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@ iid service times and iid patience times
o first-in-first-out (FIFO) queue

server 1
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server 2

server n
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@ the number of servers n is large: call centers, web server farms,
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Customer abandonment

Garnett, Mandelbaum & Reiman

(02)
. ) C e U.S. bank
.... There is a significant o
difference in the distributions of 035
waiting time and queue length—in 03
particular, the average waiting 025
time and queue length are both 2 oo
strikingly shorter when Sos
abandonment is taken into .
account.”
0.05
@ one must model % 10 20 ) 30 40 50 60
abandonment
@ possibly non-exponential Mandelbaum & Zeltyn (04)

patience-time distribution
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Do distributions matter?

Many-server asymptotic regimes: the number of servers n is large; the call
volume is high; a small to moderate fraction of customers abandon.

e critically-loaded: quality- & efficiency-driven (QED) regime,
Halfin-Whitt regime

e underloaded: quality-driven (QD) regime

Distributions:
@ patience-time distribution

@ service-time distribution
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Sensitivity on patience-time distribution F

e M/LogNormal/100 + GI: A =105, u =1, 02 = 4,
(105 — 100)/105 = 4.76%
@ three patience-time distributions:

e exponential
e uniform
e hyperexponential

e o= F'(0+) is fixed;

e hyper-exponential (H,) patience-time distribution

X = Exp(79a/30)  with probability 0.3,
| Exp(0.3c) with probability 0.7.
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Sensitivity on F with fixed o = F'(0)

M /LogNormal /100 + GI: A = 105, (105 — 100)/105 = 4.76%

a\F Exp Uniform Ho
Abandonment probability
a=0.1 0.0528 0.0530 0.0526
o= 0.0701 0.0706 0.0693
a =10 0.0893 0.0907 0.0877
Average queue length
a=0.1 55.46 53.40 57.95
o= 7.357 6.819 8.048
a =10 0.9373 0.7570 1.189
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Sensitivity on F with mean m fixed

M /LogNormal /100 + GI: A =105, p =1, o

2
s

m\F Exp Uniform Ho
Abandonment probability
m=20.1 0.0893 0.0851 0.0930
m=1 0.0701 0.0645 0.0752
m=10 0.0528 0.0499 0.0582
Average queue length
m=0.1 0.9373 1.516 0.5882
m=1 7.357 12.69 4.500
m =10 55.46 99.77 26.54

@ Mean patience time m is a wrong statistics
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Replacing G/Gl/n+ Gl by G/Gl/n+ M when « > 0

INSIGHT

For G/Gl/n+ Gl queues in the QD/QED regime, it is generally accurate
to replace the patience-time distribution F with an exponential distribution
having rate o = F'(0+).

@ Numerical algorithms such as the matrix-analytic method benefit
from such a replacement; e.g., G/Ph/n+ M systems can be used to
approximate G/Ph/n + Gl systems.

@ Dynamic control problem can be simplified by taking advantage of
the exponential patience-time distribution.

e Justifications are carried out through many-server heavy traffic limits.
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Many-server asymptotic framework

Number of servers n goes to infinity.

Consider a sequence of G/Gl/n+ Gl queues indexed by n.

The arrival process E” has arrival rate A" that depends on n:

A~ n)\ for some \ > 0;

E"(t) is the cumulative number of arrivals in (0, ¢].
The patience-time distribution F is independent of n; F(0) = 0 and
a = F’(0) exists.

The service-time distribution H is independent of n; it has finite mean

1/p.
p = A u; p=1QED or Halfin-Whitt regime; p <1 QD .

o We assume p = 1.
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Assumptions on the arrival process

("]
1
=—E" > 0.
p (t) t>
° : Assume that
= E, (1)
and that = At for some A > 0. Let p = \/u be the traffic
intensity.
e Diffusion-scaling
~ 1 -~ ~
E”(t):ﬁE”(t) and E"(t)=E"(t)—n for t > 0.

e Functional Central Limit Theorem (FCLT): Assume that
En=E as n — oo. (2)

Here, we assume E is a (—3, Ac?)-Brownian motion.
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Phase-type service time distributions (p, P, )

DEFINITION (NEUTS 1981)

A phase-type random variable is defined to be the time until absorption of
a transient continuous time Markov chain.

e transient states K = {1,..., K}, K + 1 absorbing state
@ initial distribution p on IC
@ vy the rate at state (phase) k € K

P = (Py¢) the transition probabilities on transient states K; | — P is
assumed to be invertible

Let m be the mean service time, and

o diag(1/v)(I + P'+ (P2 +...)p

(3)
Then ~y, is interpreted as the fraction of load from phase k customers.
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An example of phase-type distributions

e Two-stage hyperexponential distribution Ha(v1, 12, p1, p2)

exp(r2)  with probability py ’

i a- () () -0

@ Mean service time m = p1/v1 + p2/v2; mean service rate = 1/m.

{exp(ul) with probability p;

e Fraction of phase k load

Pk/Vk
7":,{7’ 7+ =1 VkVk = IPk-
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Justification: diffusion limits for G/Ph/n + G| queues

Assume a phase-type service-time distribution with parameter (p, P, v).

Let Y/(t), k =1,...,K, be the number of phase k customers in system
at time t and

Yi(t) = (Y2(t) — my)/v/n,
where v = uR™1p and R is a K x K matrix given by R = (I — P')diag(v).
THEOREM (DA1, HE & TEzcCAN 09)

Under some initial conditions, Y" = Y as n — oo. The process Y satisfies
Y(t) = W(t) — R/ Y(s)ds + (R — a/)p/ (e'Y(s))" ds,
0 0

where W is a K-dimensional Brownian motion and e is the K-dimensional
vector of ones.

Puhalskii & Reiman (00) for G/Ph/n queues
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The piecewise OU process Y

e Let R = (I — P')diag(v). Recall that o = F’(0). The map
¢ x e DK — y € DX is well defined via

v =x(0)- R | y(s)ds + (R~ al)p / (ey(s) ds.

Massey-Mandelbaum-Reiman (98)
o Y = ®(B), where B is some K-dimensional Brownian motion.
@ When K =1,

W = X0 - [ y(s)ds 4 (i — o) [ty as
= x(t)+,u/0ty(s)_ ds—a/y(5)+ ds
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Justification: marginal limits for G/G//n + G| queues

Let X"(t) be the number of customers in system at time t and

X"(t) = (X"(t) = n)/v/n.

Let H be the service-time distribution and He(x) = 1 [, (1 )) du be
the equilibrium distribution of H.

THEOREM (MANDELBAUM & MoMCILOVIC 09)

Under some initial conditions, X" = X as n — oo. The process X satisfies

— /th+dH /th dHe(s),

for some stochastic process Z.

Reed (09) for G/GI/n queues
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Measure-valued diffusion limits for G/G//n + G| queues

e Kaspi & Ramanan (09) for G/Gl/n queues

@ A key tool: An asymptotic relationship between abandonment
processes and queue length processes.
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An asymptotic relationship
For the nth system in a sequence of G/G/n+ Gl queues, let A"(t) be the
number of abandonments by time ¢, and Q"(t) be queue length at time t.

THEOREM (Da1 & HE (09))

Under some conditions, for each T > 0,

1 t
— sup ‘A"(t) — a/ Q"(s) ds‘—> 0 in probability as n — oco. (4)
Vno<i<T 0

@ A key assumption: stochastic boundedness for diffusion-scaled
queue-length processes, i.e., for each T > 0,

1
lim limsupP|— sup Q"(t) > a| =0.
a—x pn—oo no<i<T

@ The relationship holds for time-nonhomogeneous arrival processes.
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A modularized approach to proving limit theorems

The asymptotic relationship suggests the following framework:

@ Prove a limit theorem for queues without abandonment, using a
continuous-mapping approach.

o Compare queues with abandonment and corresponding queues
without abandonment to prove the stochastic boundedness of the
diffusion-scaled queue-length processes.

e Apply a modified map to prove a corresponding limit theorem for
queues with abandonment.
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Estimating patience-time density o at zero

The asymptotic relationship suggests the following estimator: fix a T > 0,
_ AT
fOT Q"(t) dt

AN

o Customers who get into service have never abandoned the system and
their patience times have never been observed. Thus, it is difficult to
estimate the entire patience-time distribution.

e For queues in QD/QED regime, the patience-time density « at zero,
rather than the entire patience-time distribution, dictates the system
performance.
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Assume that lim,_.o P[info<i<7 Q"(t)/\/n > €] = 1 for some £ > 0.
Then, &" is a consistent estimator in the sense that

&" — a  in probability as n — oo.

For each fixed n, &" is biased.



Consistent estimator @": an example

Consider M(t)/Gl/n(t) + Gl queues with & = 6 and

@ time-varying arrival rate per hour
A(t) = 1000 + 100t + 2400sin(7t/12)

for 0 <t <12.

e time-varying staffing level

225 0<t<3
n(t)=4310 3<t<9
275 9<t<12

@ a lognormal service time distribution

with mean 5 min and variance 10 min2

JmM DAl (GEORGIA TECH)
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Consistent estimator @": an example

s\F Exp Uniform H»

A(T) 7@ & | A(T) [JQ & [A(T) [J@ a
1 1227 1947 6.30 | 1187 2022 587 | 1235 220.3 5.61
2 1128 1951 578 | 1149 1855 6.20 | 1141 1949 5.86
3 902 150.4 6.00 926 1525 6.07 906 156.0 5.81
4 1512 2467 6.13 | 1520 2415 6.30 | 1526 269.7 5.66
5 1397 2343 597 | 1398 2181 6.41 | 1395 2483 5.62
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A linear relationship in real-world call centers

The asymptotic relationship also suggests
AT T
ANTw) 0‘/ Q"(s,w)ds for T > 0. (5)
T T Jo

e Mandelbaum & Zeltyn (04) proved that for M/M/n + Gl queues in
QED regime,

long-run abandonment rate = « x the average queue length.  (6)

@ Among a large number of data sets from call centers, there is a linear
relationship between the abandonment rate and the steady-state
queue length.

e Itis (5), not (6), that explains this observation.
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Sensitivity on service-time distributions

Two M/H»/100 + M queues:

o Both have A =110, p =1,
a = 0.5, cs2 = 8.

@ The H, service distributions
have v = pm; = 0.1
(p = 08195, mp = 0.122, my =
4.986) and 71 = 0.5 (p=
0.941, m;y = 0.53, mp, = 8.47),
respectively.

0.2r

o
o
@

probability density
o
2

o
=)
5}

By the matrix-analytic method,

0

-2 0 2 4 6 8 10

P[Q: > 50] = 13.27%, FIGURE: Steady-state distributions of diffusion
P[Q> > 50] = 7.67%. limits for two M/H,/100 + M queues.
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Diffusion approximation via finite-element method

0.025 T -
——diffusion approximation
—— matrix-analytic
0.02-
5. 0.015F
£
=
(]
Qo
<}
<
S o001t
0.005F
0 L L —
50 100 150 200
number of customers in system

FIGURE: Steady-state distribution of an M/H,/100 + M queue with A = 110,
uw=1 a=05 v =0.1and c52:8.
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Weak invariance on service-time distributions

e Heavy-traffic limits for single-server queues or queues with a small
number of servers depend only on the first two moments of the
service-time distribution.

@ Heavy-traffic limits for many-server queues depend on the entire
service-time distribution.

@ Many-server queues and single-server queues are qualitatively
different.

CONJECTURE

Consider a sequence of (j/Gl/n + Gl queues in the QED regime. Under
some initial conditions, X"(c0) = X(00) as n — oo and

N S
p(c2 +c2)

.1 <
xll—>moo 2 log P[X(c0) > x] = —
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For G/Gl/n queues in QED,

1

1 o
lim —logP[X >X| = ——FF5—>5+.
L T R

X—00

Gamarnik & Momgilovi¢ (07) for lattice service-time distribution.



Implication of weak invariance: computing 7
e Stationary density 7 satisfies the basic adjoint relationship (BAR)
Gf(x)m(x)dx =0 for all f € C3(RK);
RK

see Dai and Harrison (92) for reflecting Brownian motions.

e Using a reference density d : RK — R, we compute the ratio
r(x) = m(x)/d(x) and obtain 7 by 7(x) = r(x)d(x).

@ The algorithm is sensitive to the choice of d(x) = di(x)da(x);

4ix) — {C1¢(ﬂ(x+@)(1 +c3)7?) x<0 o

ad(y2a/u(x + pfja) (2 + c3)7H?) x>0,
where ¢ and ¢ are positive constants that make d; continuous at
zero.

@ Using a finite-element algorithm to compute r(x)
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Importance of choosing a right reference density

Recall the M/H,/100 + M queue with
e A=110, u=1, a=0.5, v =0.1 and C52:8.

0.0: 0.0:
—diffusion: d(w1, x2) with ¢2 =8 —— diffusion: d(x1, x2) with ¢2 = 1
—— matrix-analytic —— matrix-analytic
0.02F 0.02
2 00151 2 00157
5 5
s s
3 2
[ [
S oo1f S o001
0.005 0.005
50 100 200 50 100 200
number of customers in system number of customers in system

FI1GURE: Gaussian reference density with FIGURE: Gaussian reference density with
c2=8. c2 =1 (obtained from M/M/100 + M).
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Hazard-rate scaling asymptotics

When a = 0, if we replace +G/ by +M,
e it leads to a G/GlI/n queue without abandonment, possibly unstable;

e diffusion approximations based on (4) may not capture the original
queue with abandonment.

We need to consider the patience-time distribution in a neighborhood of
zero, rather than the origin itself. Inspired by Reed & Tezcan (09), let
patience distributions depend on n with

F'(x)=1—¢e" Jo bV du - for x> 0.

CONJECTURE
Under some conditions, for each T > 0,

Q"(s)/
sup —A” t) —/ / u)duds|— 0 in probability as n — oo
0<t<T
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Hazard-rate scaling heavy-traffic limits

For G/Ph/n+ Gl queues, recall that the K-dimensional vector Y
represents the number of customers in each phase in diffusion scaling.

THEOREM

Under some initial conditions, Y" = Y as n— oo. The hazard-rate
scaling diffusion process Y satisfies

\N/(t)_W(t)—R/Ot(\N/(s)— p(e'Y(s))")ds— //(e T u) du ds,

where W is a K-dimensional Brownian motion.
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Hazard-rate scaling diffusion approximation

Consider an M/H,/500 + E> queue with A = 522.4 and p = 1.

@ the H, service-time distribution is given by

X — Exp(2.2)  with probability 0.4,
~ | Exp(0.2) with probability 0.6.

e the Erlang (Ey) patience-time distribution has o = 0 and mean

m=20.2
Abandonment Average Average
probability queue length  busy servers
Simulation 0.05025 13.90 496.1
Diffusion 0.05012 13.65 496.2
JmM Da1 (GEORGIA TECH) DISTRIBUTIONAL SENSITIVITY
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Summary

@ The system performance is insensitive to the patience-time
distribution as long as « = F’(0) is fixed and positive.

@ The system performance critically depends on «; an consistent
estimator of « is given.

@ Many-server heavy traffic diffusion limits provide justification for
replacing +GI by +M

@ Weak invariance on service-time distribution is conjectured.

@ The conjectured decay rate plays a key role in choosing a right
reference density for the finite-element algorithm.

@ The hazard-rate diffusion limit promises a refined theory and
improved performance estimates.
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Scaling for G/Ph/n+ Gl queues: p =1

p:1 ) @ server 1

// @ server 2
the queue size is O(\/ﬁ) S

> — OOOLOK

7

.
.
\ .
\
\
AN @ server n
—

the number in service is around n

e ZJ(t) the number of phase k customers in service, X"(t) in system,
Q"(t) in queue, W"(t) workload; centering

X"(t) = X"(t) —n, ZP(t) = ZP(t) — yxn.
e Diffusion-scaling

Sr(e) = K00, 200 = Z-20).
&"(t) = \%Q”(t), Wr(t) = /aWn().
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Critically loaded G/Ph/n + Gl queues: p =1

THEOREM (DAI-HE-TEZCAN 09)

Assume that F(0) = 0 and that o = F'(0) exists. Suppose that
(X7(0), 27(0)) = (£, m). Then

QW X" 2" = (Q,W,X, 2),

where (X, Z) is a (K + 1)-dimensional (degenerate) continuous Markov
process, and

Q(t) = (X(t))" and W(t) = =Q(t) (state space collapse).

=l

Furthermore, letting y : y

Y(t) = pQ(t) + £(1),
Y is a K-dimensional piecewise Ornstein-Uhlenbeck (OU) process.
Puhalskii-Reiman (00) for G/Ph/n, Garnett-M-Reiman (02) for
M/M/n+ M
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The piecewise OU process Y

o Let R = (/ — P')diag(v). Recall that v = F’(0). The map
¢ x e DK — y € DX is well defined via

y(t) = x(t) — R /0 y(s)ds+ (R - al)p /0 (¢/y(s))* d.

Massey-Mandelbaum-Reiman (98)
e Y = ®(B), where B is some K-dimensional Brownian motion.

@ One can recover (X, Z) via

X(t)=€VY(t) and Z(t)= Y(t)-p(X(t))", t>0.
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Two-dimensional piecewise OU process

e Assume service time distribution is Ha(v1, 12, p1, p2).
e For each (x1,x2) € D?, there is a unique (y1,y2) € D? such that for
k=1,2,

t

yi(t) = xk(t) — v /Otyk(s)ds + (vk — oz)pk/ (y1(s) + y2(s)) " ds.

0

e The map & : x € D? — y € D? is well defined.

@ When B is a 2-d Brownian motion with drift —3p and covariance
matrix

[Pl (p1c? —p1+2) p1p2 (2 — 1) ]
pip2 (2 —1)  p2(p2c® —p2+2)]

Y = ®(B) is the 2-d piecewise OU process that serves as the
diffusion limit.
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Diffusion approximation: M/H,/200 + M

e Hp(1/2.2,1/.2,.4) service time distribution and a = F'(0) = 2/3.
@ Finite element method to solve the stationary distribution of Y;
Dai-Harrison (92), Shen-Chen-Dai-Dai (02); reference density

L e-(dd)/a,

f(X]_,X2) = 2
truncate the area (—8,14) x (—8,14); the grid consists of 1 x 1
squares.
@ Performance measures
E(Q) P{Ab.}
A" Numerical Diffusion Simulation Diffusion
200 8.72 8.85 0.0290 0.0295
220 31.05 30.64 0.0940 0.0928
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Steady-state density for (Y1, Y5): A" = 200

0.6
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Proof sketches: critically loaded G/Ph/n+ Gl queues

o The lemma reduces +G/ to +M

@ Perturbed systems

System representations

Centering, scaling, applying standard tools: Donsker's theorem,
continuous-mapping theorem, random-time-change theorem

e Conventional heavy traffic limits for generalized Jackson networks:
Reiman (84), Johnson (83)

e Stone's theorem: Halfin-Whitt (81), Garnett-M-Reiman (02), Whitt
(04), Armony-Maglaras (04)
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Step 1: Perturbed systems

O— OO0

e Each phase has at most one customer in service, with additive service
rate

@ Only the leading customer in queue can abandon with additive
abandonment rate
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The two systems are equal in distribution

O— COOOORK o

Yol

e state (U(t), Q(t), Z1(t), Z2(t)), where, for example,
U(t) = 35’ Q(t) = {27 1727 ]-7 1,2}, Z]_(t) = ]_, ZQ(t) = 3.

@ Two Markov processes have the same generators.
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Donsker’s theorem for primitives

Primitive processes: in addition to E”,
e service: S; Poisson process with rate v; 5(t) = S(t) — vt,
e abandonment: G Poisson process with rate «; G(t) = G(t) — at,
@ routing: foreach N >1and k=0,1,...,K,

N N
W) =Yook ) =Y (640 - p¥).
j=1 j=1

where p® = p and p¥ is the kth column of P’.

Define diffusion-scaled processes

\}BS(nt), G"(t) =

(E",G", 57,907 . dKnm) = (E G,5,8°,...,0K)  asn— .

§n(t) = - 6(nm), &"vk(t)=$&>k(tnm.
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System representations

X"(t) = X"(0) + E"(t) — D"(t) — G < [ as) ds>
K
Z"(t) = Z7(0) + O(B"(t)) + Y _ OK(S(T{(1))) — S(T"(¢))
k=1

Ti(t) = /OtZk”(S) ds,  S(T"(t)) = (Suy(T{(t)).- - Sk(Tk (1)) -

where
D"(t) = —e'M"(t) + e’R/t Z"(s) ds,
0
e'Z"(t) = €Z"(0) + B"(t) — D"(t),
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Continuous-mapping theorem

After some centering,
X7(¢) = U(¢) —a/ (X7(s))* ds — e’R/ 7n(s) ds,
0 0

27(t) = v7(8) = p(X"(£)” — (I - pe')R | 27(s) ds.

S~

Thus, (X7, Z") = ©(U", V"), where

Un(t) = X"(0) + E"(t) + e'M"(t) — G (/Ot(x"(s)ﬁ ds) :
V() = (I — pe’)Z"(0) + ®O(B" () + (I — pe')M"(t).

Because, (X", Z") = ©(U", V"), the theorem follows from

(0", 0"y = (D7), On(e) = \%U”(t).
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Random-time-change and fluid limits

K
() = <=M = S F (ST - (1= PIS(T (1)
k=1
where, for t > 0,
(1) = SB"(nt), ()= 1 S(nt), T(e) = T"(nt)
()= TX7(e), 7'(8) =~ 2°(2)
Because (X", 7") =©(U", V") = 0, one has
(5", T B"Y=(5,T,B), where

k(t) = vty Ti(t) =yt, B(t) = pt.
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More on continuous-mapping approach

e Reed (07), Kaspi-Ramanan (07), Kang-Ramanan (08) and Zhang
(09) did not use continuous-mapping approach, all involving a
complicated tightness argument.

o Decreusefond-Moyal (08) and Talreja-Reed (09) used
continuous-mapping approach for G/ Gl /oo queues.

e Kaspi-Ramanan (09) measure-valued diffusion limits for G/Gl/n
queues.
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