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Multi-server queues

A G/GI/n + GI queue

server 1

server 2

server n

n identical servers working in parallel
(single-server n = 1; many-server n� 1)

first-in-first out buffer of infinite size

a general arrival process (G )

iid service times (GI )

iid patience times (+GI )
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Large-scale service systems

A many-server queue serves as a building block for modeling large-scale
service systems

Call centers

Bank of America, over one thousand agents
UPS, several hundred agents

Hospital beds

hundreds of beds

Web farms/computer clusters

up to several thousand servers/CPUs
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Single-server queues vs many-server queues

Insight

The performance of many-server queues is qualitatively different from that
of single-server queues or queues with a small number of servers

Key performance measures

delay probability Pw

mean customer waiting time w

fraction of abandonment PA
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Performance of a single-server queue

Consider an M/GI/1 queue without abandonment

Poisson arrival process with rate λ

mean service time m

traffic intensity ρ := λm

Assume ρ < 1. By PASTA and Pollaczek-Khinchine,

Pw = ρ and w = m

(
ρ

1− ρ

)(
1 + c2

s

2

)
,

SCV of service times c2
s , and waiting time factor

f := w/m =

(
ρ

1− ρ

)(
1 + c2

s

2

)
.

Since Pw → 1 as ρ→ 1, almost all have to wait before being served
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Single-server queues, painful choice: quality OR efficiency?

quality: no waiting or very short waiting

efficiency: ρ→ 1

However,
f is proportional to

ρ

1− ρ

Insight

In a single-server queue, one cannot maintain high server utilization to
achieve good quality of service
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Quality OR efficiency?
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Figure: Waiting time factor f vs server utilization ρ in an M/M/1 queue
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Performance of a multi-server queue

Consider an M/M/n queue. Traffic intensity ρ := λm/n.
By Erlang-C,

Pw =
(nρ)n

n!

(
(1− ρ)

n−1∑
k=0

(nρ)k

k!
+

(nρ)n

n!

)−1
The waiting time factor

f =
w

m
=

Pw

(1− ρ)n
≤ 1

(1− ρ)n

With ρ fixed, f → 0 as n→∞
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Many-server queues: quality AND efficiency!
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Figure: Delay probability Pw and waiting time factor f vs number of servers n,
for M/M/n queues with ρ = 0.95

If one increases n to 100, then Pw = 50.7% and f = 0.101

Jim Dai (Georgia Tech) Queues in Service Systems 10 / 64



Waiting time factor
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Figure: Waiting time factor f vs server utilization ρ in an M/M/1 queue and
an M/M/18 queue
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The QED regime

The above M/M/100 queue with ρ = 0.95 achieves both high quality of
service and operational efficiency:

the server utilization close to 1 (efficiency)

only a fraction of customers need to wait (quality)

waiting times are relatively short (quality)

The system is operated in the quality- and efficiency-driven (QED) regime,
also called the rationalized regime.
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The square-root staffing rule in the M/M/n setting

Let R := λm be the offered load. The square-root safety staffing rule
recommends

n ≈ R + β
√

R for some β > 0

Erlang-C

Pw =
(nρ)n

n!

(
(1− ρ)

n−1∑
k=0

(nρ)k

k!
+

(nρ)n

n!

)−1
Halfin and Whitt (1981) proved that

Pw → γ =
1

βΦ(β)/φ(β) + 1
as R →∞ (1)

φ is the standard normal probability density

Φ is the standard normal cumulative distribution function
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The square-root staffing rule in the M/M/n setting

Fix β > 0 and set n ≈ R + β
√

R. As R increases,

Pw stabilizes at γ ∈ (0, 1)

ρ = R/n→ 1

f = Pw/(
√

nβ) is on the order of 1/
√

n

The system is operated in the QED regime!
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Performance analysis using formula (1)

Given staffing level n and utilization level ρ < 1, set

β =
√

n(1− ρ)

Then,

Pw ≈
1

βΦ(β)/φ(β) + 1
and f =

Pw√
nβ

Exact Approx. by (1)

Pw 50.7% 50.5%
f 0.101 0.101

Table: Performance measures in an M/M/100 queue with ρ = 0.95
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Staffing using formula (1)

Suppose Pw is required to be less than some γ ∈ (0, 1). First solve for β by

γ =
1

βΦ(β)/φ(β) + 1

Then,
n ≈ R + β

√
R
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The square-root staffing rule for GI/GI/n queue

Consider a GI/GI/n queue. Let

n = R + β
√

R for some β > 0

Reed (2009) proved that as R increases, this staffing level drives the queue
to the QED regime
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Historical remarks

The origin of that can be traced back to Erlang (1923)

Erlang reported that it had been in use at the Copenhagen Telephone
Company since 1913

Advocated by Newell (1973,1982), Kolesar (1986), Grassmann
(1986,1988), among others

Whitt (1992) formally proposed and analyzed this rule
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Customer abandonment

Human’s patience is always limited!

Customer abandonment is present in most service systems

Insight

For a service system with significant customer abandonment, any queueing
model that ignores the abandonment phenomenon is likely irrelevant to
operational decisions
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One must model abandonment explicitly!

M/M/50 + M M/M/50

Mean service time 1 1
Mean patience time 2 N/A
Arrival rate 55 55× (1− 10.2%) = 49.39
Abandonment fraction 10.2% N/A
Server utilization 98.8% 98.8%
Mean waiting time (in sec.) 12.5 87.7
Mean queue length 11.2 72.2

Table: Queues with and without customer abandonment
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Why customer abandonment matters?

Customers who experience long waiting tend to abandon the system

With abandonment, the system can reach a steady state even if the
arrival rate is larger than the service capacity

Some performance measures in a queue with abandonment is better
than in a queue without abandonment

To meet certain service levels without considering abandonment, one
tends to overestimate the staffing level
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The square-root staffing rule is still applicable

Insight

In the presence of customer abandonment, the square-root safety staffing
rule can still lead the system to the QED regime and yield high server
utilization, short waiting times, and a very small abandonment fraction
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The square-root staffing rule in the M/M/n +M setting

As argued by Garnett et al. (2002), with

n ≈ R + β
√

R for β ∈ R and R large,

one has

Pw ≈
(

1 +
h(β
√
µ/α)√

µ/αh(−β)

)−1
1/α is the mean patience time

h(x) = φ(x)/(1− Φ(x)) is the standard normal hazard rate

The fraction of abandonment

PA ≈
1√
R

(√
α/µh(β

√
µ/α)− β

)(
1 +

h(β
√
µ/α)√

µ/αh(−β)

)−1
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Waiting times in the QED regime

Fix β =
√

n(1− ρ). As n increases,

the mean waiting time decreases at rate 1/
√

n in M/M/n queues

Garnett et al (2002) confirmed the same decreasing rate in
M/M/n + M queues

When n is large,

waiting times are relatively short

the patience time distribution F , outside a small neighborhood of the
origin, barely has any influence on the system dynamics
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Sensitivity on F with fixed α = F ′(0+)

Consider an M/M/100 + GI queue

with different F

but with the same α = F ′(0+)

λ = 105 and m = 1

Abandonment fraction Mean queue length

Exp Uniform H2 Exp Uniform H2

α = 0.1 0.0497 0.0498 0.0496 52.18 50.59 54.19
α = 0.5 0.0603 0.0607 0.0599 12.67 12.06 13.43
α = 1 0.0670 0.0676 0.0662 7.031 6.585 7.592
α = 2 0.0739 0.0748 0.0730 3.882 3.547 4.313
α = 10 0.0886 0.0902 0.0869 0.9301 0.7540 1.172

Table: Performance insensitivity to patience time distributions F
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Sensitivity on F with mean patience time mp fixed

Abandonment fraction Mean queue length

Exp Uniform H2 Exp Uniform H2

mp = 0.1 0.0886 0.0840 0.0926 0.9301 1.505 0.5840
mp = 0.5 0.0739 0.0676 0.0794 3.882 6.585 2.455
mp = 1 0.0670 0.0608 0.0730 7.031 12.06 4.313
mp = 2 0.0603 0.0550 0.0682 12.67 22.10 6.438
mp = 10 0.0497 0.0481 0.0543 52.18 98.07 24.52

Table: Mean patience time is a wrong statistic!
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Patience insensitivity to patience time distributions

Insight

In the QED regime, the system performance is generally invariant with the
patience time distribution as long as its density at the origin is fixed and
positive

For a G/GI/n + GI queue in the QED regime, it is generally accurate
to replace F with an exponential distribution with rate α = F ′(0+)

The matrix-analytic method can be used to evaluate GI/Ph/n + M
queues
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Customer abandonment in the QED regime

Dai and He (2010) proved that

A(t) ≈ α
∫ t

0
Q(s) ds

A(t) is the number of abandonments by time t

Q(t) is the number of waiting customers at time t

This justifies the replacement of +GI with +M.
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Non-exponential distributions

The exact analysis of a many-server queue has largely been limited to the
M/M/n + M model. However...

40 Journal of the American Statistical Association, March 2005

(a) (b)

Figure 2. Distribution of Service Time. (a) January–October (mean, 185; SD, 238); (b) November–December (mean, 200; SD, 249).

and Schwartz (2002). Thus average wait with general service
times is multiplied by a factor of (1 + C2

s )/2 relative to the wait
under exponential service times. For example, if service times
are in fact exponential, then the factor is 1. Deterministic ser-
vice times halve the average wait of exponential. In our data,
the observed factor is (1 + C2

s )/2 = 1.26.

4.3 Service Times Are Lognormal

Looking at Figure 2, we see that the distribution of service
times is clearly not exponential, as is assumed by standard
queueing theory. In fact, after separating the calls with very
short service times, our analysis reveals a remarkable fit to the
lognormal distribution.

Figure 3(a) shows the histogram of log(service time) for No-
vember and December, in which the short service phenomenon
was absent or minimal. Superimposed is the best fitted normal

density as provided by Brown and Hwang (1993). Figure 3(b)
shows the lognormal Q–Q plot of service time. This does an
amazingly good imitation of a straight line. Nevertheless, the
Kolmogorov–Smirnovtest decisively rejects the null hypothesis
of exact lognormality. (The Kolmogorov–Smirnov statistic here
is K = .020. This is quite small, but still much larger than the
value of K = .009 that was attained for a similarly large sam-
ple size in the inhomogeneous Poisson test of Sec. 4.) We only
provide the graphs to qualitatively support our claim of lognor-
mality. Thus the true distribution is very close to lognormal, but
is not exactly lognormal. (The most evident deviation is in the
left tail of the histogram, where both a small excess of observa-
tions is evident and the effect of rounding to the nearest second
further interferes with a perfect fit.) This is a situation where
a very large sample size yields a statistically significant result,
even though there is no “practical significance.”

(a) (b)

Figure 3. Histogram (a) and Q–Q Plot (b) of log(service time), November–December.

Service time distribution of a call center, by

Brown et al (2005)

Patience time hazard rate of a call center, by

Mandelbaum and Zeltyn (2004)
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Challenges

A GI/GI/n + GI queue is difficult to be analyzed because of

general interarrival/service/patience time distributions

a large number of servers

As a consequence,

no analytical solution and no numerical algorithms for performance
measures

usually evaluated by simulation

We use diffusion processes to approximate many-server queues
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A Poisson sample path with λ = 1

Let {E (t) : t ≥ 0} be a Poisson process with rate λ
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Figure: A Poisson sample path with rate λ = 1

Jim Dai (Georgia Tech) Queues in Service Systems 31 / 64



The centered sample path with λ = 1

Then, {E (t)− λt : t ≥ 0} is the centered process
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Figure: The sample path of the centered process with λ = 1
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A Poisson sample path with λ = 100
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Figure: A Poisson sample path with rate λ = 100
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The centered sample path with λ = 100
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Figure: The sample path of the centered process with λ = 100
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A Poisson sample path with λ = 10, 000
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Figure: A Poisson sample path with rate λ = 10, 000
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The centered sample path with λ = 10, 000
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Figure: The sample path of the centered process with λ = 10, 000
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Brownian motion and Donsker’s theorem

Let

Ẽλ(t) =
E (t)− λt√

λ

Donsker’s theorem implies that the process Ẽλ is close to a standard
Brownian motion when λ is large

Definition

A process B = {B(t) : t ≥ 0} is said to be a (µB , σ
2
B)-Brownian motion if

B(0) = 0 and almost every sample path is continuous

{B(t) : t ≥ 0} has stationary, independent increments

B(t) is normally distributed with mean µBt and variance σ2Bt for
every t > 0

B is a standard Brownian motion if µB = 0 and σ2B = 1

Jim Dai (Georgia Tech) Queues in Service Systems 37 / 64



System equation for an M/M/n + GI queue

X (t) = X (0) + E (t)− S
(
µ

∫ t

0
Z (s) ds

)
− A(t)

X (t) is the number of customers in system at time t

E (t) is the number of arrivals by time t

{S(t) : t ≥ 0} is a Poisson process with rate one

µ = 1/m is the service rate

Z (t) is the number of busy servers at time t

A(t) is the number of abandonments by time t
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Brownian approximation

Let

Ẽ (t) =
E (t)− λt√

n
and S̃(t) =

S(nt)− nt√
n

By Donsker’s theorem

Ẽ ≈ BE and S̃ ≈ BS

BE is a (0, ρµ)-Brownian motion

BS is a (0, 1)-Brownian motion

BE and BS are independent
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Approximation of the abandonment process

Recall that
α = F ′(0+)

The abandonment process is approximated by

A(t) ≈ α
∫ t

0
Q(s) ds = α

∫ t

0
(X (s)− n)+ ds
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Scaled system equations

X̃ (t) =
X (t)− n√

n
, β =

√
n(1− ρ), Ã(t) =

A(t)√
n

The scaled system equation

X̃ (t) = X̃ (0) + Ẽ (t)− S̃
(
µ

∫ t

0

Z (s)

n
ds
)

− βµt + µ

∫ t

0
X̃ (s)− ds − Ã(t)

where

Ẽ ≈ BE

S̃ ≈ BS

Ã ≈ α
∫ t

0
X̃ (s)+ ds

Z (t)

n
≈ ρ ∧ 1
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A diffusion model for an M/M/n + GI queue

The scaled system equation

X̃ (t) = X̃ (0) + Ẽ (t)− S̃
(
µ

∫ t

0

Z (s)

n
ds
)

− βµt + µ

∫ t

0
X̃ (s)− ds − Ã(t)

The diffusion model

Y (t) = X̃ (0) + BE (t)− BS

(
(ρ ∧ 1)µt

)
− βµt + µ

∫ t

0
Y (s)− ds − α

∫ t

0
Y (s)+ ds
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A piecewise OU process

The diffusion model

Y (t) = X̃ (0) + BE (t)− BS

(
(ρ ∧ 1)µt

)
− βµt + µ

∫ t

0
Y (s)− ds − α

∫ t

0
Y (s)+ ds

a piecewise linear drift

b(x) =

{
−βµ− α|x | when x ≥ 0

−βµ+ µ|x | when x ≤ 0

the mean-reverting property

Y is a piecewise Ornstein-Uhlenbeck (OU) process. It becomes an OU
process when α = µ
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Stationary distribution of an OU process

A process Y = {Y (t) : t ≥ 0} is called an OU process if it satisfies

Y (t) = Y (0) + σB(t)− βµt − µ
∫ t

0
Y (s) ds

a linear drift
b(x) = −βµ− µx

a normal stationary distribution

g(z) =

√
µ

πσ2
exp

(
− µ(z + β)2

σ2

)
for z ∈ R
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Stationary distribution of a piecewise OU process

The diffusion model has a piecewise linear drift

b(x) =

{
−βµ− α|x | when x ≥ 0

−βµ+ µ|x | when x ≤ 0

It admits a piecewise normal stationary distribution

g(z) =


a1 exp

(
− α(z + α−1µβ)2

σ2B

)
when z ≥ 0,

a2 exp

(
− µ(z + β)2

σ2B

)
when z < 0,

σ2B = µ
(
ρ+ ρ ∧ 1

)
a1 and a2 are constants such that∫ ∞

−∞
g(z) dz = 1 and g(0−) = g(0+)
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Performance approximations for M/M/n + GI queues

the long-run average queue length

Q̄ ≈
√

n · E[Y (∞)+] =
√

n

∫ ∞
0

xg(x) dx

the long-run average number of idle servers

Ī ≈
√

n · E
[
Y (∞)−

]
= −
√

n

∫ 0

−∞
xg(x) dx .

the abandonment fraction

PA ≈ 1− µ(n − Ī )

λ
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Diffusion approximation for the M/M/100 +M queue

Abandonment fraction Mean queue length

Exp Diffusion Exp Diffusion

α = 0.1 0.0497 0.0497 52.18 52.19
α = 0.5 0.0603 0.0603 12.67 12.66
α = 1 0.0670 0.0669 7.031 7.022
α = 2 0.0739 0.0738 3.882 3.877
α = 10 0.0886 0.0886 0.9301 0.9302

Table: Performance estimates for the M/M/100 + M queue
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Beyond exponential service distributions

A two-phase hyperexponential distribution (H2)

V =

{
Exp(ν1) with probability p1

Exp(ν2) with probability p2 = 1− p1

fraction of phase j workload

θj =
pj/νj

p1/ν1 + p2/ν2
, θ1 + θ2 = 1

a special case of phase-type distributions
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A diffusion model for an M/H2/n + GI queue

Let Xj(t) be the number of type j customers in system at time t

X̃j(t) =
Xj(t)− nθj√

n

A two-dimensional process (Y1,Y2) is used to approximate (X̃1, X̃2)
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A diffusion model for an M/H2/n + GI queue

Yj(t) = X̃j(0)− βµpj t + pjBE (t) + (−1)j−1BM(ρµt)− Bj((ρ ∧ 1)θjνj t)

+ νj

∫ t

0
(pj(Y1(t) + Y2(t))+ − Yj(t)) ds

− pjα

∫ t

0
(Y1(s) + Y2(s))+ ds

BE is a (0, ρµ)-Brownian motion

B1 and B2 are (0, 1)-Brownian motions

BM is a (0, p1p2)-Brownian motion

they are all independent

See He and Dai (2011) for diffusion models for a GI/Ph/n + GI queue
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Computing the stationary distribution of the diffusion model

Let Y be a d-dimensional diffusion process. Assume that Y has a unique
stationary density g on Rd . The basic adjoint relationship (BAR) says∫

Rd

Gf (x)g(x) dx = 0 for all f ∈ C 2
b (Rd)

G is the generator of Y

He and Dai (2011) designed an algorithm to solve the BAR
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Example: an M/H2/500 +M queue
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Figure: ρ = 1.045, p = (0.9351, 0.0649), 1/ν = (0.1069, 13.89), mean patience
time = 2
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Example: an M/H2/20 +M queue
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Figure: ρ = 1.112, p = (0.9351, 0.0649), 1/ν = (0.1069, 13.89), mean patience
time = 2.
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Limitations of the abandonment approximation

The approximation A(t) ≈ α
∫ t
0 Q(s) ds is not always good

The abandonment process still depends on F in a neighborhood of
the origin, not just the origin

When the patience time changes rapidly near the origin, this
abandonment approximation can be inaccurate

When α = 0 and ρ > 1, the queue can still reach a steady state
thanks to abandonment, but the diffusion model does not have a
stationary distribution
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How to improve the abandonment approximation?

Consider a neighborhood of the origin rather than the origin itself!

Exploiting the idea of scaling the patience time hazard rate, proposed
by Reed and Ward (2008)

Assume F has a bounded hazard function

h(t) =
f (t)

1− F (t)
for t ≥ 0.

The scaled abandonment process is approximated by

Ã(t) ≈
∫ t

0

∫ Q(s)√
n

0
h
(√nu

λ

)
du ds.
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Intuition on the abandonment rate

By time s, the ith customer from the back of the queue has been
waiting around i/λ minutes

This customer will abandon the queue during the next δ minutes with
probability h(i/λ)δ

The abandonment rate at time s is around
∑Q(s)

i=1 h(i/λ)

The scaled abandonment rate

1√
n

Q(s)∑
i=1

h
( i

λ

)
≈
∫ Q(s)√

n

0
h
(√nu

λ

)
du
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Refined diffusion model for the M/H2/n + GI queue

The refined diffusion model

Yj(t) = X̃j(0)− βµpj t + pjBE (t) + (−1)j−1BM(ρµt)− Bj((ρ ∧ 1)θjνj t)

+ νj

∫ t

0
(pj(Y1(t) + Y2(t))+ − Yj(t)) ds

− pj

∫ t

0

∫ (Y1(s)+Y2(s))+

0
h
(√nu

λ

)
du ds
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Example: an M/H2/500 + H2 queue

Simulation Diffusion Refined diffusion

Mean queue length 6.413 1.475 6.359
Abandonment fraction 0.05512 0.05863 0.05517
P[X (∞) > 480] 0.8881 0.8663 0.8929
P[X (∞) > 500] 0.4720 0.3192 0.4822
P[X (∞) > 520] 0.1050 9.274× 10−5 0.1074

Table: Performance measures of the M/H2/500 + H2 queue.

traffic intensity: ρ = 1.045

service time distribution: p = (0.5915, 0.4085) and ν = (5.917, 0.454)

patience time distribution: p = (0.9, 0.1) and ν = (1, 200)
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Example: an M/H2/500 + E3 queue

Simulation Refined diffusion

Mean queue length 119.1 119.5
Abandonment fraction 0.04337 0.04340
P[X (∞) > 480] 0.9940 0.9946
P[X (∞) > 500] 0.9756 0.9770
P[X (∞) > 600] 0.6645 0.6733

Table: Performance measures of the M/H2/n + E3 queue.

ρ = 1.045 and α = 0, the first diffusion model fails!

service time distribution: p = (0.5915, 0.4085) and ν = (5.917, 0.454)

mean patience time 1 minute
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Summary

Single-server queues and many-server queues are qualitatively different

Follow the square-root staffing rule to operate your system in the
QED regime

Model customer abandonment explicitly

In the QED regime, the patience density at the origin has the most
impact on system performance

Diffusion models is a useful tool to evaluate a many-server queue’s
performance
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