Inpatient Flow Management in a Singaporean Hospital

Jim Dai, Pengyi Shi

Georgia Institute of Technology, USA

Ding Ding University of International Business & Economics, China

> James Ang, Mabel Chou NUS Business School, Singapore

Xin Jin, Joe Sim National University Hospital, Singapore

Overview

• Empirical study

- Inpatient flow management
- Performance comparison after an *early discharge* policy
 - Waiting time for admission to ward
 - Stabilize hourly waiting time performance
- A stochastic network model
 - Allocation delays
 - Overflow policy
 - Endogenous service times
- What-if analysis
 - Factors help to stabilize waiting time

Capacity and source of admission

• Patients from 4 admission sources competing for inpatient beds

Patient distribution

Key performance measures

- Waiting time for admission to ward (Jan 08 Jun 09)
 - Waiting time = admission time bed request time
 - Average: 2.82 hour
 - 6.52% of ED-GW patients wait more than 6 hours to get a bed
 - "x-hour service level": Fraction of ED-GW patients waiting more than x hours
 - Ministry of Health (MOH) monitors 10-hour service level (0.80%)
 - Hospital managers also care about the 6-hour service level

Time dependency

- Waiting time depends on patient's bed request time
 - Jan 08 Jun 09
 - Can we *stabilize*?

Literature review

- Zohar Feldman, Avishai Mandelbaum, William A. Massey and Ward Whitt, *Management Sciences*, 2008.
 - Staffing of Time-Varying Queues to Achieve Time-Stable Performance
- E. S. Powell, R. K. Khare, A. K. Venkatesh, B. D. Van Roo, J. G. Adams, and G. Reinhardt, *The Journal of Emergency Medicine*, 2012
 - The relationship between inpatient discharge timing and emergency department boarding
 - Affiliations: Department of Emergency Medicine, Northwestern University; Harvard Affiliated Emergency Medicine Residency, Brigham and Women's Hospital–Massachusetts General Hospital, ...

Bed request rate and arrivals to ED

• ED-GW patient's bed request rate (**green** curve) depends on arrival rate to ED (**blue** curve)

Mismatch between demand and supply of beds

• Jan 08 – Jun 09

Early discharge policy

- Moving the discharge time a few hours earlier in the day
 - Safe: limited effect in increasing patient's risk
 - Costly to implement
- Recommended by many studies, policy guidelines:
 - National Health Service (NHS, UK): "planning for a reasonable proportion of patients to leave the ward before 11 am helps to manage the total loading on beds"
 - Intuition: moving the discharge time earlier (by even 1 or 2 hours) can improve operations and patient flow.

NHS. <u>http://www.institute.nhs.uk/quality_and_service_improvement_tools/quality_and_service_improvement_tools/discharge_planning.html</u>
 Achieving timely simple discharge from hospital. NHS. 2004.

[3] Discharge Planning Handbook for Healthcare: Top 10 Secrets to Unlocking a New Revenue Pipeline. 2008. Productivity Press.[4] Discharge by Appointment: Freeing Up In-Patient Bed Capacity.

Data

• The hospital implemented early discharge policy since July 2009

- Key performance measures in the two periods
 - Waiting time statistics (quality)
 - Overflow rate (cost)

Empirical Analysis on the two periods

• Waiting time performance

• Overflow rate

- Period 1: **26.9%**
- Period 2: **25.0%**

• BOR

Waiting time for ED-GW patients

	1 st period	2 nd period
Average waiting time	2.82 h	2.77 h
6-hour service level	6.52%	5.13%

Challenges

- Does the modest improvement come from the early discharge?
- More importantly, is any operational policy that can stabilize the waiting time?

Unstable Environment

- Both arrival volume and capacity increases during 2008 to 2010
- Bed occupancy rate (BOR) reduces in the Period 2
 - Period 1: **90.3%**
 - Period 2: 87.6%

• Need a model to help evaluate the effect of early discharge

A stochastic model

- Multi-class, multi-server pool system
 - Each server pool is either dedicated to one class of customer or flexible to serve two and more classes of customers
- Periodic arrival
 - 4 types of arrival (ED-GW, Elective, ICU-GW, SDA) for each specialty
- A novel service time model
- And other key components

Simulation replicates most performance measures

- Hourly waiting time performances
- (a) Hourly average waiting time

(b) Hourly 6-hour service level

Key modeling components

- Service time model
 - Determined by admission time, LOS and discharge distribution
 - An endogenous modeling element
 - No longer i.i.d.
- Allocation delays
 - "Secondary" bottlenecks other than bed availability
 - Yankovic and Green (2011)
 - Armony et al (2011)
- Overflow policy
 - When to overflow a patient
 - Overflow to which server pool

Network structure

Service time model

- Service time model
 - Service time = Discharge time Admission time
 - = LOS + Dis hour Adm hour
- LOS distribution
 - Average is \sim 5 days
 - Depend on *admission source* and *specialty*

AM PM patients (ED-GW patients)

- The admission time affects LOS
 - AM patients: average LOS = 4.24 days
 - PM patients: average LOS = 5.31 days

Renal patients show a great reduction in Average LOS

• Average LOS is reduced by almost 1 day

Verify the service time model

- Service time model
 - Service time = LOS + Discharge hour Adm hour

Matching empirical (a) Empirical

(b) Simulation output

Pre- and post-allocation delays

- Patient experiences additional delays upon arrival and when a bed is allocated
 - Pre-allocation delay
 - BMU search/negotiate for beds
 - Post-allocation delay
 - Delays in ED discharge
 - Delays in the transportation
 - Delays in ward admission
- Must model bed turnover component
 - If not, hourly queue length does not match (right figure)

Time-dependent allocation delays

- The mean of allocation delay depends on when it is initiated
 - Use log-normal distribution
 - Pre-allocation delay

Overflow policy

- When a patient's waiting time exceeds certain threshold, the patient can be overflowed to a "wrong" ward
 - Beds are partially flexible
 - Overflow wards have certain priority

Cluster	1 st Overflow	2 nd Overflow	3 rd Overflow
Medicine	Other Med	Surgery/OG	Ortho
Surgery	Other Surg	Ortho /OG	Medicine
Ortho	Other Ortho	Surgery	Medicine

Dynamic overflow policy

Fixed threshold

• Threshold: 4.0 h

Dynamic threshold

 Threshold: 0.5 h for arrival between 7 pm and 7 am (next day); 5.0 h for others

Time-varying arrival rates

Simulation results

- Whether early discharge policy is beneficial or not
- What-if analysis

Simulation results

• Simulation shows the early discharge policy has little improvement (a) hourly avg. waiting time (b) 6-hour service level

Aggressive early discharge policy

Only smooth the allocation delays

- Assuming allocation delay has a constant mean
 - (a) hourly avg. waiting time

(b) 6-hour service level

Impact of capacity increase

• 10% reduction in utilization, plus assuming allocation delay has a constant mean

Simulation replicates most performance measures

- Hourly waiting time performances
- (a) Hourly average waiting time

(b) Hourly 6-hour service level

Average waiting time for each specialty

• Renal patients have longest average waiting time

6-hour service level for each specialty

• Cardio and Oncology patients show significant improvement in the 6-hour service level

38

Overflow rate

• Overall overflow rate reduces in Period 2

Summary

- Conduct an empirical study of patient flow of the entire inpatient department
- Build and calibrate a stochastic model to evaluate the impact of discharge distribution on waiting for admission to ward
- Identify allocation delays as a second source of bottlenecks
 Staffing appropriately in BMU, ED and Ward
- Achieve stable waiting time by aggressive early discharge + smooth allocation delay

Limitations

- Simulation cannot fully calibrate with the overflow rate
 - Bed class (A, B, C)
 - Gender mismatch
 - Hospital acquired infections
 - Example: a female Surg patient has to be overflowed to a Med ward, since the only available Surg beds are for males
- Day-of-week phenomenon
 - Admission and discharge both depends on the day of week
 - LOS depends on admission day
 - Performances (BOR, waiting time) varies among days

Questions?