QUEUES IN SERVICE SYSTEMS: CUSTOMER ABANDONMENT AND DIFFUSION APPROXIMATIONS

Jim Dai

Georgia Institute of Technology

November 13, 2011

Joint work with Shuangchi He (NUS)

- Single-server queues vs many-server queues
- The QED regime and the square-root staffing rule
- Need of modeling customer abandonment
- Distributional sensitivity
- Diffusion models for many-server queues

A G/GI/n + GI queue

- *n* identical servers working in parallel (single-server n = 1; many-server $n \gg 1$)
- first-in-first out buffer of infinite size
- a general arrival process (G)
- iid service times (GI)
- iid patience times (+GI)

A many-server queue serves as a building block for modeling large-scale service systems

- Call centers
 - Bank of America, over one thousand agents
 - UPS, several hundred agents
- Hospital beds
 - hundreds of beds
- Web farms/computer clusters
 - up to several thousand servers/CPUs

INSIGHT

The performance of many-server queues is qualitatively different from that of single-server queues or queues with a small number of servers

Key performance measures

- delay probability P_w
- mean customer waiting time w
- fraction of abandonment P_A

Performance of a single-server queue

Consider an M/GI/1 queue without abandonment

- Poisson arrival process with rate λ
- mean service time m
- traffic intensity $\rho := \lambda m$

Assume $\rho < 1$. By PASTA and Pollaczek-Khinchine,

$$P_w =
ho$$
 and $w = m \left(rac{
ho}{1-
ho}
ight) \left(rac{1+c_s^2}{2}
ight),$

• SCV of service times c_s^2 , and waiting time factor

$$f := w/m = \left(\frac{\rho}{1-\rho}\right) \left(\frac{1+c_s^2}{2}\right).$$

Since $P_w \rightarrow 1$ as $\rho \rightarrow 1$, almost all have to wait before being served

- quality: no waiting or very short waiting
- efficiency: ho
 ightarrow 1

However,

$$f$$
 is proportional to $\frac{\rho}{1-\rho}$

INSIGHT

In a single-server queue, one cannot maintain high server utilization to achieve good quality of service

Quality OR efficiency?

FIGURE: Waiting time factor f vs server utilization ρ in an M/M/1 queue

Consider an M/M/n queue. Traffic intensity $\rho := \lambda m/n$. By Erlang-C,

$$P_{w} = \frac{(n\rho)^{n}}{n!} \left((1-\rho) \sum_{k=0}^{n-1} \frac{(n\rho)^{k}}{k!} + \frac{(n\rho)^{n}}{n!} \right)^{-1}$$

The waiting time factor

$$f = \frac{w}{m} = \frac{P_w}{(1-\rho)n} \le \frac{1}{(1-\rho)n}$$

With ρ fixed, $f \rightarrow 0$ as $n \rightarrow \infty$

Many-server queues: quality AND efficiency!

FIGURE: Delay probability P_w and waiting time factor f vs number of servers n, for M/M/n queues with $\rho = 0.95$

If one increases *n* to 100, then $P_w = 50.7\%$ and f = 0.101

Waiting time factor

FIGURE: Waiting time factor f vs server utilization ρ in an M/M/1 queue and an M/M/18 queue

The above M/M/100 queue with $\rho = 0.95$ achieves both high quality of service and operational efficiency:

- the server utilization close to 1 (efficiency)
- only a fraction of customers need to wait (quality)
- waiting times are relatively short (quality)

The system is operated in the quality- and efficiency-driven (QED) regime, also called the rationalized regime.

Let $R := \lambda m$ be the offered load. The square-root safety staffing rule recommends

$$n pprox R + \beta \sqrt{R}$$
 for some $\beta > 0$

Erlang-C

$$P_{w} = \frac{(n\rho)^{n}}{n!} \left((1-\rho) \sum_{k=0}^{n-1} \frac{(n\rho)^{k}}{k!} + \frac{(n\rho)^{n}}{n!} \right)^{-1}$$

Halfin and Whitt (1981) proved that

$$P_{w}
ightarrow \gamma = rac{1}{eta \Phi(eta)/\phi(eta)+1} \quad ext{as } R
ightarrow \infty$$

- $\bullet \ \phi$ is the standard normal probability density
- $\bullet~\Phi$ is the standard normal cumulative distribution function

Fix $\beta > 0$ and set $n \approx R + \beta \sqrt{R}$. As R increases,

- P_w stabilizes at $\gamma \in (0,1)$
- $\rho = R/n \rightarrow 1$
- $f = P_w/(\sqrt{n}\beta)$ is on the order of $1/\sqrt{n}$

The system is operated in the QED regime!

Given staffing level *n* and utilization level $\rho < 1$, set

$$\beta = \sqrt{n}(1-\rho)$$

Then,

$$P_w \approx rac{1}{eta \Phi(eta)/\phi(eta)+1}$$
 and $f = rac{P_w}{\sqrt{n}eta}$

	Exact	Approx. by (1)
P_{w}	50.7%	50.5%
f	0.101	0.101

TABLE: Performance measures in an M/M/100 queue with $\rho = 0.95$

Suppose P_w is required to be less than some $\gamma \in (0,1)$. First solve for β by

$$\gamma = \frac{1}{\beta \Phi(\beta) / \phi(\beta) + 1}$$

Then,

$$n \approx R + \beta \sqrt{R}$$

Consider a GI/GI/n queue. Let

$$n = R + \beta \sqrt{R}$$
 for some $\beta > 0$

Reed (2009) proved that as R increases, this staffing level drives the queue to the QED regime

- The origin of that can be traced back to Erlang (1923)
- Erlang reported that it had been in use at the Copenhagen Telephone Company since 1913
- Advocated by Newell (1973,1982), Kolesar (1986), Grassmann (1986,1988), among others
- Whitt (1992) formally proposed and analyzed this rule

- Human's patience is always limited!
- Customer abandonment is present in most service systems

INSIGHT

For a service system with significant customer abandonment, any queueing model that ignores the abandonment phenomenon is likely irrelevant to operational decisions

	M/M/50 + M	M/M/50
Mean service time	1	1
Mean patience time	2	N/A
Arrival rate	55	$55 \times (1 - 10.2\%) = 49.39$
Abandonment fraction	10.2%	N/A
Server utilization	98.8%	98.8%
Mean waiting time (in sec.)	12.5	87.7
Mean queue length	11.2	72.2

 TABLE : Queues with and without customer abandonment

- Customers who experience long waiting tend to abandon the system
- With abandonment, the system can reach a steady state even if the arrival rate is larger than the service capacity
- Some performance measures in a queue with abandonment is better than in a queue without abandonment
- To meet certain service levels without considering abandonment, one tends to overestimate the staffing level

INSIGHT

In the presence of customer abandonment, the square-root safety staffing rule can still lead the system to the QED regime and yield high server utilization, short waiting times, and a very small abandonment fraction

As argued by Garnett et al. (2002), with

 $n \approx R + \beta \sqrt{R}$ for $\beta \in \mathbb{R}$ and R large,

one has

$$P_{w} \approx \left(1 + \frac{h(\beta \sqrt{\mu/\alpha})}{\sqrt{\mu/\alpha}h(-\beta)}\right)^{-1}$$

- $1/\alpha$ is the mean patience time
- $h(x) = \phi(x)/(1 \Phi(x))$ is the standard normal hazard rate

The fraction of abandonment

$$P_A \approx \frac{1}{\sqrt{R}} \Big(\sqrt{\alpha/\mu} h(\beta \sqrt{\mu/\alpha}) - \beta \Big) \Big(1 + \frac{h(\beta \sqrt{\mu/\alpha})}{\sqrt{\mu/\alpha} h(-\beta)} \Big)^{-1}$$

Fix $\beta = \sqrt{n}(1-\rho)$. As *n* increases,

- the mean waiting time decreases at rate $1/\sqrt{n}$ in M/M/n queues
- Garnett et al (2002) confirmed the same decreasing rate in M/M/n + M queues

When *n* is large,

- waiting times are relatively short
- the patience time distribution *F*, outside a small neighborhood of the origin, barely has any influence on the system dynamics

Consider an M/M/100 + GI queue

- with different F
- but with the same $\alpha = F'(0+)$
- $\lambda = 105$ and m = 1

	Abandonment fraction			Mean queue length		
	Exp	Uniform	H_2	Exp	Uniform	H_2
$\alpha = 0.1$	0.0497	0.0498	0.0496	52.18	50.59	54.19
lpha= 0.5	0.0603	0.0607	0.0599	12.67	12.06	13.43
$\alpha = 1$	0.0670	0.0676	0.0662	7.031	6.585	7.592
$\alpha = 2$	0.0739	0.0748	0.0730	3.882	3.547	4.313
lpha= 10	0.0886	0.0902	0.0869	0.9301	0.7540	1.172

TABLE: Performance insensitivity to patience time distributions F

	Abandonment fraction			Mean queue length		
	Exp	Uniform	H_2	Exp	Uniform	H_2
$m_{p} = 0.1$	0.0886	0.0840	0.0926	0.9301	1.505	0.5840
$m_{p} = 0.5$	0.0739	0.0676	0.0794	3.882	6.585	2.455
$m_p = 1$	0.0670	0.0608	0.0730	7.031	12.06	4.313
$m_{p} = 2$	0.0603	0.0550	0.0682	12.67	22.10	6.438
$m_p = 10$	0.0497	0.0481	0.0543	52.18	98.07	24.52

TABLE: Mean patience time is a wrong statistic!

INSIGHT

In the QED regime, the system performance is generally invariant with the patience time distribution as long as its density at the origin is fixed and positive

- For a G/GI/n + GI queue in the QED regime, it is generally accurate to replace F with an exponential distribution with rate $\alpha = F'(0+)$
- The matrix-analytic method can be used to evaluate GI/Ph/n + M queues

Dai and He (2010) proved that

$$A(t) pprox lpha \int_0^t Q(s) \, \mathrm{d}s$$

- A(t) is the number of abandonments by time t
- Q(t) is the number of waiting customers at time t

This justifies the replacement of +GI with +M.

The exact analysis of a many-server queue has largely been limited to the M/M/n + M model. However...

Service time distribution of a call center, by Brown et al (2005)

Patience time hazard rate of a call center, by Mandelbaum and Zeltyn (2004)

- A GI/GI/n + GI queue is difficult to be analyzed because of
 - general interarrival/service/patience time distributions
 - a large number of servers
- As a consequence,
 - no analytical solution and no numerical algorithms for performance measures
 - usually evaluated by simulation
- We use diffusion processes to approximate many-server queues

A Poisson sample path with $\lambda = 1$

Let $\{E(t) : t \ge 0\}$ be a Poisson process with rate λ

FIGURE: A Poisson sample path with rate $\lambda = 1$

The centered sample path with $\lambda = 1$

Then, $\{E(t) - \lambda t : t \ge 0\}$ is the centered process

FIGURE: The sample path of the centered process with $\lambda = 1$

A Poisson sample path with $\lambda = 100$

FIGURE: A Poisson sample path with rate $\lambda = 100$

The centered sample path with $\lambda = 100$

FIGURE: The sample path of the centered process with $\lambda = 100$

A Poisson sample path with $\lambda = 10,000$

FIGURE: A Poisson sample path with rate $\lambda = 10,000$

The centered sample path with $\lambda = 10,000$

FIGURE: The sample path of the centered process with $\lambda = 10,000$

Brownian motion and Donsker's theorem

Let

$$ilde{\mathsf{E}}_{\lambda}(t) = rac{\mathsf{E}(t) - \lambda t}{\sqrt{\lambda}}$$

Donsker's theorem implies that the process \tilde{E}_{λ} is close to a standard Brownian motion when λ is large

DEFINITION

A process $B = \{B(t) : t \ge 0\}$ is said to be a (μ_B, σ_B^2) -Brownian motion if

- B(0) = 0 and almost every sample path is continuous
- $\{B(t): t \ge 0\}$ has stationary, independent increments
- B(t) is normally distributed with mean μ_Bt and variance σ²_Bt for every t > 0

B is a standard Brownian motion if $\mu_B = 0$ and $\sigma_B^2 = 1$

System equation for an M/M/n + GI queue

$$X(t) = X(0) + E(t) - S\left(\mu \int_0^t Z(s) \, ds\right) - A(t)$$

- X(t) is the number of customers in system at time t
- E(t) is the number of arrivals by time t
- $\{S(t): t \ge 0\}$ is a Poisson process with rate one
- $\mu = 1/m$ is the service rate
- Z(t) is the number of busy servers at time t
- A(t) is the number of abandonments by time t

Brownian approximation

Let

$$ilde{E}(t) = rac{E(t) - \lambda t}{\sqrt{n}}$$
 and $ilde{S}(t) = rac{S(nt) - nt}{\sqrt{n}}$

By Donsker's theorem

$$\tilde{E} \approx B_E$$
 and $\tilde{S} \approx B_S$

- B_E is a $(0, \rho\mu)$ -Brownian motion
- B_S is a (0, 1)-Brownian motion
- B_E and B_S are independent

Recall that

$$\alpha = F'(0+)$$

The abandonment process is approximated by

$$A(t) pprox lpha \int_0^t Q(s) \, ds = lpha \int_0^t (X(s) - n)^+ \, ds$$

Scaled system equations

$$ilde{X}(t) = rac{X(t) - n}{\sqrt{n}}, \quad eta = \sqrt{n}(1 -
ho), \quad ilde{A}(t) = rac{A(t)}{\sqrt{n}}$$

The scaled system equation

$$egin{split} ilde{X}(t) &= ilde{X}(0) + ilde{E}(t) - ilde{S}\Big(\mu \int_0^t rac{Z(s)}{n}\,ds\Big) \ &- eta \mu t + \mu \int_0^t ilde{X}(s)^-\,ds - ilde{A}(t) \end{split}$$

where

$$egin{aligned} & ilde{E} pprox B_E \ & ilde{S} pprox B_S \ & ilde{A} pprox lpha \int_0^t ilde{X}(s)^+ \, ds \ & ilde{Z}(t) \ &n pprox
ho \wedge 1 \end{aligned}$$

The scaled system equation

$$ilde{X}(t) = ilde{X}(0) + ilde{E}(t) - ilde{S}\left(\mu \int_0^t rac{Z(s)}{n} ds
ight)
onumber \ - eta \mu t + \mu \int_0^t ilde{X}(s)^- ds - ilde{A}(t)$$

The diffusion model

$$Y(t) = \tilde{X}(0) + B_E(t) - B_S((\rho \wedge 1)\mu t)$$
$$-\beta\mu t + \mu \int_0^t Y(s)^- ds - \alpha \int_0^t Y(s)^+ ds$$

A piecewise OU process

The diffusion model

$$egin{aligned} Y(t) &= ilde{X}(0) + B_E(t) - B_Sig((
ho \wedge 1)\mu tig) \ &- eta \mu t + \mu \int_0^t Y(s)^- \, ds - lpha \int_0^t Y(s)^+ \, ds \end{aligned}$$

• a piecewise linear drift

$$b(x) = egin{cases} -eta \mu - lpha |x| & ext{when } x \geq 0 \ -eta \mu + \mu |x| & ext{when } x \leq 0 \end{cases}$$

• the mean-reverting property

Y is a piecewise Ornstein-Uhlenbeck (OU) process. It becomes an OU process when $\alpha = \mu$

A process $Y = \{Y(t) : t \ge 0\}$ is called an OU process if it satisfies

$$Y(t) = Y(0) + \sigma B(t) - \beta \mu t - \mu \int_0^t Y(s) \, ds$$

• a linear drift

$$b(x) = -\beta\mu - \mu x$$

• a normal stationary distribution

$$g(z) = \sqrt{rac{\mu}{\pi\sigma^2}} \exp\left(-rac{\mu(z+eta)^2}{\sigma^2}
ight) \ \ ext{for} \ z\in\mathbb{R}$$

Stationary distribution of a piecewise OU process

The diffusion model has a piecewise linear drift

$$b(x) = egin{cases} -eta \mu - lpha | x | & ext{when } x \geq 0 \ -eta \mu + \mu | x | & ext{when } x \leq 0 \end{cases}$$

It admits a piecewise normal stationary distribution

$$g(z) = \begin{cases} a_1 \exp\left(-\frac{\alpha(z + \alpha^{-1}\mu\beta)^2}{\sigma_B^2}\right) & \text{when } z \ge 0, \\ a_2 \exp\left(-\frac{\mu(z + \beta)^2}{\sigma_B^2}\right) & \text{when } z < 0, \end{cases}$$

•
$$\sigma_B^2 = \mu (\rho + \rho \wedge 1)$$

• *a*₁ and *a*₂ are constants such that

$$\int_{-\infty}^{\infty} g(z) \, \mathrm{d}z = 1$$
 and $g(0-) = g(0+)$

• the long-run average queue length

$$\bar{Q} \approx \sqrt{n} \cdot \mathbb{E}[Y(\infty)^+] = \sqrt{n} \int_0^\infty x g(x) \, \mathrm{d}x$$

• the long-run average number of idle servers

$$\overline{I} \approx \sqrt{n} \cdot \mathbb{E}[Y(\infty)^{-}] = -\sqrt{n} \int_{-\infty}^{0} xg(x) \,\mathrm{d}x.$$

• the abandonment fraction

$$P_A \approx 1 - \frac{\mu(n-\bar{l})}{\lambda}$$

JIM DAI (GEORGIA TECH)

	Abandonment fraction		Mean queue length	
	Exp	Diffusion	Exp	Diffusion
$\alpha = 0.1$	0.0497	0.0497	52.18	52.19
$\alpha = 0.5$	0.0603	0.0603	12.67	12.66
$\alpha = 1$	0.0670	0.0669	7.031	7.022
$\alpha = 2$	0.0739	0.0738	3.882	3.877
$\alpha = 10$	0.0886	0.0886	0.9301	0.9302

TABLE: Performance estimates for the M/M/100 + M queue

A two-phase hyperexponential distribution (H_2)

$$V = egin{cases} {\sf Exp}(
u_1) & {
m with \ probability \ } p_1 \ {
m Exp}(
u_2) & {
m with \ probability \ } p_2 = 1 - p_1 \end{cases}$$

• fraction of phase j workload

$$heta_{j} = rac{p_{j}/
u_{j}}{p_{1}/
u_{1}+p_{2}/
u_{2}}, \quad heta_{1}+ heta_{2} = 1$$

• a special case of phase-type distributions

۵

Let $X_j(t)$ be the number of type j customers in system at time t

$$ilde{X}_j(t) = rac{X_j(t) - n heta_j}{\sqrt{n}}$$

A two-dimensional process (Y_1, Y_2) is used to approximate $(\tilde{X}_1, \tilde{X}_2)$

$$egin{aligned} Y_j(t) &= ilde{X}_j(0) - eta \mu p_j t + p_j B_{E}(t) + (-1)^{j-1} B_M(
ho \mu t) - B_j((
ho \wedge 1) heta_j
u_j t) \ &+
u_j \int_0^t (p_j(Y_1(t) + Y_2(t))^+ - Y_j(t)) \, \mathrm{d}s \ &- p_j lpha \int_0^t (Y_1(s) + Y_2(s))^+ \, \mathrm{d}s \end{aligned}$$

- B_E is a $(0, \rho\mu)$ -Brownian motion
- B_1 and B_2 are (0, 1)-Brownian motions
- B_M is a $(0, p_1p_2)$ -Brownian motion
- they are all independent

See He and Dai (2011) for diffusion models for a GI/Ph/n + GI queue

Let Y be a d-dimensional diffusion process. Assume that Y has a unique stationary density g on \mathbb{R}^d . The basic adjoint relationship (BAR) says

$$\int_{\mathbb{R}^d} \mathcal{G}f(x)g(x)\,\mathrm{d} x=0 \quad \text{ for all } f\in C^2_b(\mathbb{R}^d)$$

- \mathcal{G} is the generator of Y
- He and Dai (2011) designed an algorithm to solve the BAR

FIGURE: $\rho = 1.045$, p = (0.9351, 0.0649), $1/\nu = (0.1069, 13.89)$, mean patience time = 2

FIGURE: $\rho = 1.112$, p = (0.9351, 0.0649), $1/\nu = (0.1069, 13.89)$, mean patience time = 2.

The approximation $A(t) \approx \alpha \int_0^t Q(s) ds$ is not always good

- The abandonment process still depends on *F* in a neighborhood of the origin, not just the origin
- When the patience time changes rapidly near the origin, this abandonment approximation can be inaccurate
- When $\alpha = 0$ and $\rho > 1$, the queue can still reach a steady state thanks to abandonment, but the diffusion model does not have a stationary distribution

Consider a neighborhood of the origin rather than the origin itself!

- Exploiting the idea of scaling the patience time hazard rate, proposed by Reed and Ward (2008)
- Assume F has a bounded hazard function

$$h(t)=rac{f(t)}{1-F(t)} \quad ext{for } t\geq 0.$$

The scaled abandonment process is approximated by

$$ilde{A}(t) pprox \int_0^t \int_0^{rac{Q(s)}{\sqrt{n}}} h\!\left(rac{\sqrt{n}u}{\lambda}
ight) \mathrm{d}u \,\mathrm{d}s.$$

- By time s, the *i*th customer from the back of the queue has been waiting around i/λ minutes
- This customer will abandon the queue during the next δ minutes with probability $h(i/\lambda)\delta$
- The abandonment rate at time s is around $\sum_{i=1}^{Q(s)} h(i/\lambda)$
- The scaled abandonment rate

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{Q(s)}h\left(\frac{i}{\lambda}\right)\approx\int_{0}^{\frac{Q(s)}{\sqrt{n}}}h\left(\frac{\sqrt{n}u}{\lambda}\right)\mathrm{d}u$$

The refined diffusion model

$$\begin{split} Y_{j}(t) &= \tilde{X}_{j}(0) - \beta \mu p_{j}t + p_{j}B_{E}(t) + (-1)^{j-1}B_{M}(\rho \mu t) - B_{j}((\rho \wedge 1)\theta_{j}\nu_{j}t) \\ &+ \nu_{j}\int_{0}^{t}(p_{j}(Y_{1}(t) + Y_{2}(t))^{+} - Y_{j}(t))\,\mathrm{d}s \\ &- p_{j}\int_{0}^{t}\int_{0}^{(Y_{1}(s) + Y_{2}(s))^{+}}h\Big(\frac{\sqrt{n}u}{\lambda}\Big)\,\mathrm{d}u\,\mathrm{d}s \end{split}$$

	Simulation	Diffusion	Refined diffusion
Mean queue length	6.413	1.475	6.359
Abandonment fraction	0.05512	0.05863	0.05517
$\mathbb{P}[X(\infty)>480]$	0.8881	0.8663	0.8929
$\mathbb{P}[X(\infty)>500]$	0.4720	0.3192	0.4822
$\mathbb{P}[X(\infty)>520]$	0.1050	$9.274 imes10^{-5}$	0.1074

TABLE: Performance measures of the $M/H_2/500 + H_2$ queue.

- traffic intensity: $\rho = 1.045$
- service time distribution: p = (0.5915, 0.4085) and $\nu = (5.917, 0.454)$
- patience time distribution: p = (0.9, 0.1) and $\nu = (1, 200)$

	Simulation	Refined diffusion
Mean queue length	119.1	119.5
Abandonment fraction	0.04337	0.04340
$\mathbb{P}[X(\infty)>480]$	0.9940	0.9946
$\mathbb{P}[X(\infty)>500]$	0.9756	0.9770
$\mathbb{P}[X(\infty) > 600]$	0.6645	0.6733

TABLE: Performance measures of the $M/H_2/n + E_3$ queue.

- $\rho = 1.045$ and $\alpha = 0$, the first diffusion model fails!
- service time distribution: p = (0.5915, 0.4085) and $\nu = (5.917, 0.454)$
- mean patience time 1 minute

- Single-server queues and many-server queues are qualitatively different
- Follow the square-root staffing rule to operate your system in the QED regime
- Model customer abandonment explicitly
- In the QED regime, the patience density at the origin has the most impact on system performance
- Diffusion models is a useful tool to evaluate a many-server queue's performance

Survey of call centers

- Z. Aksin, M. Armony, and V. Mehrotra. The modern call center: A multi-disciplinary perspective on operations management research. *P&OM*, 2007
- L. Brown, N. Gans, A. Mandelbaum, A. Sakov, H. Shen, S. Zeltyn, and L. Zhao. Statistical analysis of a telephone call center: A queueing-science perspective. *Journal of the American Statistical Association*, 2005
- N. Gans, G. Koole, and A. Mandelbaum. Telephone call centers: Tutorial, review, and research prospects. *M&SOM*, 2003

The QED regime and the square-root staffing rule

- R. Atar, A. Mandelbaum, and M. I. Reiman. Scheduling a multiclass queue with many exponential servers: Asymptotic optimality in heavy traffic. *Annals of Applied Probability*, 2004
- W. K. Grassmann. Finding the right number of servers in real-world queuing systems. *Interfaces*, 1988
- W. Whitt. Understanding the efficiency of multi-server service systems. *MS*, 1992.

Customer abandonment

- F. Baccelli, P. Boyer, and G. Hébuterne. Single-server queues with impatient customers. *Advances in Applied Probability*, 1984
- J. G. Dai and S. He. Customer abandonment in many-server queues. *MOR*, 2010
- O. Garnett, A. Mandelbaum, and M. Reiman. Designing a call center with impatient customers. *M&SOM*, 2002
- J. E. Reed and A. R. Ward. Approximating the *GI/GI/1 + GI* queue with a nonlinear drift diffusion: Hazard rate scaling in heavy traffic. *MOR*, 2008
- S. Zeltyn and A. Mandelbaum. Call centers with impatient customers: Many-server asymptotics of the M/M/n + G queue. Queueing Systems, 2005

Diffusion approximations for many-server queues

- J. G. Dai, S. He, and T. Tezcan. Many-server diffusion limits for G/Ph/n + GI queues. Annals of Applied Probability, 2010
- S. Halfin and W. Whitt. Heavy-traffic limits for queues with many exponential servers. *OR*, 1981
- S. He and J. G. Dai. Many-server queues with customer abandonment: Numerical analysis of their diffusion models. *Preprint*, 2011
- A. Mandelbaum and P. Momčilović. Queues with many servers and impatient customers. *Preprint*, 2009
- J. Reed. The *G*/*GI*/*N* queue in the Halfin–Whitt regime. *Annals of Applied Probability*, 2009
- J. Reed and T. Tezcan. Hazard rate scaling for the GI/M/n + GI queue. *Preprint*, 2009