. In most cases, we have

lim
x→∞

pc(x)

fc(x)
= b for some b > 0.
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A diversion: Laplace transform

Let f : R+ → R+ be a continuous and integrable function. Define

f̃ (z) =

∫ ∞
0

ezx f (x)dx , <z < αf ,

where αf = sup{θ ≥ 0 : f̃ (θ) <∞}. f̃ is analytic in <z < αf .

When f is a Gamma(k , α) density, namely,

f (x) =
c

Γ(k)
xk−1e−αx ,

then αf = α and

f̃ (z) =
c

(α− z)k
≡ g(z) for <z < α.

Complex function g is an “analytic” extension of f̃ .

Jim Dai (Georgia Tech) Exact asymptotics July 8, 2011 8 / 31



A diversion: complex inversion

Proposition (When k is a positive integer)

Suppose that the analytic extension g of f̃ satisfies that

g(z)− c0

(α0 − z)k

is analytic for <z < α1 for some α1 > α0. Then, under some mild
conditions on g,

f (x) ∼ c0

Γ(k)
xk−1e−α0x as x →∞. (3)

When α0 is the kth order pole of g(z), then (3) holds.
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Convergence domain

Define
ϕ(θ1, θ2) = E

[
e〈θ,Z(∞)〉

]
.

Then the transform of 〈c ,Z (∞)〉 has the following expression

ψc(z) = E
(
ez〈c,Z(∞)〉) = ϕ(zc).

Define the convergence domain of ϕ

D = interior of {θ ∈ R2 : ϕ(θ) <∞}.

When θ ∈ D, BAR gives the key relationship

γ(θ)ϕ(θ) = γ1(θ)ϕ1(θ2) + γ2(θ)ϕ2(θ1). (4)
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Geometric objects: Γ, Γ1 and Γ2

γ(θ) = −〈θ, µ〉 − 1

2
〈θ,Σθ〉,

γ1(θ) = r11θ1 + r21θ2 = 〈R1, θ〉,
γ2(θ) = r12θ1 + r22θ2 = 〈R2, θ〉,

0
θ1

θ2 γ1(θ) = 0

γ2(θ) = 0

γ(θ) = 0

(µ1, µ2) θ(1,r)

θ(2,r)

Γ1

Γ2
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Theorem 1: Convergence domain characterization
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Convergence domain: Category I

0
θ1

θ2

γ1(θ) = 0

γ2(θ) = 0

θ(1,max)

θ(1,Γ) = θ(1,r)

θ(2,Γ) = θ(2,max)

θ(2,Γ) the highest point in Γ2; θ(1,Γ) the right-most point in Γ1

Category I:

θ
(2,Γ)
1 < θ

(1,Γ)
1 and θ

(1,Γ)
2 < θ

(2,Γ)
2 ,
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Convergence domain: Category II

0

θ2

θ1

γ1(θ) = 0

γ2(θ) = 0θ(2,max)

θ(1,Γ)=θ(1,max)

θ(2,Γ) = θ(2,r)

θ(1,r)

Category II: θ(2,Γ) ≤ θ(1,Γ),

Category III: θ(1,Γ) ≤ θ(2,Γ).
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Key steps in proving Theorem 1

ϕ(θ) <∞ implies ϕ1(θ2) <∞ and ϕ2(θ1) <∞.

θ ∈ Γ1 and ϕ1(θ2) <∞ imply ϕ(θ) <∞.

θ ∈ Γ, ϕ1(θ2) <∞ and ϕ2(θ1) <∞ imply ϕ(θ) <∞.

∂Γ

θ1

θ2 γ1(θ) = 0

γ2(θ) = 0

Γ1

Γ2

γ(θ) = 0

θ(2,max)

θ(1,max)

(τ1, τ2)

τ1

τ2
θ(2,c)=θ(2,r)

θ(1,c)=θ(1,r)

1st point

2nd

3rd

4th
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An illustration for proving Theorems 2 and 3

Key relationship (4) gives

γ(zc)ψc(z) = γ1(zc)ϕ1(c2z) + γ2(zc)ϕ2(c1z) for <z < αc .

Letting γ(zc) = zζc(z), we have

ψc(z) =
γ1(c)ϕ1(c2z) + γ2(c)ϕ2(c1z)

ζc(z)
for <z < αc .

0
θ1

θ2 γ1(θ) = 0

γ2(θ) = 0

c

αcc

θ(2,max)

θ(1,max)

θ(2,Γ)=θ(2,r)

θ(1,Γ)=θ(1,r)

τ2

τ1

η(2)

η(1)

ϕ2(z) is analytic on <z < τ1.

ϕ1(z) is analytic on <z < τ2.

αcc ∈ ∂Γ.

αc < min(τ1/c1, τ2/c2).

ψc(z) has a single pole at z = αc .

fc(x) = e−αcx .
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Singularity properties of ϕ2(z) at z = τ1

In Category I when τ1 < θ
(1,max)
1 , single pole

In Category I when τ1 = θ
(1,max)
1

When θ(1,max) 6= θ(1,r), 1/2 “analytic” or −1/2 “pole”
When θ(1,max) = θ(1,r), 1/2 “pole”

In Category II when τ1 < θ
(1,max)
1 ,

When θ(1,max) 6= θ(1,r), single pole
When θ(1,max) = θ(1,r), double pole

In Category II when τ1 = θ
(1,max)
1

When θ(1,max) 6= θ(1,r), 1/2“pole”
When θ(1,max) = θ(1,r), 1 “pole”
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Theorem 2: exact asymptotics for Category I
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Category I: 0 ≤ β1 < β < β2

0
θ1

θ2 γ1(θ) = 0

γ2(θ) = 0

c

αcc

θ(2,max)

θ(1,max)

θ(2,Γ)=θ(2,r)

θ(1,Γ)=θ(1,r)

τ2

τ1

η(2)

η(1)

0
θ1

θ2 γ1(θ) = 0

γ2(θ) = 0

c

αcc

θ(2,max)

θ(1,max) =θ(1,r)

τ1

τ2

= η(1)

η(2)

ψc(z) =
γ1(c)ϕ1(c2z) + γ2(c)ϕ2(c1z)

ζc(z)
for <z < αc .

ϕ2(z) is analytic for <z < τ1 ϕ1(z) is analytic for <z < τ2

fc(x) = e−αcx
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Category I: 0 ≤ β < β1, τ1 < θ
(1,max)
1

0
θ1

θ2 γ1(θ) = 0

γ2(θ) = 0

c
αcc

θ(2,max)

θ(1,max)

θ(2,Γ)=θ(2,r)

θ(1,Γ)=θ(1,r)

τ2

τ1

η(2)

η(1)
single pole at τ1 for ϕ2(z)

αcc 6∈ ∂Γ

fc(x) = e−αcx .

ψc(z) =
γ1(c)ϕ1(c2z) + γ2(c)ϕ2(c1z)

ζc(z)
for <z < αc .
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Category I: 0 ≤ β < β1, τ1 = θ
(1,max)
1

0
θ1

θ2
γ1(θ) = 0

γ2(θ) = 0

c
αcc

θ(2,max)

τ2

τ1

θ(2,Γ) = θ(2,r)

θ(1,r)

θ(1,Γ) = θ(1,max)

η(2)

= η(1)

0
θ1

θ2 γ1(θ) = 0

γ2(θ) = 0

c
αcc

θ(2,max)

θ(1,max) =θ(1,r)

τ1

τ2

= η(1)

η(2)

“−1/2” pole at τ1 for ϕ2(z) “1/2” pole at τ1 for ϕ2(z)

fc(x) =

{
x−3/2e−αcx if η(1) = θ(1,max) 6= θ(1,r),

x−1/2e−αcx if η(1) = θ(1,max) = θ(1,r).
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Category I: 0 ≤ β = β1 < β2, τ1 < θ
(1,max)
1

0
θ1

θ2 γ1(θ) = 0

γ2(θ) = 0

c

θ(2,max)

θ(1,max)

θ(2,Γ)=θ(2,r)

θ(1,Γ)=θ(1,r)

τ2

τ1

η(2)

η(1) = αcc

ψc(z) =
γ1(c)ϕ1(c2z) + γ2(c)ϕ2(c1z)

ζc(z)
for <z < αc .

fc(x) = xe−αcx
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Category I: 0 ≤ β = β1 < β2, τ1 = θ
(1,max)
1

0
θ1

θ2
γ1(θ) = 0

γ2(θ) = 0

αcc

θ(2,max)

τ2

τ1

θ(2,Γ) = θ(2,r)

θ(1,r)

θ(1,Γ) = θ(1,max)

η(2)

= η(1)

0
θ1

θ2 γ1(θ) = 0

γ2(θ) = 0
αcc

θ(2,max)

θ(1,max) =θ(1,r)

τ1

τ2

= η(1)

η(2)

“−1/2” pole at τ1 for ϕ2(z) “1/2” pole at τ1 for ϕ2(z)

fc(x) =

{
x−1/2e−αcx if η(1) = θ(1,max) 6= θ(1,r),

e−αcx if η(1) = θ(1,max) = θ(1,r).
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Category I: 0 ≤ β = β1 = β2

0
θ1

θ2

γ1(θ) = 0

γ2(θ) = 0
θ(1,r)

θ(1,max)

τ1

τ2θ(2,r)

θ(2,max)

f1(τ2)

f2(τ1)

τ

c

ψc(z) =
γ1(c)ϕ1(c2z) + γ2(c)ϕ2(c1z)

ζc(z)
for <z < αc .

fc(x) =

{
xe−αcx if η(1) = η(2) = τ ∈ ∂Γ,

e−αcx if η(1) = η(2) = τ ∈ interior of Γ.
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Theorem 3: exact asymptotics for Category II
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Category II: 0 ≤ β < β1: τ1 < θ
(1,max)
1

0

θ2

θ1

γ1(θ) = 0

γ2(θ) = 0θ(2,max)

θ(1,r)

θ(1,Γ)=θ(1,max)

c

τ2

τ1

θ(2,Γ)=θ(2,r)
τ = η(1) = η(2)

αcc

0

θ2

θ1

γ1(θ) = 0
γ2(θ) = 0

θ(2,max)

θ(1,max)

c

τ1

τ2
θ(2,Γ) = θ(2,r)

= θ(1,r)

τ = η(1) = η(2)

αcc

single pole at τ1 for ϕ2(z) double pole at τ1 for ϕ2(z)

fc(x) =

{
e−αcx if τ 6= θ(1,r)

xe−αcx if τ = θ(1,r)
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Category II: 0 ≤ β < β1: τ1 = θ
(1,max)
1

0

θ2

θ1

γ1(θ) = 0
γ2(θ) = 0

θ(2,max)

θ(2,Γ)=θ(2,r)

θ(1,r)

c

τ2

τ1

θ(1,Γ) = θ(1,max)

= τ = η(1) = η(2)

αcc

0

θ2

θ1

γ1(θ) = 0

γ2(θ) = 0

θ(2,max)

c

θ(2,Γ)=θ(2,r)
τ2

τ1

θ(1,Γ) = θ(1,max)= θ(1,r)

= τ = η(1) = η(2)

αcc

“1/2” pole at τ1 for ϕ2(z) “1” pole at τ1 for ϕ2(z)

fc(x) =

{
x−1/2e−αcx , if τ 6= θ(1,r),

e−αcx , if τ = θ(1,r).
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Category II: 0 ≤ β = β1, τ1 < θ
(1,max)
1

0

θ2

θ1

γ1(θ) = 0

γ2(θ) = 0θ(2,max)

θ(1,r)

θ(1,Γ)=θ(1,max)

τ2

τ1

θ(2,Γ)=θ(2,r)
τ = η(1) = η(2)

αcc

0

θ2

θ1

γ1(θ) = 0
γ2(θ) = 0

θ(2,max)

θ(1,max)

τ1

τ2
θ(2,Γ) = θ(2,r)

= θ(1,r)

τ = η(1) = η(2)
αcc

single pole at τ1 for ϕ2(z) double pole at τ1 for ϕ2(z)

fc(x) = xe−αcx .
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Category II: 0 ≤ β = β1, τ1 = θ
(1,max)
1

0

θ2

θ1

γ1(θ) = 0
γ2(θ) = 0

θ(2,max)

θ(2,Γ)=θ(2,r)

θ(1,r)

τ2

τ1

θ(1,Γ) = θ(1,max)

= τ = η(1) = η(2)
αcc

0

θ2

θ1

γ1(θ) = 0

γ2(θ) = 0

θ(2,max)

θ(2,Γ)=θ(2,r)
τ2

τ1

θ(1,Γ) = θ(1,max)= θ(1,r)

= τ = η(1) = η(2)
αcc

“1/2” pole at τ1 for ϕ2(z) “1” pole at τ1 for ϕ2(z)

fc(x) = xe−αcx .
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Category II: β1 < β ≤ π/2

0

θ2

θ1

γ1(θ) = 0
γ2(θ) = 0

θ(2,max)

θ(1,max)

c

τ1

τ2
θ(2,Γ) = θ(2,r)

= θ(1,r)

τ = η(1) = η(2)
αcc

0

θ2

θ1

γ1(θ) = 0
γ2(θ) = 0

θ(2,max)

θ(2,Γ)=θ(2,r)

θ(1,r)

c

τ2

τ1

θ(1,Γ) = θ(1,max)

= τ = η(1) = η(2)

αcc

fc(x) = e−αcx .

Jim Dai (Georgia Tech) Exact asymptotics July 8, 2011 30 / 31



References

J. G. Dai and M. Miyazawa (2011), Semimartinagle Reflecting
Brownian motion in two dimensions: Exact asymptotics for the
stationary distribution, Stochastic Systems, to appear.

M. Miyazawa and M. Kobayashi, M. (2011). Conjectures on tail
asymptotics of the stationary distribution for a multidimensional
SRBM. Queueing Systems, to appear.

Jim Dai (Georgia Tech) Exact asymptotics July 8, 2011 31 / 31


