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Part I

Stochastic Processing Network Models
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A Stochastic Processing Network Model

Basic elements:

I + 1 buffers

K processors

J activities

Indexes:

i ∈ I ∪ {0}
input and service processors k ∈ K
input and service activities j ∈ J

Material consumption:

µj : service rate for activity j ;

Bij = 1 if activity j processes jobs in in buffer i and Bij = 0 otherwise;

P j
ii ′ is a fraction of buffer i jobs served by activity j that go next to

buffer i ′;
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Resource Allocation

Akj = 1 if activity j requires processor k and 0 otherwise; multiple
processors may be needed to activate an activity.

Allocation space A is the set of allocations a ∈ RJ
+ satisfying∑

j

Akjaj ≤ 1 for each service processor,

∑
j

Akjaj = 1 for each input processor;

aj the level at which activity j is undertaken;

more constraints on a can be added.
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Multiclass Queueing Networks: A Re-Entrant Line
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one input processor, one input activity; the input processor never idles.

three service processors
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Skill-Based Routing

3 421

1 2 3

h1 h2 h3 h4

µ2µ1 µ5
µ8µ4µ3 µ6

µ7

four input processors, each processing one input activity

three service processors
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Queueing Networks with Alternate Routes

2 32

4

1

3

1

Laws and Louth (1990)

Kelly and Laws (1993)

Dai, Hasenbein and Kim
(2007)

two input processors; the left one processes two input activities and
the right one processes one input activity.
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Input Queued Data Switches
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In each time slot, at most one packet is sent from each input port

In each time slot, at most one packet is sent to each output port

Multiple packets can be transferred in a single time slot

A high speed switch needs to maintain thousands of flows
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Operational policies

λ1 λ2 λ3

µ1 µ2
µ1

µ2 µ2

1 2

A = {a ∈ RJ
+ : Aa ≤ e}

E = {a1, ..., au} – set extreme points of A.

A(t) – set of feasible allocations at time t.

E(t) = A(t) ∩ E – set of feasible, extreme allocations at time t.

e.g. a1 = (1, 1, 1, 0, 0, 0, 0, 0), a2 = (1, 1, 1, 1, 0, 1, 0, 0)
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Performance Measures

First order ones:

Throughput: rate at which entities leave a system

Utilization

Second order ones:

Cycle time: processing times plus waiting time of an entity;
average and variance of cycle time

Long-run average cost

Operational policies can have a dramatic impact on key performance
measures.
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Part II

An example arising from wafer fabrication lines
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Flow in a Wafer Fab
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The Kumar-Seidman, Rybko-Stolyar Network

λ1 = 1

λ2 = 1

m1 = 0.1 m2 = 0.7

m3 = 0.1

A B

m4 = 0.7

Traffic intensity:

ρ1 = λ1m1 + λ2m4 = 0.8 and ρ2 = λ1m2 + λ2m3 = 0.8.

Pull policy – give priority to products closer to completion
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WIP Levels at Two Stations
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Utilization and Cycle Time

λ1 = 1

λ2 = 1

m1 = 0.1 m2 = 0.7

m3 = 0.1

A B

m4 = 0.7

# departed 100 1, 000 10, 000 100, 000

Average cycle time 13.68 99.87 927.96 7277.62
Utilization A 0.65 0.48 0.46 0.71
Utilization B 0.49 0.67 0.73 0.44
Overall Utilization 0.57 0.58 0.60 0.58

the throughput is about 0.7.
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Maximum throughput

λ1 = 1

λ2 = 1

m1 = 0.1 m2 = 0.7

m3 = 0.1

A B

m4 = 0.7

Under the pull policy, the system is “stable” if and only if

ρ1 = λ1m1 + λ2m4) ≤ 1, ⇒ λ∗1 = λ∗2 =
1

.8
= 1.25,

ρ2 = λ1m2 + λ2m3 ≤ 1,

ρv = λ1m2 + λ2m4 ≤ 1. ⇒ λ∗1 = λ∗2 =
1

1.4
= 0.714

Dai and Vande Vate, Operations Research, 721–744, 2000.

Jim Dai (Georgia Tech) MPPs May 20, 2011 17 / 55



Inefficient Policies

First-in-first-out (FIFO) (Bramson 1994, Seidman 1994)

Static buffer priority (Lu-Kumar 1992)

Shortest processing time first

Shortest remaining processing time first

Exhaustive service (Kumar-Seidman 1990)

. . .

Symptoms:

WIP is high, and

bottleneck machines are underutilized
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Part III

Maximum pressure policies

Jim Dai (Georgia Tech) MPPs May 20, 2011 19 / 55



Maximum Pressure Policies

Fix an α = (αi ) ∈ RI
+ with αi > 0.

Pressure at time t for activity j ,

pj(t) = µj

 ∑
i∈I∪{0}

Bij

(
αiZi (t)−

∑
i ′

P j
ii ′αi ′Zi ′(t)

) ,

where Zi (t) is the number of jobs in buffer i at time t.

At any time t, choose an allocation a

a ∈ argmax
a∈E(t)

∑
j

ajpj(t).

Tassiulas (1995): Adaptive back-pressure congestion control based on
local information.

Jim Dai (Georgia Tech) MPPs May 20, 2011 20 / 55



Maximum Pressure Policies for Multiclass Queueing Networks
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Server k chooses to work on a buffer that has the highest pressure.

The pressure at buffer i is

pi (t) = µi

(
Zi (t)− Zi+1(t)

)
.

If all pi (t) ≤ 0, idle the server.

Generalization: change Zi (t) to αiZi (t)
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Maximum Pressure Policies: Parallel Server Systems

3 421

1 2 3

µ2µ1 µ5
µ8µ4µ3 µ6 µ7

For example, processor 1 chooses to work on buffer i that attains

max{µ1Z1(t), µ2Z2(t), µ4Z3(t)}.

Mandelbaum-Stolyar (04): generalized cµ-rule; van Mieghem (95)

Stolyar (04): MaxWeight policies
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Maximum Pressure Policies: Alternate Routing

Server 2

Server 1

General Distribution Exponential

Exponential 

Poisson(.1)

Poisson(.17)

Poisson(.8)

Poisson(.8)
Server 3

An MPP translates into: Join-the-shortest-queue and server 1 idles
when Z3(t) > Z1(t).

MPPs can be idling policies.
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Non-Idling Server 1
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Features of Maximum Pressure Policies

They are simple.

They are semi-local.

They are throughput optimal.

They are asymptotically optimal in workload and certain holding cost
structure.
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Part IV

Throughput optimality
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Stability

Recall that Zi (t) is the buffer level at time t in buffer i .

Rate stability

With probability one,

lim
t→∞

Zi (t)/t = 0, for each buffer i

which is equivalent to that departure rate is equal to arrival rate.

Positive Harris recurrence
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Traffic Intensity

λ1 = 1

λ2 = 1

m1 = 0.1 m2 = 0.7

m3 = 0.1

A B

m4 = 0.7

Define ρ = max(ρ1, ρ2), where

ρ1 = λ1m1 + λ2m4) ≤ 1,

ρ2 = λ1m2 + λ2m3 ≤ 1.
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Static Planing Problem

The static planning problem (Harrison 00):

minimize ρ

subject to Rx = 0∑
j

Akjxj = 1 for each input processor k

∑
j

Akjxj ≤ ρ for each service processor k

x ≥ 0

- Rij = µj(Bij −
∑

i ′ Bi ′jP
j
i ′i )

- A: capacity consumption matrix

- xj : fraction of time for activity j ;

- ρ: utilization of bottleneck servers.
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Stability Result

Theorem (Dai-Lin 05)

If the stochastic processing network operating under any operational policy
is rate stable, the static planning LP has a feasible solution with ρ ≤ 1.

Theorem (Dai-Lin 05)

Conversely, suppose that Assumption 1 in the appendix is satisfied. If the
static planning LP has a feasible solution with ρ ≤ 1, the stochastic
processing network operating under a maximum pressure policy is rate
stable.
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Proof: Fluid Model Approach

Theorem (Dai-Lin 05)

A stochastic processing network is rate stable if the corresponding
continuous, deterministic fluid model is weakly stable.

Theorem (Dai 95)

A multiclass queueing network is positive Harris recurrent if the
corresponding continuous, deterministic fluid model is stable.
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Fluid Model Equations

0.6

0.6

0.1

0.1
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release rate 1

b_1 b_2

b_3 b_4

b_5

Station A Station B

Let Tk(t) be the cumulative time that class k jobs have received in [0, t].

Z1(t) = Z1(0) + λt − µ1T1(t),

Zk(t) = Zk(0) + µk−1Tk−1(t)− µkTk(t),

Tk(0) = 0 and Tk(·) is nondecreasing,

(T1(t) + T3(t) + T5(t))− (T1(s) + T3(s) + T5(s)) ≤ (t − s)

(T2(t) + T4(t))− (T2(s) + T4(s)) ≤ (t − s)
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Fluid Model under MPP

5∑
i=1

˙̄Ti (t)pi (t) = max
{∑

i

aipi (t) : a1 + a3 + a5 ≤ 1, a2 + a4 ≤ 1.
}
, (1)

where , the buffer i pressure pi (t) = µi (Z̄i (t)− Z̄i+1(t)).

The drift of the quadratic function f (t) =
∑

i Z̄ 2
i (t)/2 is given by

ḟ (t) = λZ1(t)−
∑

i
˙̄Ti (t)pi (t).

Under a maximum pressure policy, ḟ (t) is minimized among all
policies.
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Weak Stability of Fluid Model

Definition (Weak Stability)

A fluid model is said to be weakly stable if for every fluid model solution
with Z̄ (0) = 0, Z̄ (t) = 0 for t ≥ 0.

Consider the quadratic function f (t) =
∑

i Z̄ 2
i (t)/2.

Under a maximum pressure policy, ḟ (t) ≤ 0. Therefore, Z̄ (t) = 0 for
all t if Z̄ (0) = 0; the fluid model is weakly stable.
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Fluid Limits

Fluid model equations are justified through a fluid limit procedure.

A function (Z̄ , T̄ ) is said to be a fluid limit if

1

rn
(Z (rnt, ω),T (rnt, ω))→ (Z̄ (t), T̄ (t))

as rn →∞ for some sample path ω
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Part V

Asymptotic optimality under complete resource pooling (CRP) or single
bottleneck assumption
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Quadratic Holding Cost

Each buffer i , the holding cost rate is hi

(
Zi (t)

)2
.

The network cost rate is

h(Z (t)) =
∑
i

hi

(
Zi (t)

)2
.

Under a policy π, the expected total discounted holding cost

Jπ ≡ E
(∫ ∞

0
e−γth

(
Zπ(t)

)
dt

)
.
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Asymptotic Optimality on Quadratic Holding Cost

Consider a sequence of networks indexed by r in heavy traffic,

lim
r→∞

R r = R. (2)

Diffusion Scaling: Ẑ r (t) = Z r (rt)/
√

r and

Ĵ r
π ≡ E

(∫ ∞
0

e−γth(Ẑ r (t))dt

)
.

Theorem (Dai-Lin 08)

For a sequence of networks that satisfies a heavy traffic condition and a
complete resource pooling condition, the maximum pressure policy with
α = h is asymptotically optimal to minimize the quadratic holding cost,
i.e.,

lim
r→∞

Ĵ r
MPP ≤ lim inf

r→∞
Ĵ r
π for any policy π.
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Part V

An Appendix

Assumption 1.

The heavy traffic assumption

The complete resource pooling assumption

State space collapse and semimartingale reflecting Brownian motions
(SRBMs) as diffusion limits

Extension of maximum pressure policies
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Assumption 1

Assumption

For any vector z ∈ RI
+, there exists an a ∈ arg maxa∈E

∑
i v(a, i)zi such

that v(a, i) = 0 if zi = 0, where v(a, i) =
∑

j ajRij is the consumption rate
of buffer i under allocation a.

The assumption holds when each activity is associated with one buffer (in
Leontief networks).
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The Heavy Traffic Assumption

Consider a sequence of stochastic processing networks that satisfies
assumption (2). The static planning problem (Harrison 00):

minimize ρ

subject to Rx = 0∑
j

Akjxj = 1 for each input processor k

∑
j

Akjxj ≤ ρ for each service processor k

x ≥ 0

- xj : fraction of time for activity j is employed;

- ρ: utilization of bottleneck servers.

Assumption

The optimal solution (ρ∗, x∗) is unique and ρ∗ = 1.
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The Complete Resource Pooling (CRP) Assumption

The dual LP:

minimize
∑
k∈KI

zk

subject to
∑
i∈I

yiRij ≤ −
∑
k∈KI

zkAkj for each input activity j

∑
i∈I

yiRij ≤
∑
k∈KS

zkAkj for each service activity j

∑
k∈KS

zk = 1,

zk ≥ 0

Assumption

The dual LP has a nonnegative, unique optimal solution (y∗, z∗).
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An Example of CRP: Multiclass queueing networks

21 1 2

3

λ = 2
µ1 = 3 µ2 = 4

µ3 = 6

Unique solution (ρ∗, x∗)

x∗j = λmj , j = 1, 2, 3

ρ1 = x∗1 + x∗3 ,
ρ2 = x∗2
ρ∗ = max(ρ1, ρ2).

Heavy traffic assumption: ρ∗ = 1

Complete resource pooling condition: either ρ∗1 = 1 and ρ∗2 < 1 or
ρ∗1 < 1 and ρ∗2 = 1.

In the former case, y∗ = (m1 + m3,m3,m3); in the latter case,
y∗ = (m2,m2, 0).

Ata-Kumar (05) does not cover this class of networks
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An Example of CRP: Parallel server queues

λ1 λ2 λ3

µ1 µ2
µ1

µ2 µ2

1 2

Assume ρ∗ = 1 and x∗ is unique.

Complete resource pooling: all servers communicate through basic
activities.

Harrison-Lopez (99), and Bell-Williams (05)
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An Example of multiple LP Solutions
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50 50
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50 50
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1

ρ∗ = 1, but x∗ is not unique
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Asymptotic Optimality on Workload Process

Assume the complete resource pooling condition and (y , z) is the
unique solution to the dual LP.

Let W (t) = y · Z (t) and Ŵ r (t) = W (rt)/
√

r = y · Ẑ r (t).

Theorem (Workload Optimality (Dai-Lin 08))

For a sequence of networks that satisfies the heavy traffic condition and
the complete resource pooling condition, any the maximum pressure policy
is asymptotically optimal for workload in that for each t ≥ 0 and w > 0,

P
(

lim
r→∞

Ŵ r
MPP(t) > w

)
≤ P

(
lim inf
r→∞

Ŵ r
π(t) > w

)
.
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Proof: A Lower Bound on Workload Process

We can write Ŵ r (t) as

Ŵ r (t) = X̂ r (t) + Ŷ r (t),

where Ŷ r (t) ≥ 0 and nondecreasing. This implies

Ŵ r (t) ≥ Ŵ ∗,r (t) ≡ X̂ r (t)− inf
0≤s≤t

X̂ r (s).

Letting Ŵ ∗(t) ≡ X̂ ∗(t)− inf0≤s≤t X̂ ∗(s),

P
(

lim inf
r→∞

Ŵ r (t) > w
)
≥ P

(
Ŵ ∗(t) > w

)
.
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Proof: A Heavy Traffic Limit Theorem

Theorem

For a sequence of networks that satisfies the heavy traffic condition and a
complete resource pooling condition, under the maximum pressure policy
with α = e,

(Ŵ r , Ẑ r )⇒ (Ŵ ∗, Ẑ ∗),

where Ẑ ∗ = yŴ ∗/‖y‖2.

A key to the proof of this theorem is to show a state space collapse
result:

sup
0≤t≤T

∣∣∣Ẑ r (t)− yŴ r (t

‖y‖2
∣∣∣→ 0 in probability as r →∞.

Use framework of Bramson (98)

Unlike Chen and Mandelbaum (90), non-bottleneck stations do not
disappear.
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Asymptotic Optimality Proof (for h = e)

Consider the optimization problem

min
3∑

i=1

q2
i

s.t. y · q = w

q ≥ 0.

The optimal solution is given by q∗ = yw/‖y‖2.

For any given w , it is optimal to distribute the workload to the buffers
in proportion to y .

MPP not only minimizes the workload process W (t), but also
distributes it in the optimal way.
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Extension: Linear holding cost

Dai-Lin (08): for each ε > 0, one can find an MPP policy with
parameter α that is asymptotically ε-optimal; choice of α is data
heavy.

Ata and Kumar (05) uses Harrison’s BIGSTEP method; rules out
multiclass networks

Bell and Williams (05) parallel-server queues; Ghamami and Ward
(09)

Lin (09): β-Maximum Pressure Policies in Stochastic Processing
Networks: Heavy Traffic Analysis. Fix a β > 0 and (αi ) > 0

pi (t) = µi

(
αi (Zi (t))β − αi+1(Zi+1(t))β

)
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Extension: More than one bottleneck

Let {(y `, z`) : ` = 1, . . . , L} denote the set of basic optimal solutions
to the dual LP.

Let Ŵ r
` (t) = y ` · Ẑ r (t).

Theorem (Ata-Lin 08)

Consider a sequence of networks that satisfies the heavy traffic condition.
Assume that y ` ≥ 0 for each ` and y1, ..., yL are linearly independent.
Under a maximum pressure policy with parameter α,

(Ŵ r , Ẑ r )⇒ (Ŵ ∗, Ẑ ∗),

where Ŵ is an L-dimensional SRBM, and Ẑ ∗ = ∆Ŵ ∗.
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Other extensions

Rajagopalan, Shah and Shin (09): random-access algorithm to
approximate a maximum pressure policy for single-hop networks

Shah and Wischik (09): optimal scheduling algorithms for switched
networks under light load, critical load, and overload; performance of
MaxWeight policies in overloaded fluid networks.
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