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Empirical observation at NUH 
�  Average queue length curve over 547 days  

� # of patients who are waiting for inpatient beds from the 
emergency department (ED) 

� Can we build a model and find methods to predict the curve? 
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 Waiting time statistics: Period 1 
Average waiting time   
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Fraction of patients who wait  
at least 6 hours 

Can  we flatten the curve? 



Part 2: Stochastic network models 
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�  Time-varying queues 
� Massey (1981), non-stationary queues 
� Whitt (1991) 
� Green-Kolesar (1991, 1997) 
� Massey, Mandelbaum and Reiman (1998) 
�  Feldman-Mandelbaum-Massey-Whitt  (2008), “Staffing of Time-

Varying Queues to Achieve Time-Stable Performance.”  
�  Liu-Whitt (2011,2012) 
�                       framework 
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A new stochastic network model 
�  Multi-server pools serving multi-class customers  
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New features 
�  Endogenous service times 
�  Allocation delays 
�  Overflow trigger times   
�  Missing any one of these features makes the model less relevant 
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LOS distribution
log−normal

Endogenous service times  
Service time = Discharge time – Admission time 
                     = LOS + Dis hour – Adm hour 

    Length-of-stay (LOS) = number of nights in hospital  
�  LOS distribution 
�  Average is ~ 5 days; admission source and medical specialty dependent 
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Checking the service time model 
 

         (a) Empirical         (b) Simulation output 
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Allocation delays 
�  Getting a bed is a process 

�  Pre-allocation delay 
�  Bed management unit searches/negotiates for beds 

�  Post-allocation delay 
�  Delays in ED discharge 
�  Delays in transportation 
�  Delays in ward admission 

�  In our model: each patient experiences a random delay  T after a 
bed is allocated to her 
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Overflow trigger times 
�  Wards usually accept patients from primary specialties 
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Entire hospital runs in the QED regime 
�  Quality- and Efficiency-Driven (QED) regime 

� Waiting time is a small fraction of service time 
�  Average waiting time = 2.8 hours = 1/43 average LOS 

�   Typical bed occupancy rate is 86% ~ 93% 

 
�  Multi-server pools with certain flexibility 

�  30 ~ 60 servers in each pool 
�  15 server pools  (500-600 servers) 
 

�  Trade-off between waiting time and overflow fraction 
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Part 3: Two-time-scale framework 
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�  Discrete-time queues 
� The LOS and daily arrival rate determine           , the midnight 

customer count, and thus determine the daily performance 

�  Time-varying performance 
� The arrival rate pattern and discharge timing determine the time-

of-day behavior 

{Xk}



A simplified single-pool model 
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�  A single-pool model with N servers 
�  Arrival is periodic Poisson with rate function      and period of 1 day 
�  LOS follow a geometric distribution with mean  
�  Discharge times follow a discrete distribution 
�  Allocation delay 

�  Service times follow the non-iid model 
 
�  Performance measure: steady-state, mean queue length curve 
                    for  

 

m
�(t)

E[Q(t)] 0  t < 1



Step 1: daily customer count 
�         denotes the number of customers at midnight of day 

�  Discrete time queue 

�  Number of discharges        only depends on        and independent 
coin tosses since 
�  LOS is geometric  
�  LOS starts from 1 (no same-day discharge) 

�  Number of arrivals     is a Poisson random variable 
�  Independent of number of discharges 

�             is a discrete time Markov chain (DTMC) 
�  Stationary distribution     can be solved numerically 
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Xk

Xk+1 = Xk �Dk +Ak

Ak

{Xk}
⇡

Dk Xk

k



Step 2: hourly customer count 
 
� Conditioning on X(0), X(t) is a convolution between a 

Poisson r.v. (arrival) and a Binomial r.v (discharge) 
�  The mean queue length 

Mean customer count can be solved via fluid equation 
�    

�     
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X(t) = X(0)�D(0,t] +A(0,t]

E[Q(t)] = E[X(t)�N ]+

E[Q(t)]
?
= E[Q(0)] +

Z t

0
�(s)ds� E[D(0,t]]

E[X(t)]=E[X(0)] +

Z t

0
�(s)ds� E[D(0,t]]



Related work 
�  M. Ramakrishnan, D. Sier, P. Taylor (2005), “A two-time-scale model for 

hospital patient flow”, IMA Journal of Management Mathematics.  
�  ED evolves in a much faster time scale than wards. 

�  A. Mandelbaum, P. Momcilovic, Y. Tseytlin (2012), “On Fair Routing from 
Emergency Departments to Hospital Wards: QED Queues with 
Heterogeneous Servers”, Management Science.  
�  Two time scales: service times are in days; waiting times are in hours.  

�  E. S. Powell et al. (2012), “The relationship between inpatient discharge 
timing and emergency department boarding”, The Journal of Emergency 
Medicine 
�  Affiliations: Department of Emergency Medicine, Northwestern University; 

Harvard Affiliated Emergency Medicine Residency, Brigham and Women’s Hospital–
Massachusetts General Hospital, … 
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Numerical results 
�  Alloc delays follow a log-normal distribution 

�  Mean alloc delay is 2.5 hours, CV=1 

�  Discrete discharge distribution from NUH period 1 data 
�  N=525; m=5.3;  
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⇤ = 90.95
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Queue length curve from the FULL hospital 
model (Period 1) 
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                queues fail to capture 
�  Simulation results from an                                     system 

    avg waiting time             avg queue length 
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Part 4: Insights & challenges 
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Aggressive early discharge policy 
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Insights from the simplified model 
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�  Impact of discharge policy 
�  Steady-state, time-of-day mean waiting time 
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Simulation results 
�  Simulation shows NUH early discharge policy has little improvement 

 (a) hourly avg. waiting time                     (b) 6-hour service level 

 
 

26 



Aggressive early discharge + smooth 
allocation delay 
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�  Waiting time performance can be stabilized 
(a) hourly avg. waiting time                (b) 6-hour service level 



Challenges 
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�  For a multi-pool model with “state”-dependent overflow trigger 
time, develop an analytical theory for 
�  Performance analysis 
� Near optimal overflow policy (real time); impossible for 

simulation 
� Optimal capacity allocation among different wards (once every 6 

months?); time consuming for simulation 
�  Perry & Whitt (X-model); Pang & Yao (switch-over) 

 

�  For a single-pool model, analyze the discrete time queue under 
� General LOS distribution 
� Day-of-week model 
� Matrix analytic method, diffusion approximations 



Operational Challenges 
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�  Push early discharge 
�  Reduce LOS 

� AM- and PM-admissions 
� Using step-down care facilities 
 
 



30 

Questions? 


