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Semimartingale reflecting Brownian motion (SRBM)

Z (t) = X (t) + RY (t) for all t ≥ 0, (1)

X is a (θ,Σ) Brownian motion, (2)

Z (t) ∈ Rn
+ for all t ≥ 0, (3)

Y (·) is continuous and nondecreasing with Y (0) = 0, (4)

Yi (·) only increases when Zi (·) = 0, i = 1, . . . , n. (5)

6 

Definition  An  n  n  matrix  R  is said to be an !-matrix if  Rv > 0  for some v  0.  It is 
said to be completely-! if each principal sub-matrix is an !-matrix. 
 
Notation  Let S (mnemonic for state space) denote the n-dimensional non-negative orthant. 
 
 
Let  R  be an  n  n  completely-! matrix,    an  n  n  covariance matrix, and   an n-
dimensional drift vector.  Taylor and Williams (1993) proved the following: there exists a 
diffusion process Z that satisfies the following five conditions, and it is unique in 
distribution. 
 
 
(1) Z(t) = X(t) + RY(t)  for all  t  0 
 
(2) X  is ( , ) Brownian motion 
 
(3) Z(t)  S  for all  t  0 
 
(4) Y( ) is continuous and    with Y(0) = 0 
 
(5) Yi( ) only  increases  when  Zi( ) = 0  (i = 1, …, n) 

 
Z2

Z1

R1

R2

Z2

Z1

R1

R2

Definition An n × n matrix R is said to be an
S-matrix if Rv > 0 for some v ≥ 0. It is said
to be completely-S if each principal submatrix
is an S-matrix.
Taylor and Williams (93): existence and
uniqueness (in distribution)
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A queueing network

8 

A Simple Queueing Network 
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service time 
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Its Approximating SRBM

9 

Its Approximating SRBM 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Z1(t) =  X1(t)              +  Y2(t) 
 
Z2(t) =  X2(t) + Y1(t) – Y2(t) 
 
 
drift of  X  is    = ( -1, 0) 
 
covariance of  X  is   = 

a20
0   

Z2

Z1

Z2

Z1

Z1(t) = X1(t) + Y1(t),

Z2(t) = X2(t)− Y1(t) + Y2(t)

drift of X is θ = (ρ− 1, 0),

covariance of X is Σ =

(
ρ 0

0 a2

)

R. J. Williams (95), Semimartingale reflecting Brownian motions in the
orthant, in Stochastic Networks, eds. F. P. Kelly and R. J. Williams, the IMA
Volumes in Mathematics and its Applications, Vol. 71 (Springer, New York)

R. J. Williams (96), On the approximation of queueing networks in heavy
traffic, in Stochastic Networks: Theory and Applications, eds. F. P. Kelly, S.
Zachary and I. Ziedens, Royal Statistical Society (Oxford Univ. Press,
Oxford)
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A four-step program

1 Establish foundational properties such as existence and uniqueness

e.g. Harrison and Reiman (81), Varadhan and R. J. Williams (85),
Taylor and Williams (90), Dupuis and Williams (94), Dai and
Williams (95), Kang and Williams (07)

2 Prove a limit theorem connecting a discrete, stochastic network
model with a Brownian model

e.g. Reiman (84), . . . , Bramson (98), and Williams (98).

3 Analyze the Brownian model
e.g. Harrison and Williams (87), Dai-Harrison (92)

4 Obtain policies and performance for the stochastic network from the
Brownian model.
e.g. Bell and Williams (05)
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Necessary conditions

Definition Z is said to be positive recurrent if the expected time to hit any
neighborhood of the origin, starting from any point in the orthant, is finite.

Theorem 1. (EL Kharroubi et 00) Let Z be an n-dimensional SRBM with
data (θ,Σ,R). A necessary condition for positive recurrence of Z is that
R−1θ < 0, which means that

(a) R is non-singular, and

(b) 0 = θ + Rβ for some β > 0.

Remark. To understand the intuitive basis for this necessary condition,
compare (b) with the basic system equation Z (t) = X (t) + RY (t).

Harrison and Williams (86): sufficient when R is an M-matrix.
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Definition. An n × n matrix R is said to be a P-matrix if its principal
submatrices all have positive determinants.

Hobson and Rogers (94) determined necessary and sufficient conditions for
positive recurrence in the two-dimensional case. El Kharroubi et al. (00)
restated those conditions as follows

Theorem 2 Suppose n = 2. Then Z is positive recurrent if and only if

R is a P-matrix, and

R−1θ < 0.
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Definition. A fluid path associated with data (θ,R) is a pair of
continuous functions y , z : R+ → Rn that satisfy the following conditions:

z(t) = z(0) + θt + Ry(t) for all t ≥ 0, (6)

z(t) ∈ Rn
+ for all t ≥ 0, (7)

y(·) is continuous and nondecreasing with y(0) = 0, (8)

yi (·) only increases when zi (·) = 0, i=1, . . . , n (9)

Definition

We say that a fluid path (y , z) is attracted to origin if z(t)→ 0 as
t →∞. A fluid path is said to be divergent if |z(t)| → ∞ as t →∞.

Theorem 3 (Dupuis and Williams 94) Let Z be an n-dimensional SRBM
with data (θ,Σ,R). If every fluid path associated with (θ,R) is attracted
to the origin, then Z is positive recurrent.
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The B&EK example: spiraling path

Bernard and El Kharroubi (91) devised the following example. Let

θ =

 −1
−1
−1

 and R =

 1 3 0
0 1 3
3 0 1

 .

This reflection matrix R is completely-S, so Z is a well defined SRBM.

z2

z1
etc.

z3

2

4

8

There is a unique fluid path starting
from z(0) = (0, 0, κ).

The path travels in a counter-clockwise
and piecewise linear fashion on the
boundary, with the first linear segment
ending at (2κ, 0, 0), the second one
ending at (0, 4κ, 0) , and so forth.
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C1(R) and C2(R)

Let C1(R) be the set of (θ,R) pairs that satisfy the following inequalities :

θ < 0, (10)

θ1 > θ2R12 and θ3 < θ2R32, (11)

θ2 > θ3R23 and θ1 < θ3R13, (12)

θ3 > θ1R31 and θ2 < θ1R21. (13)

Let

β1(θ,R) =

(
θ1 − θ2R12

θ2R32 − θ3

)(
θ2 − θ3R23

θ3R13 − θ1

)(
θ3 − θ1R31

θ1R21 − θ2

)
> 0. (14)

Lemma

If θ ∈ C1(R), then the fluid path starting away from the origin on the
boundary behaves as in the B&EK example, spiraling counter-clockwise on
the boundary; each such fluid path has a multiplicative gain equal to β1(θ)
per cycle.

Define C2(R) similarly with β2(θ,R); clockwise spirals.
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First set of results

Definition

Let C = C1 ∪ C2, β(θ,R) = β1(θ,R) for (θ,R) ∈ C1, and
β(θ,R) = β2(θ,R) for (θ,R) ∈ C2. β(θ,R) is the single-cycle gain for
such a pair.

Theorem 4 (El Kharroubi et al. 02) Suppose that θ ∈ C (R) and
β(θ) < 1. Then every fluid path associated with (θ,R) is attracted to the
origin and hence Z is positive recurrent.

Theorem (Bramson-D-Harrison)

Suppose that θ ∈ C (R) and β(θ,R) ≥ 1. Then Z is not positive recurrent.

Proof. For a well-chosen vector u > 0, we define f (t) = u′Z (t) and show
that f = M + A, where M and A continuous, M is a martingale, A(0) = 0
and A(·) ≥ 0.
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Equivalence of a linear fluid path and a LCP solution

Recall a fluid path (y , z) satisfies

z(t) = z(0) + θt + Ry(t) for all t ≥ 0,

z(t) ∈ Rn
+ for all t ≥ 0,

y(·) is continuous and nondecreasing with y(0) = 0,

yi (·) only increases when zi (·) = 0, i=1, . . . , n

Definition

A fluid path (y , z) is said to be linear if it has the form y(t) = ut and
z(t) = vt, t ≥ 0, where u, v ≥ 0.

Linear complementarity problem (LCP): Find vectors u = (ui ) and
v = (vi ) in Rd

+ such that

v = θ + Ru and u′v = 0. (15)
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LCP solution and divergent linear fluid paths

Lemma

Suppose that R−1θ < 0 holds. Then (u∗, 0) is a proper solution of the
LCP, where

u∗ = −R−1θ, (16)

and any other solution (u, v) of the LCP must be divergent, namely, v 6= 0.

If there exists another LCP solution, the corresponding linear fluid path
diverges.
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Second set of results

Theorem (El Kharroubi et al. 02)

If θ 6∈ C (R) and (u∗0) is the unique solution of the LCP, then all fluid
path associated with (θ,R) are attracted to the origin, and hence Z is
positive recurrent.

Theorem (Bramson-D-Harrison)

If there exists another solution (u, v) of the LCP, it is necessarily
divergent, and Z is not positive recurrent.
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Proofs

Proof. Let (u, v) be a LCP solution with v 6= 0. We separate into five
categories.

Category I: exactly two components of v are positive and the
complementary component of u is positive. Using fluid limits

Categories II-V: exactly one component of v is positive.

Assume v3 > 0. Let R̂ =

(
R11 R12

R21 R22

)
.

Jim Dai (Georgia Tech) In memory of Kai Lai Chung 17 / 25



Categories II to V: v3 > 0

Category II: det(R̂) > 0, u1 > 0, u2 ≥ 0.
Using fluid limits

Category III: det(R̂) = 0, u1 > 0, u2 ≥ 0.
cannot happen

Category IV: det(R̂) < 0, u1 > 0 and u2 > 0
reduce to either I or II

Category V: det(R̂) < 0, u1 > 0 and u2 = 0.
complicated estimates

Jim Dai (Georgia Tech) In memory of Kai Lai Chung 18 / 25



Proof sketch for Category I: v2 > 0 and v3 > 0 and u1 > 0

Assume Z (0) = (0,N,N)′. Let τ = inf{t ≥ 0 : Z2(t) = 1 or Z3(t) = 1}.
For t < τ ,

Z1(t) = θ1t + B1(t) + Y1(t), (17)

Z2(t) = N + θ2t + B2(t) + R21Y1(t), (18)

Z3(t) = N + θ3t + B2(t) + R31Y1(t). (19)

We wish to prove that P{τ =∞} > 0.

For a given Brownian motion B, (17)-(19) uniquely define (Ŷ1, Ẑ ), where
Ẑ (t) and Ŷ1(t) are defined for all t ≥ 0. It is sufficient to prove that
P{τ̂ =∞} > 0.
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Fluid limits

For any solution (Ŷ1, Ẑ ) satisfying (17)-(19), for each n ≥ 1,

Z̄n(t) =
1

n
Ẑ (nt) and Ȳ n

1 (t) =
1

n
Ŷ1(nt).

Then,
Z̄n → Z̄ and Ȳ n → Ȳ (t)

a.s. as n→∞, where Z̄ (t) = vt and Ȳ (t) = ut.

Because v2 > 0 and v3 > 0, P{Ẑ2(t)→∞, Ẑ3(t)→∞} = 1, implying
that P{τ̂ =∞} > 0.

Jim Dai (Georgia Tech) In memory of Kai Lai Chung 20 / 25



Proof sketch for Category V: u1 > 0 and v3 > 0

Let Z (0) = (0, 2,N)′. Because Z2(t) > 0 and Z3(t) > 0 for t < τ , one
has Y2(t) = Y3(t) = 0 for t < τ . Then, on t < τ ,

Z1(t) = −t + B1(t) + Y1(t), (20)

Z2(t) = 2− t + B2(t) + Y1(t), (21)

Z3(t) = N + θ3t + B3(t) + R31Y1(t), (22)

where we used the fact that R21 = 1, θ1 = θ2 = −1 because of the scaling
convention.

By (20), one has Y1(t) = Z1(t) + t − B1(t) for t < τ .
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Proof sketch for Category V: u1 > 0 and v3 > 0 (cont’)

Substituting Y1(t) into (21) and (22), one has

Z1(t) = −t + B1(t) + Y1(t),

Z2(t) = 2 + B2(t)− B1(t) + Z1(t),

Z3(t) = N + v3t + B3(t)− R31B1(t) + R31Z1(t)

on t < τ . For a given Brownian motion B, (23), (23) and (23) defines
(Ŷ1, Ẑ ) on R+. One can prove that E{τ̂} =∞ because v3 > 0.
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Summary of results

(u*, 0)  is a proper solution of the LCP, and if any other 

solution exists, it must be divergent (Lemma 1) 

R-1!  < 0 ? 

Yes 

Z is not stable (El Kharroubi et al. 2000; 

see Appendix C for an alternative proof) 

No 

Yes Z is stable (Theorem 2a, 

El Kharroubi et al. 2002) 

No 

!  !!C(R)! ? 

Is there a divergent 

solution of the LCP ? 

No 

Yes 

Z is stable (Theorem 2b,  

El Kharroubi et al. 2002) 

Z is not stable (Theorem 4) 

"(!, R)  < 1 ? 
Yes 

Z is not stable (Theorem 3) 
No 
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Bramson’s example

θ =



−1
−1
−1
−1
−1
−1

 and R =



1 1.05 1.05 1.05 1.05 .4
1 1 .95 .95 .95 .95
1 .95 1 .95 .95 .95
1 .95 .95 1 .95 .95
1 .95 .95 .95 1 .95

1.05 .95 .95 .95 .95 1

 ,

R−1θ is given by

(−0.075472,−0.207547,−0.207547,−0.207547,−0.207547,−0.132075)′

Example (Bramson 10)

LCP has a divergent solution (u, v) with u = e1 and v = .05e6. The
SRBM is positive recurrent.

M. Bramson (2010) A positive recurrent reflecting Brownian motion with
divergent fluid path, Annals of Applied Probability, to appear.
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