Stochastic Network Models for Hospital Inpatient Flow Management

Jim Dai
School of ORIE, Cornell University
(on leave from Georgia Institute of Technology)
Team members

- Georgia Tech
 - Pengyi Shi

- University of International Business & Economics, Beijing
 - Ding Ding

- National University of Singapore (NUS)
 - Jame Ang, Mabel Chou

- National University Hospital (NUH)
 - Jin Xin, Joe Sim
Outline

• Part 1: Empirical observations
• Part 2: Stochastic network models
• Part 3: Two-time-scale framework
• Part 4: Managerial insights & future research
Empirical observation at NUH

- Average queue length curve over 547 days
 - # of patients who are waiting for inpatient beds from the emergency department (ED)
 - Can we build a model and find methods to predict the curve?
Waiting time statistics: Period 1

Average waiting time

Fraction of patients who wait at least 6 hours

Can we flatten the curve?
Part 2: Stochastic network models

- Time-varying queues
 - Massey (1981), non-stationary queues
 - Whitt (1991)
 - Massey, Mandelbaum and Reiman (1998)
 - $M_t/GI/N$ framework
A new stochastic network model

- Multi-server pools serving multi-class customers
New features

- Endogenous service times
- Allocation delays
- Overflow trigger times
- Missing any one of these features makes the model less relevant
Endogenous service times

Service time = Discharge time – Admission time

= LOS + Dis hour – Adm hour

Length-of-stay (LOS) = number of nights in hospital

- LOS distribution

- Average is ~ 5 days; admission source and medical specialty dependent
Checking the service time model

(a) Empirical

(b) Simulation output
Allocation delays

- Getting a bed is a process
 - Pre-allocation delay
 - Bed management unit searches/negotiates for beds
 - Post-allocation delay
 - Delays in ED discharge
 - Delays in transportation
 - Delays in ward admission

- In our model: each patient experiences a random delay T after a bed is allocated to her
Overflow trigger times

- Wards usually accept patients from primary specialties
Entire hospital runs in the QED regime

- Quality- and Efficiency-Driven (QED) regime
 - Waiting time is a small fraction of service time
 - Average waiting time = 2.8 hours = 1/43 average LOS
 - Typical bed occupancy rate is 86% ~ 93%

- Multi-server pools with certain flexibility
 - 30 ~ 60 servers in each pool
 - 15 server pools (500-600 servers)

- Trade-off between waiting time and overflow fraction
Part 3: Two-time-scale framework

- Discrete-time queues
 - The LOS and daily arrival rate determine $\{X_k\}$, the midnight customer count, and thus determine the daily performance

- Time-varying performance
 - The arrival rate pattern and discharge timing determine the time-of-day behavior
A simplified single-pool model

- A single-pool model with N servers
 - Arrival is periodic Poisson with rate function $\lambda(t)$ and period of 1 day
 - LOS follow a geometric distribution with mean m
 - Discharge times follow a discrete distribution
 - Allocation delay

- Service times follow the non-iid model

- Performance measure: steady-state, mean queue length curve
 \[\mathbb{E}[Q(t)] \text{ for } 0 \leq t < 1 \]
Step 1: daily customer count

- X_k denotes the number of customers at midnight of day k
 \[X_{k+1} = X_k - D_k + A_k \]
 - Discrete time queue

- Number of discharges D_k only depends on X_k and independent coin tosses since
 - LOS is geometric
 - LOS starts from 1 (no same-day discharge)

- Number of arrivals A_k is a Poisson random variable
 - Independent of number of discharges

- $\{X_k\}$ is a discrete time Markov chain (DTMC)
 - Stationary distribution π can be solved numerically
Step 2: hourly customer count

\[X(t) = X(0) - D_{(0,t)} + A_{(0,t)} \]

- Conditioning on \(X(0) \), \(X(t) \) is a convolution between a Poisson r.v. (arrival) and a Binomial r.v (discharge)
- The mean queue length \(\mathbb{E}[Q(t)] = \mathbb{E}[X(t) - N]^+ \)

Mean customer count can be solved via fluid equation

- \(\mathbb{E}[X(t)] = \mathbb{E}[X(0)] + \int_0^t \lambda(s)ds - \mathbb{E}[D_{(0,t)}] \)
- \(\mathbb{E}[Q(t)] = \mathbb{E}[Q(0)] + \int_0^t \lambda(s)ds - \mathbb{E}[D_{(0,t)}] \)
Related work

 - ED evolves in a much faster time scale than wards.

 - Two time scales: service times are in days; waiting times are in hours.

 - Affiliations: Department of Emergency Medicine, Northwestern University; Harvard Affiliated Emergency Medicine Residency, Brigham and Women’s Hospital–Massachusetts General Hospital, …
Numerical results

- Alloc delays follow a log-normal distribution
 - Mean alloc delay is 2.5 hours, CV=1
- Discrete discharge distribution from NUH period 1 data
- $N=525; m=5.3; \Lambda = 90.95$
Queue length curve from the FULL hospital model (Period 1)
$M_t/GI/N$ queues fail to capture

- Simulation results from an $M_{peri}/\text{lognormal}/N$ system

avg waiting time

avg queue length

![Graphs showing average waiting time and queue length over time](image-url)
Part 4: Insights & challenges
Aggressive early discharge policy

Discharge distribution

NUH per 1 NUH per 2 aggressive early dis
Insights from the simplified model

- Impact of discharge policy
- Steady-state, time-of-day mean waiting time

![Graph showing waiting time (hour) for different discharge policies]
Simulation results

- Simulation shows NUH early discharge policy has little improvement
 (a) hourly avg. waiting time
 (b) 6-hour service level
Aggressive early discharge + smooth allocation delay

- Waiting time performance can be stabilized
 (a) hourly avg. waiting time
 (b) 6-hour service level
Challenges

- For a multi-pool model with “state”-dependent overflow trigger time, develop an analytical theory for
 - Performance analysis
 - Near optimal overflow policy (real time); impossible for simulation
 - Optimal capacity allocation among different wards (once every 6 months?); time consuming for simulation
 - Perry & Whitt (X-model); Pang & Yao (switch-over)

- For a single-pool model, analyze the discrete time queue under
 - General LOS distribution
 - Day-of-week model
 - Matrix analytic method, diffusion approximations
Operational Challenges

- Push early discharge
- Reduce LOS
 - AM- and PM-admissions
 - Using step-down care facilities
Questions?