DISTRIBUTIONAL SENSITIVITY IN MANY-SERVER QUEUES

Jim Dai

March 18, 2010

Joint work with Shuangchi He and Tolga Tezcan (UIUC \rightarrow Rochester)

- iid service times and iid patience times
- first-in-first-out (FIFO) queue
- the number of servers *n* is large: call centers, web server farms, hospital beds

Time-varying arrival rates

Brown et al (05)

Arrivals to a hospital emergency room

Customer abandonment

Garnett, Mandelbaum & Reiman (02)

".... There is a significant difference in the distributions of waiting time and queue length—in particular, the average waiting time and queue length are both strikingly shorter when abandonment is taken into account."

- one must model abandonment
- possibly non-exponential patience-time distribution

Mandelbaum & Zeltyn (04)

Non-exponential service-time distribution

Brown et al (2005)

Many-server asymptotic regimes: the number of servers n is large; the call volume is high; a small to moderate fraction of customers abandon.

- critically-loaded: quality- & efficiency-driven (QED) regime, Halfin-Whitt regime
- underloaded: quality-driven (QD) regime

Distributions:

- patience-time distribution
- service-time distribution

Sensitivity on patience-time distribution F

- M/LogNormal/100 + GI: $\lambda = 105$, $\mu = 1$, $\sigma_s^2 = 4$, (105 100)/105 = 4.76%
- three patience-time distributions:
 - exponential
 - uniform
 - hyperexponential
- $\alpha = F'(0+)$ is fixed;
- hyper-exponential (H_2) patience-time distribution

$$X = \begin{cases} \mathsf{Exp}(79\alpha/30) & \text{with probability 0.3,} \\ \mathsf{Exp}(0.3\alpha) & \text{with probability 0.7.} \end{cases}$$

 $M/LogNormal/100 + GI: \lambda = 105, (105 - 100)/105 = 4.76\%$

$\alpha \setminus F$	Exp Unifo		H_2			
	Abandonment probability					
$\alpha = 0.1$	0.0528	0.0530	0.0526			
$\alpha = 1$	0.0701	0.0706	0.0693			
lpha= 10	0.0893	0.0907	0.0877			
	Average queue length					
$\alpha = 0.1$	55.46	53.40	57.95			
lpha = 1	7.357	6.819	8.048			
lpha= 10	0.9373	0.7570	1.189			

 $M/\text{LogNormal}/100 + GI: \lambda = 105, \mu = 1, \sigma_s^2 = 4$

$m \setminus F$	Exp	Uniform	H_2		
	Abandonment probability				
m = 0.1	0.0893	0.0851	0.0930		
m = 1	0.0701	0.0645	0.0752		
m = 10	0.0528	0.0499	0.0582		
	Average queue length				
m = 0.1	0.9373	1.516	0.5882		
m = 1	7.357	12.69	4.500		
m = 10	55.46	99.77	26.54		

• Mean patience time *m* is a wrong statistics

INSIGHT

For G/GI/n + GI queues in the QD/QED regime, it is generally accurate to replace the patience-time distribution F with an exponential distribution having rate $\alpha = F'(0+)$.

- Numerical algorithms such as the matrix-analytic method benefit from such a replacement; e.g., G/Ph/n + M systems can be used to approximate G/Ph/n + GI systems.
- Dynamic control problem can be simplified by taking advantage of the exponential patience-time distribution.
- Justifications are carried out through many-server heavy traffic limits.

Many-server asymptotic framework

- Number of servers *n* goes to infinity.
- Consider a sequence of G/GI/n + GI queues indexed by n.
- The arrival process E^n has arrival rate λ^n that depends on n:

 $\lambda^n \approx n\lambda$ for some $\lambda > 0$;

 $E^{n}(t)$ is the cumulative number of arrivals in (0, t].

- The patience-time distribution F is independent of n; F(0) = 0 and $\alpha = F'(0)$ exists.
- The service-time distribution H is independent of n; it has finite mean $1/\mu$.
- $\rho=\lambda/\mu;~\rho=1$ QED or Halfin-Whitt regime; $\rho<1$ QD .
- We assume $\rho = 1$.

Assumptions on the arrival process

• Fluid-scaling

$$\overline{E}^n(t) = \frac{1}{n}E^n(t) \quad t \ge 0.$$

• Functional weak law of large numbers (FWLLN): Assume that

$$\overline{E}^n \Rightarrow \overline{E},\tag{1}$$

and that $\overline{E}(t) = \lambda t$ for some $\lambda > 0$. Let $\rho = \lambda/\mu$ be the traffic intensity.

• Diffusion-scaling

$$ilde{E}^n(t)=rac{1}{\sqrt{n}}\hat{E}^n(t) \quad ext{and} \quad \hat{E}^n(t)=E^n(t)-nar{E}(t) \quad ext{ for } t\geq 0.$$

• Functional Central Limit Theorem (FCLT): Assume that

$$\tilde{E}^n \Rightarrow \tilde{E}$$
 as $n \to \infty$. (2)

Here, we assume \tilde{E} is a $(-\beta, \lambda c^2)$ -Brownian motion.

DEFINITION (NEUTS 1981)

A phase-type random variable is defined to be the time until absorption of a transient continuous time Markov chain.

- \bullet transient states $\mathcal{K} = \{1, \dots, K\}$, K+1 absorbing state
- initial distribution p on \mathcal{K}
- ν_k the rate at state (phase) $k \in \mathcal{K}$
- P = (P_{kℓ}) the transition probabilities on transient states K; I − P is assumed to be invertible
- Let *m* be the mean service time, and

$$\gamma = \frac{\operatorname{diag}(1/\nu)(I + P' + (P')^2 + \ldots)p}{m}.$$
(3)

Then γ_k is interpreted as the fraction of load from phase k customers.

• Two-stage hyperexponential distribution $H_2(\nu_1, \nu_2, p_1, p_2)$

$$\xi = \begin{cases} \exp(\nu_1) & \text{ with probability } p_1 \\ \exp(\nu_2) & \text{ with probability } p_2 \end{cases},$$

$$\mathcal{K} = \{1, 2\}, \quad p = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}, \quad \nu = \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}, \quad P = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

• Mean service time $m = p_1/\nu_1 + p_2/\nu_2$; mean service rate $\mu = 1/m$.

• Fraction of phase k load

$$\gamma_k = \frac{p_k/\nu_k}{m}, \quad \gamma_1 + \gamma_2 = 1, \qquad \gamma_k \nu_k = \mu p_k.$$

Justification: diffusion limits for G/Ph/n + GI queues

Assume a phase-type service-time distribution with parameter (p, P, ν) .

Let $Y_k^n(t)$, k = 1, ..., K, be the number of phase k customers in system at time t and

$$\tilde{Y}_k^n(t) = (Y_k^n(t) - n\gamma)/\sqrt{n},$$

where $\gamma = \mu R^{-1}p$ and R is a $K \times K$ matrix given by $R = (I - P') \text{diag}(\nu)$.

THEOREM (DAI, HE & TEZCAN 09)

Under some initial conditions, $\tilde{Y}^n \Rightarrow \tilde{Y}$ as $n \to \infty$. The process \tilde{Y} satisfies

$$ilde{Y}(t) = ilde{W}(t) - R \int_0^t ilde{Y}(s) \, ds + (R - lpha I) p \int_0^t (e' ilde{Y}(s))^+ \, ds,$$

where \tilde{W} is a K-dimensional Brownian motion and e is the K-dimensional vector of ones.

Puhalskii & Reiman (00) for G/Ph/n queues

The piecewise OU process \tilde{Y}

• Let $R = (I - P') \operatorname{diag}(\nu)$. Recall that $\alpha = F'(0)$. The map $\Phi : x \in \mathbb{D}^K \to y \in \mathbb{D}^K$ is well defined via

$$y(t) = x(t) - R \int_0^t y(s) \, ds + (R - \alpha I) p \int_0^t (e'y(s))^+ \, ds.$$

Massey-Mandelbaum-Reiman (98)

Ỹ = Φ(B), where B is some K-dimensional Brownian motion.
When K = 1,

$$y(t) = x(t) - \mu \int_0^t y(s) \, ds + (\mu - \alpha) \int y(s)^+ \, ds$$

= $x(t) + \mu \int_0^t y(s)^- \, ds - \alpha \int y(s)^+ \, ds$

Justification: marginal limits for G/GI/n + GI queues

Let $X^{n}(t)$ be the number of customers in system at time t and

$$\tilde{X}^n(t) = (X^n(t) - n)/\sqrt{n}.$$

Let *H* be the service-time distribution and $H_e(x) = \mu \int_0^x (1 - H(u)) du$ be the equilibrium distribution of *H*.

THEOREM (MANDELBAUM & MOMČILOVIĆ 09)

Under some initial conditions, $\tilde{X}^n \Rightarrow \tilde{X}$ as $n \to \infty$. The process \tilde{X} satisfies

$$ilde{X}(t) = ilde{Z}(t) + \int_0^t ilde{X}(t-s)^+ dH(s) - rac{lpha}{\mu} \int_0^t ilde{X}(t-s)^+ dH_e(s),$$

for some stochastic process \tilde{Z} .

Reed (09) for G/GI/n queues

- Kaspi & Ramanan (09) for G/GI/n queues
- A key tool: An asymptotic relationship between abandonment processes and queue length processes.

An asymptotic relationship

For the *n*th system in a sequence of G/G/n + GI queues, let $A^n(t)$ be the number of abandonments by time *t*, and $Q^n(t)$ be queue length at time *t*.

THEOREM (DAI & HE (09))

Under some conditions, for each T > 0,

$$\frac{1}{\sqrt{n}}\sup_{0\leq t\leq T} \left| A^{n}(t) - \alpha \int_{0}^{t} Q^{n}(s) \, ds \right| \to 0 \quad \text{ in probability as } n \to \infty.$$
 (4)

 A key assumption: stochastic boundedness for diffusion-scaled queue-length processes, i.e., for each T > 0,

$$\lim_{a\to\infty}\limsup_{n\to\infty}\mathbb{P}\Big[\frac{1}{\sqrt{n}}\sup_{0\leq t\leq T}Q^n(t)>a\Big]=0.$$

• The relationship holds for time-nonhomogeneous arrival processes.

The asymptotic relationship suggests the following framework:

- Prove a limit theorem for queues without abandonment, using a continuous-mapping approach.
- Compare queues with abandonment and corresponding queues without abandonment to prove the stochastic boundedness of the diffusion-scaled queue-length processes.
- Apply a modified map to prove a corresponding limit theorem for queues with abandonment.

The asymptotic relationship suggests the following estimator: fix a T > 0,

$$\hat{\alpha}^n = \frac{A^n(T)}{\int_0^T Q^n(t) \, dt}$$

- Customers who get into service have never abandoned the system and their patience times have never been observed. Thus, it is difficult to estimate the entire patience-time distribution.
- For queues in QD/QED regime, the patience-time density α at zero, rather than the entire patience-time distribution, dictates the system performance.

THEOREM

Assume that $\lim_{n\to\infty} \mathbb{P}[\inf_{0\leq t\leq T} Q^n(t)/\sqrt{n} > \varepsilon] = 1$ for some $\varepsilon > 0$. Then, $\hat{\alpha}^n$ is a consistent estimator in the sense that

 $\hat{\alpha}^n \to \alpha$ in probability as $n \to \infty$.

For each fixed *n*, $\hat{\alpha}^n$ is biased.

Consider M(t)/GI/n(t) + GI queues with $\alpha = 6$ and

• time-varying arrival rate per hour

$$\lambda(t) = 1000 + 100t + 2400\sin(\pi t/12)$$

for $0 \le t \le 12$.

• time-varying staffing level

$$n(t) = \begin{cases} 225 & 0 \le t \le 3\\ 310 & 3 < t \le 9\\ 275 & 9 < t \le 12 \end{cases}$$

FIGURE: Arrival rate vs. service capacity.

 a lognormal service time distribution capa with mean 5 min and variance 10 min².

$s \setminus F$		Exp			Uniform			H_2	
	$A^n(T)$	$\int_0^T Q^n$	$\hat{\alpha}^n$	$A^n(T)$	$\int_0^T Q^n$	$\hat{\alpha}^n$	$A^n(T)$	$\int_0^T Q^n$	$\hat{\alpha}^n$
1	1227	194.7	6.30	1187	202.2	5.87	1235	220.3	5.61
2	1128	195.1	5.78	1149	185.5	6.20	1141	194.9	5.86
3	902	150.4	6.00	926	152.5	6.07	906	156.0	5.81
4	1512	246.7	6.13	1520	241.5	6.30	1526	269.7	5.66
5	1397	234.3	5.97	1398	218.1	6.41	1395	248.3	5.62

The asymptotic relationship also suggests

$$\frac{\mathcal{A}^{n}(T,\omega)}{T}\approx\frac{\alpha}{T}\int_{0}^{T}Q^{n}(s,\omega)ds\quad\text{ for }T>0. \tag{5}$$

• Mandelbaum & Zeltyn (04) proved that for M/M/n + GI queues in QED regime,

long-run abandonment rate = $\alpha \times$ the average queue length. (6)

- Among a large number of data sets from call centers, there is a linear relationship between the abandonment rate and the steady-state queue length.
- It is (5), not (6), that explains this observation.

Two $M/H_2/100 + M$ queues:

- Both have $\lambda = 110$, $\mu = 1$, $\alpha = 0.5$, $c_s^2 = 8$.
- The H_2 service distributions have $\gamma_1 = pm_1 = 0.1$ ($p = 0.8195, m_1 = 0.122, m_2 =$ 4.986) and $\gamma_1 = 0.5$ (p =0.941, $m_1 = 0.53, m_2 = 8.47$), respectively.

By the matrix-analytic method,

$$\mathbb{P}[Q_1 > 50] = 13.27\%,$$

 $\mathbb{P}[Q_2 > 50] = 7.67\%.$

FIGURE: Steady-state distributions of diffusion limits for two $M/H_2/100 + M$ queues.

Diffusion approximation via finite-element method

FIGURE: Steady-state distribution of an $M/H_2/100 + M$ queue with $\lambda = 110$, $\mu = 1$, $\alpha = 0.5$, $\gamma_1 = 0.1$ and $c_s^2 = 8$.

- Heavy-traffic limits for single-server queues or queues with a small number of servers depend only on the first two moments of the service-time distribution.
- Heavy-traffic limits for many-server queues depend on the entire service-time distribution.
- Many-server queues and single-server queues are qualitatively different.

Conjecture

Consider a sequence of G/GI/n + GI queues in the QED regime. Under some initial conditions, $\tilde{X}^n(\infty) \Rightarrow \tilde{X}(\infty)$ as $n \to \infty$ and

$$\lim_{x \to \infty} \frac{1}{x^2} \log \mathbb{P}[\tilde{X}(\infty) > x] = -\frac{\alpha}{\mu(c_a^2 + c_s^2)}$$

Theorem (Gamarnik & Goldberg 2009)

For G/GI/n queues in QED,

$$\lim_{x\to\infty}\frac{1}{x}\log\mathbb{P}[\tilde{X}(\infty)>x]=-\frac{1}{\mu(c_a^2+c_s^2)}.$$

Gamarnik & Momčilović (07) for lattice service-time distribution.

Implication of weak invariance: computing π

• Stationary density π satisfies the basic adjoint relationship (BAR)

$$\int_{\mathbb{R}^K} Gf(x) \pi(x) \, dx = 0 \quad ext{ for all } f \in C^2_b(\mathbb{R}^K);$$

see Dai and Harrison (92) for reflecting Brownian motions.

- Using a reference density $d : \mathbb{R}^K \to \mathbb{R}_+$, we compute the ratio $r(x) = \pi(x)/d(x)$ and obtain π by $\pi(x) = r(x)d(x)$.
- The algorithm is sensitive to the choice of $d(x) = d_1(x)d_2(x)$;

$$d_i(x) = \begin{cases} c_1 \phi(\sqrt{2}(x+\beta)(1+c_a^2)^{-1/2}) & x < 0, \\ c_2 \phi(\sqrt{2\alpha/\mu}(x+\mu\beta/\alpha)(c_s^2+c_a^2)^{-1/2}) & x \ge 0, \end{cases}$$
(7)

where c_1 and c_2 are positive constants that make d_i continuous at zero.

• Using a finite-element algorithm to compute r(x)

Importance of choosing a right reference density

Recall the $M/H_2/100 + M$ queue with

• $\lambda = 110$, $\mu = 1$, $\alpha = 0.5$, $\gamma_1 = 0.1$ and $c_s^2 = 8$.

FIGURE: Gaussian reference density with FIGURE: Gaussian reference density with $c_s^2 = 8$. $c_s^2 = 1$ (obtained from M/M/100 + M).

Hazard-rate scaling asymptotics

When $\alpha = 0$, if we replace +GI by +M,

- it leads to a G/GI/n queue without abandonment, possibly unstable;
- diffusion approximations based on (4) may not capture the original queue with abandonment.

We need to consider the patience-time distribution in a neighborhood of zero, rather than the origin itself. Inspired by Reed & Tezcan (09), let patience distributions depend on n with

$$F^{n}(x) = 1 - e^{-\int_{0}^{x} h(\sqrt{n}u) \, du}, \quad \text{ for } x \ge 0.$$

Conjecture

Under some conditions, for each T > 0,

$$\sup_{0 \le t \le T} \left| \frac{1}{\sqrt{n}} A^n(t) - \int_0^t \int_0^{Q^n(s)/\sqrt{n}} h(u) \, du \, ds \right| \to 0 \quad \text{ in probability as } n \to \infty$$

For G/Ph/n + GI queues, recall that the K-dimensional vector \tilde{Y}^n represents the number of customers in each phase in diffusion scaling.

THEOREM

Under some initial conditions, $\tilde{Y}^n \Rightarrow \tilde{Y}$ as $n \to \infty$. The hazard-rate scaling diffusion process \tilde{Y} satisfies

$$\tilde{Y}(t) = \tilde{W}(t) - R \int_0^t (\tilde{Y}(s) - p(e'\tilde{Y}(s))^+) \, ds - p \int_0^t \int_0^{(e'\tilde{Y}(s))^+} h(u) \, du \, ds,$$

where \tilde{W} is a K-dimensional Brownian motion.

Hazard-rate scaling diffusion approximation

Consider an $M/H_2/500 + E_2$ queue with $\lambda = 522.4$ and $\mu = 1$.

• the H_2 service-time distribution is given by

$$X = \begin{cases} \mathsf{Exp}(2.2) & \text{with probability 0.4,} \\ \mathsf{Exp}(0.2) & \text{with probability 0.6.} \end{cases}$$

• the Erlang (E_2) patience-time distribution has $\alpha = 0$ and mean m = 0.2

	Abandonment	Average	Average
	probability	queue length	busy servers
Simulation	0.05025	13.90	496.1
Diffusion	0.05012	13.65	496.2

- The system performance is insensitive to the patience-time distribution as long as $\alpha = F'(0)$ is fixed and positive.
- The system performance critically depends on α ; an consistent estimator of α is given.
- Many-server heavy traffic diffusion limits provide justification for replacing +GI by +M
- Weak invariance on service-time distribution is conjectured.
- The conjectured decay rate plays a key role in choosing a right reference density for the finite-element algorithm.
- The hazard-rate diffusion limit promises a refined theory and improved performance estimates.

Surveys and references

- J. G. Dai and S. He (2009), "Customer abandonment in many-server queues," Mathematics of Operations Research, to appear. H
- J. G. Dai, S. He, and T. Tezcan (2009), "Many-server diffusion limits for G/Ph/n + GI queues," Annals of Applied Probability, to appear.
- S. Zeltyn and A. Mandelbaum (2005). Call centers with impatient customers: many-server asymptotics of the M/M/n + G queue, Queueing Systems, 51 361-402.
- A. Mandelbaum and P. Momčilović (2009), "Queues with many servers and impatient customers," preprint.
- Gans-Koole-M (03), Telephone call centers: Tutorial, review, and research prospects, *M&SOM*, 5, 79-141.
- Mandelbaum (06), Call centers: research bibliography with abstracts; http:

//iew3.technion.ac.il/serveng/References/US7_CC_avi.pdf

Dai, He and Tezcan (2009), Many-Server Diffusion Limits for G/Ph/n + GI Queues.

Scaling for G/Ph/n + Gl queues: $\rho = 1$

• $Z_k^n(t)$ the number of phase k customers in service, $X^n(t)$ in system, $Q^n(t)$ in queue, $W^n(t)$ workload; centering

$$\hat{X}^n(t) = X^n(t) - n, \quad \hat{Z}^n_k(t) = Z^n_k(t) - \gamma_k n.$$

• Diffusion-scaling

$$egin{aligned} & ilde{X}^n(t) = rac{1}{\sqrt{n}} \hat{X}^n(t), \quad ilde{Z}^n_k(t) = rac{1}{\sqrt{n}} \hat{Z}^n_k(t). \ & ilde{Q}^n(t) = rac{1}{\sqrt{n}} Q^n(t), \quad ilde{W}^n(t) = \sqrt{n} W^n(t). \end{aligned}$$

JIM DAI (GEORGIA TECH)

Critically loaded G/Ph/n + GI queues: $\rho = 1$

THEOREM (DAI-HE-TEZCAN 09)

Assume that F(0) = 0 and that $\alpha = F'(0)$ exists. Suppose that $(\tilde{X}^n(0), \tilde{Z}^n(0)) \Rightarrow (\xi, \eta)$. Then

$$(\tilde{Q}^n, \tilde{W}^n, \tilde{X}^n, \tilde{Z}^n) \Rightarrow (\tilde{Q}, \tilde{W}, \tilde{X}, \tilde{Z}),$$

where (\tilde{X}, \tilde{Z}) is a (K + 1)-dimensional (degenerate) continuous Markov process, and

$$ilde{Q}(t)=(ilde{X}(t))^+$$
 and $ilde{W}(t)=rac{1}{\mu} ilde{Q}(t)$ (state space collapse).

Furthermore, letting

$$ilde{Y}(t) = p ilde{Q}(t) + ilde{Z}(t),$$

 $ilde{Y}$ is a K-dimensional piecewise Ornstein-Uhlenbeck (OU) process.

Puhalskii-Reiman (00) for G/Ph/n, Garnett-M-Reiman (02) for M/M/n + MJIM DAL (Georgia Tech) DISTRIBUTIONAL SENSITIVITY

39 / 52

• Let
$$R = (I - P') \operatorname{diag}(\nu)$$
. Recall that $\alpha = F'(0)$. The map $\Phi : x \in \mathbb{D}^K \to y \in \mathbb{D}^K$ is well defined via

$$y(t) = x(t) - R \int_0^t y(s) \, ds + (R - \alpha I) p \int_0^t (e'y(s))^+ \, ds.$$

Massey-Mandelbaum-Reiman (98)

- $\tilde{Y} = \Phi(B)$, where B is some K-dimensional Brownian motion.
- One can recover (\tilde{X}, \tilde{Z}) via

$$ilde{X}(t)=e' ilde{Y}(t)$$
 and $ilde{Z}(t)= ilde{Y}(t)-p(ilde{X}(t))^+,$ $t\geq 0.$

Two-dimensional piecewise OU process

- Assume service time distribution is $H_2(\nu_1, \nu_2, p_1, p_2)$.
- For each $(x_1, x_2) \in \mathbb{D}^2$, there is a unique $(y_1, y_2) \in \mathbb{D}^2$ such that for k = 1, 2,

$$y_k(t) = x_k(t) - \nu_k \int_0^t y_k(s) ds + (\nu_k - \alpha) p_k \int_0^t (y_1(s) + y_2(s))^+ ds.$$

- The map $\Phi: x \in \mathbb{D}^2 \to y \in \mathbb{D}^2$ is well defined.
- When B is a 2-d Brownian motion with drift -βp and covariance matrix

$$\mu \begin{bmatrix} p_1 (p_1 c^2 - p_1 + 2) & p_1 p_2 (c^2 - 1) \\ p_1 p_2 (c^2 - 1) & p_2 (p_2 c^2 - p_2 + 2) \end{bmatrix}.$$

 $\tilde{Y} = \Phi(B)$ is the 2-*d* piecewise OU process that serves as the diffusion limit.

JIM DAI (GEORGIA TECH)

Diffusion approximation: $M/H_2/200 + M$

- $H_2(1/2.2, 1/.2, .4)$ service time distribution and $\alpha = F'(0) = 2/3$.
- Finite element method to solve the stationary distribution of Υ̃;
 Dai-Harrison (92), Shen-Chen-Dai-Dai (02); reference density

$$f(x_1, x_2) = \frac{1}{4}e^{-(x_1^2 + x_2^2)/4};$$

truncate the area $(-8,14)\times(-8,14);$ the grid consists of 1×1 squares.

Performance measures

	$\mathbb{E}(Q)$		$\mathbb{P}{Ab.}$	
λ^n	Numerical	Diffusion	Simulation	Diffusion
200	8.72	8.85	0.0290	0.0295
220	31.05	30.64	0.0940	0.0928

Steady-state density for \hat{X}^n and $\sqrt{n}\tilde{X}$: $\lambda^n = 200$

Steady-state density for $(\tilde{Y}_1, \tilde{Y}_2)$: $\lambda^n = 200$

- The lemma reduces +GI to +M
- Perturbed systems
- System representations
- Centering, scaling, applying standard tools: Donsker's theorem, continuous-mapping theorem, random-time-change theorem
- Conventional heavy traffic limits for generalized Jackson networks: Reiman (84), Johnson (83)
- Stone's theorem: Halfin-Whitt (81), Garnett-M-Reiman (02), Whitt (04), Armony-Maglaras (04)

Step 1: Perturbed systems

- Each phase has at most one customer in service, with additive service rate
- Only the leading customer in queue can abandon with additive abandonment rate

The two systems are equal in distribution

• state $(U(t), Q(t), Z_1(t), Z_2(t))$, where, for example,

U(t) = 3.5, $Q(t) = \{2, 1, 2, 1, 1, 2\}$, $Z_1(t) = 1$, $Z_2(t) = 3$.

Two Markov processes have the same generators.

Donsker's theorem for primitives

Primitive processes: in addition to E^n ,

- service: S_k Poisson process with rate ν_k ; $\hat{S}(t) = S(t) \nu t$,
- abandonment: G Poisson process with rate α ; $\hat{G}(t) = G(t) \alpha t$,
- routing: for each $N \geq 1$ and $k = 0, 1, \ldots, K$,

$$\Phi^k(N) = \sum_{j=1}^N \phi^k(j); \qquad \hat{\Phi}^k(N) = \sum_{j=1}^N \left(\phi^k(j) - p^k \right),$$

where $p^0 = p$ and p^k is the *k*th column of *P'*.

Define diffusion-scaled processes

$$\begin{split} \tilde{S}^{n}(t) &= \frac{1}{\sqrt{n}} \hat{S}(nt), \quad G^{n}(t) = \frac{1}{\sqrt{n}} \hat{G}(nt), \quad \tilde{\Phi}^{n,k}(t) = \frac{1}{\sqrt{n}} \hat{\Phi}^{k}(\lfloor nt \rfloor). \\ (\tilde{E}^{n}, \tilde{G}^{n}, \tilde{S}^{n}, \tilde{\Phi}^{0,n}, \dots, \tilde{\Phi}^{K,n}) \Rightarrow (\tilde{E}, \tilde{G}, \tilde{S}, \tilde{\Phi}^{0}, \dots, \tilde{\Phi}^{K}) \quad \text{as } n \to \infty. \end{split}$$

System representations

$$\begin{aligned} X^{n}(t) &= X^{n}(0) + E^{n}(t) - D^{n}(t) - G\left(\int_{0}^{t} Q^{n}(s) \, ds\right), \\ Z^{n}(t) &= Z^{n}(0) + \Phi^{0}(B^{n}(t)) + \sum_{k=1}^{K} \Phi^{k}(S_{k}(T^{n}_{k}(t))) - S(T^{n}(t)), \\ T^{n}_{k}(t) &= \int_{0}^{t} Z^{n}_{k}(s) \, ds, \quad S(T^{n}(t)) = (S_{1}(T^{n}_{1}(t)), \dots, S_{K}(T^{n}_{K}(t)))'. \end{aligned}$$

where

$$D^{n}(t) = -e'M^{n}(t) + e'R \int_{0}^{t} Z^{n}(s) ds,$$

$$e'Z^{n}(t) = e'Z^{n}(0) + B^{n}(t) - D^{n}(t),$$

$$M^{n}(t) = \sum_{k=1}^{K} \hat{\Phi}^{k} \left(S_{k}(T_{k}^{n}(t))\right) - (I - P')\hat{S}(T^{n}(t)).$$

JIM DAI (GEORGIA TECH)

Continuous-mapping theorem

After some centering,

$$\hat{X}^{n}(t) = U^{n}(t) - \alpha \int_{0}^{t} (\hat{X}^{n}(s))^{+} ds - e'R \int_{0}^{t} \hat{Z}^{n}(s) ds,$$
$$\hat{Z}^{n}(t) = V^{n}(t) - p(\hat{X}^{n}(t))^{-} - (I - pe')R \int_{0}^{t} \hat{Z}^{n}(s) ds,$$

Thus, $(\hat{X}^n, \hat{Z}^n) = \Theta(U^n, V^n)$, where

$$U^{n}(t) = \hat{X}^{n}(0) + \hat{E}^{n}(t) + e'M^{n}(t) - \hat{G}\left(\int_{0}^{t} (\hat{X}^{n}(s))^{+} ds\right),$$

$$V^{n}(t) = (I - pe')\hat{Z}^{n}(0) + \hat{\Phi}^{0}(B^{n}(t)) + (I - pe')M^{n}(t).$$

Because, $(\tilde{X}^n, \tilde{Z}^n) = \Theta(\tilde{U}^n, \tilde{V}^n)$, the theorem follows from

$$(\tilde{U}^n, \tilde{V}^n) \Rightarrow (\tilde{U}, \tilde{V}), \qquad \tilde{U}^n(t) = \frac{1}{\sqrt{n}} U^n(t).$$

-

Random-time-change and fluid limits

$$\begin{split} \tilde{U}^{n}(t) &= \tilde{X}^{n}(0) + \tilde{E}^{n}(t) + e'\tilde{M}^{n}(t) - \tilde{G}^{n}\left(\int_{0}^{t}(\bar{X}^{n}(s))^{+} ds\right), \\ \tilde{M}^{n}(t) &= \frac{1}{\sqrt{n}}M^{n}(t) = \sum_{k=1}^{K}\tilde{\Phi}^{k,n}(\bar{S}^{n}_{k}(\bar{T}^{n}_{k}(t))) - (I - P')\tilde{S}^{n}(\bar{T}^{n}(t)) \end{split}$$

where, for $t \ge 0$,

$$\bar{B}^{n}(t) = \frac{1}{n}B^{n}(nt), \quad \bar{S}^{n}(t) = \frac{1}{n}S(nt), \quad \bar{T}^{n}(t) = \frac{1}{n}T^{n}(nt), \\
\bar{X}^{n}(t) = \frac{1}{n}\hat{X}^{n}(t), \quad \bar{Z}^{n}(t) = \frac{1}{n}\hat{Z}^{n}(t).$$

Because $(\bar{X}^n, \bar{Z}^n) = \Theta(\bar{U}^n, \bar{V}^n) \Rightarrow 0$, one has fluid limits

$$(\overline{S}^n, \overline{T}^n, \overline{B}^n) \Rightarrow (\overline{S}, \overline{T}, \overline{B}), \text{ where}$$

 $\overline{S}_k(t) = \nu_k t, \quad \overline{T}_k(t) = \gamma_k t, \quad \overline{B}(t) = \mu t.$

1

- Reed (07), Kaspi-Ramanan (07), Kang-Ramanan (08) and Zhang (09) did not use continuous-mapping approach, all involving a complicated tightness argument.
- Decreusefond-Moyal (08) and Talreja-Reed (09) used continuous-mapping approach for $G/GI/\infty$ queues.
- Kaspi-Ramanan (09) measure-valued diffusion limits for G/GI/n queues.