Distributional SEnsitivity in Many-Server Queues

Jim Dai

Georgia n ntftute

 OfTech ologyyThe H. Milton Stewart School of Industrial and Systems Engineering

March 18, 2010

Joint work with Shuangchi He and Tolga Tezcan (UIUC \rightarrow Rochester)

$G / G I / n+G l$ model

- iid service times and iid patience times
- first-in-first-out (FIFO) queue
- the number of servers n is large: call centers, web server farms, hospital beds

Time-varying arrival rates

Brown et al (05)

Arrivals to a hospital emergency room

Customer abandonment

Garnett, Mandelbaum \& Reiman (02)
".... There is a significant difference in the distributions of waiting time and queue length-in particular, the average waiting time and queue length are both strikingly shorter when abandonment is taken into account."

- one must model abandonment
- possibly non-exponential patience-time distribution

Mandelbaum \& Zeltyn (04)

Non-exponential service-time distribution

Brown et al (2005)

Do distributions matter?

Many-server asymptotic regimes: the number of servers n is large; the call volume is high; a small to moderate fraction of customers abandon.

- critically-loaded: quality- \& efficiency-driven (QED) regime, Halfin-Whitt regime
- underloaded: quality-driven (QD) regime

Distributions:

- patience-time distribution
- service-time distribution

Sensitivity on patience-time distribution F

- $M /$ LogNormal $/ 100+G I: \lambda=105, \mu=1, \sigma_{s}^{2}=4$, $(105-100) / 105=4.76 \%$
- three patience-time distributions:
- exponential
- uniform
- hyperexponential
- $\alpha=F^{\prime}(0+)$ is fixed;
- hyper-exponential $\left(\mathrm{H}_{2}\right)$ patience-time distribution

$$
X= \begin{cases}\operatorname{Exp}(79 \alpha / 30) & \text { with probability } 0.3 \\ \operatorname{Exp}(0.3 \alpha) & \text { with probability } 0.7\end{cases}
$$

Sensitivity on F with fixed $\alpha=F^{\prime}(0)$

M / \log Normal $/ 100+G I: \lambda=105,(105-100) / 105=4.76 \%$

$\alpha \backslash F$	Exp	Uniform	H_{2}
	Abandonment probability		
$\alpha=0.1$	0.0528	0.0530	0.0526
$\alpha=1$	0.0701	0.0706	0.0693
$\alpha=10$	0.0893	0.0907	0.0877
	Average queue length		
$\alpha=0.1$	55.46	53.40	57.95
$\alpha=1$	7.357	6.819	8.048
$\alpha=10$	0.9373	0.7570	1.189

Sensitivity on F with mean m fixed

$$
M / \operatorname{LogNormal} / 100+G I: \lambda=105, \mu=1, \sigma_{s}^{2}=4
$$

$m \backslash F$	Exp	Uniform	H_{2}
	Abandonment probability		
$m=0.1$	0.0893	0.0851	0.0930
$m=1$	0.0701	0.0645	0.0752
$m=10$	0.0528	0.0499	0.0582
	Average queue length		
$m=0.1$	0.9373	1.516	0.5882
$m=1$	7.357	12.69	4.500
$m=10$	55.46	99.77	26.54

- Mean patience time m is a wrong statistics

Replacing $G / G I / n+G I$ by $G / G I / n+M$ when $\alpha>0$

Insight

For $G / G I / n+G l$ queues in the $Q D / Q E D$ regime, it is generally accurate to replace the patience-time distribution F with an exponential distribution having rate $\alpha=F^{\prime}(0+)$.

- Numerical algorithms such as the matrix-analytic method benefit from such a replacement; e.g., $G / P h / n+M$ systems can be used to approximate $G / P h / n+G l$ systems.
- Dynamic control problem can be simplified by taking advantage of the exponential patience-time distribution.
- Justifications are carried out through many-server heavy traffic limits.

Many-server asymptotic framework

- Number of servers n goes to infinity.
- Consider a sequence of $G / G I / n+G l$ queues indexed by n.
- The arrival process E^{n} has arrival rate λ^{n} that depends on n :

$$
\lambda^{n} \approx n \lambda \quad \text { for some } \lambda>0 ;
$$

$E^{n}(t)$ is the cumulative number of arrivals in ($\left.0, t\right]$.

- The patience-time distribution F is independent of $n ; F(0)=0$ and $\alpha=F^{\prime}(0)$ exists.
- The service-time distribution H is independent of n; it has finite mean $1 / \mu$.
- $\rho=\lambda / \mu ; \rho=1$ QED or Halfin-Whitt regime; $\rho<1$ QD .
- We assume $\rho=1$.

Assumptions on the arrival process

- Fluid-scaling

$$
\bar{E}^{n}(t)=\frac{1}{n} E^{n}(t) \quad t \geq 0
$$

- Functional weak law of large numbers (FWLLN): Assume that

$$
\begin{equation*}
\bar{E}^{n} \Rightarrow \bar{E} \tag{1}
\end{equation*}
$$

and that $\bar{E}(t)=\lambda t$ for some $\lambda>0$. Let $\rho=\lambda / \mu$ be the traffic intensity.

- Diffusion-scaling

$$
\tilde{E}^{n}(t)=\frac{1}{\sqrt{n}} \hat{E}^{n}(t) \quad \text { and } \quad \hat{E}^{n}(t)=E^{n}(t)-n \bar{E}(t) \quad \text { for } t \geq 0
$$

- Functional Central Limit Theorem (FCLT): Assume that

$$
\begin{equation*}
\tilde{E}^{n} \Rightarrow \tilde{E} \quad \text { as } n \rightarrow \infty \tag{2}
\end{equation*}
$$

Here, we assume \tilde{E} is a $\left(-\beta, \lambda c^{2}\right)$-Brownian motion.

Phase-type service time distributions (p, P, ν)

DEfinition (Neuts 1981)

A phase-type random variable is defined to be the time until absorption of a transient continuous time Markov chain.

- transient states $\mathcal{K}=\{1, \ldots, K\}, K+1$ absorbing state
- initial distribution p on \mathcal{K}
- ν_{k} the rate at state (phase) $k \in \mathcal{K}$
- $P=\left(P_{k \ell}\right)$ the transition probabilities on transient states $\mathcal{K} ; I-P$ is assumed to be invertible
- Let m be the mean service time, and

$$
\begin{equation*}
\gamma=\frac{\operatorname{diag}(1 / \nu)\left(I+P^{\prime}+\left(P^{\prime}\right)^{2}+\ldots\right) p}{m} \tag{3}
\end{equation*}
$$

Then γ_{k} is interpreted as the fraction of load from phase k customers.

An example of phase-type distributions

- Two-stage hyperexponential distribution $H_{2}\left(\nu_{1}, \nu_{2}, p_{1}, p_{2}\right)$

$$
\begin{gathered}
\xi= \begin{cases}\exp \left(\nu_{1}\right) & \text { with probability } p_{1} \\
\exp \left(\nu_{2}\right) & \text { with probability } p_{2}\end{cases} \\
\mathcal{K}=\{1,2\}, \quad p=\binom{p_{1}}{p_{2}}, \quad \nu=\binom{\nu_{1}}{\nu_{2}}, \quad P=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
\end{gathered}
$$

- Mean service time $m=p_{1} / \nu_{1}+p_{2} / \nu_{2}$; mean service rate $\mu=1 / m$.
- Fraction of phase k load

$$
\gamma_{k}=\frac{p_{k} / \nu_{k}}{m}, \quad \gamma_{1}+\gamma_{2}=1, \quad \gamma_{k} \nu_{k}=\mu p_{k}
$$

Justification: diffusion limits for $G / P h / n+G /$ queues

Assume a phase-type service-time distribution with parameter (p, P, ν).
Let $Y_{k}^{n}(t), k=1, \ldots, K$, be the number of phase k customers in system at time t and

$$
\tilde{Y}_{k}^{n}(t)=\left(Y_{k}^{n}(t)-n \gamma\right) / \sqrt{n},
$$

where $\gamma=\mu R^{-1} p$ and R is a $K \times K$ matrix given by $R=\left(I-P^{\prime}\right) \operatorname{diag}(\nu)$.

Theorem (Dai, He \& Tezcan 09)

Under some initial conditions, $\tilde{Y}^{n} \Rightarrow \tilde{Y}$ as $n \rightarrow \infty$. The process \tilde{Y} satisfies

$$
\tilde{Y}(t)=\tilde{W}(t)-R \int_{0}^{t} \tilde{Y}(s) d s+(R-\alpha I) p \int_{0}^{t}\left(e^{\prime} \tilde{Y}(s)\right)^{+} d s
$$

where \tilde{W} is a K-dimensional Brownian motion and e is the K-dimensional vector of ones.

Puhalskii \& Reiman (00) for $G / P h / n$ queues

The piecewise $O U$ process $\tilde{\gamma}$

- Let $R=\left(I-P^{\prime}\right) \operatorname{diag}(\nu)$. Recall that $\alpha=F^{\prime}(0)$. The map $\Phi: x \in \mathbb{D}^{K} \rightarrow y \in \mathbb{D}^{K}$ is well defined via

$$
y(t)=x(t)-R \int_{0}^{t} y(s) d s+(R-\alpha I) p \int_{0}^{t}\left(e^{\prime} y(s)\right)^{+} d s
$$

Massey-Mandelbaum-Reiman (98)

- $\tilde{Y}=\Phi(B)$, where B is some K-dimensional Brownian motion.
- When $K=1$,

$$
\begin{aligned}
y(t) & =x(t)-\mu \int_{0}^{t} y(s) d s+(\mu-\alpha) \int y(s)^{+} d s \\
& =x(t)+\mu \int_{0}^{t} y(s)^{-} d s-\alpha \int y(s)^{+} d s
\end{aligned}
$$

Justification: marginal limits for $G / G I / n+G I$ queues

Let $X^{n}(t)$ be the number of customers in system at time t and

$$
\tilde{X}^{n}(t)=\left(X^{n}(t)-n\right) / \sqrt{n} .
$$

Let H be the service-time distribution and $H_{e}(x)=\mu \int_{0}^{x}(1-H(u)) d u$ be the equilibrium distribution of H.

Theorem (Mandelbaum \& Momčilović 09)

Under some initial conditions, $\tilde{X}^{n} \Rightarrow \tilde{X}$ as $n \rightarrow \infty$. The process \tilde{X} satisfies

$$
\tilde{X}(t)=\tilde{Z}(t)+\int_{0}^{t} \tilde{X}(t-s)^{+} d H(s)-\frac{\alpha}{\mu} \int_{0}^{t} \tilde{X}(t-s)^{+} d H_{e}(s)
$$

for some stochastic process \tilde{Z}.
Reed (09) for $G / G I / n$ queues

Measure-valued diffusion limits for $G / G I / n+G l$ queues

- Kaspi \& Ramanan (09) for $G / G I / n$ queues
- A key tool: An asymptotic relationship between abandonment processes and queue length processes.

An asymptotic relationship

For the nth system in a sequence of $G / G / n+G l$ queues, let $A^{n}(t)$ be the number of abandonments by time t, and $Q^{n}(t)$ be queue length at time t.

Theorem (Dai \& He (09))

Under some conditions, for each $T>0$,

$$
\begin{equation*}
\frac{1}{\sqrt{n}} \sup _{0 \leq t \leq T}\left|A^{n}(t)-\alpha \int_{0}^{t} Q^{n}(s) d s\right| \rightarrow 0 \quad \text { in probability as } n \rightarrow \infty . \tag{4}
\end{equation*}
$$

- A key assumption: stochastic boundedness for diffusion-scaled queue-length processes, i.e., for each $T>0$,

$$
\lim _{a \rightarrow \infty} \limsup _{n \rightarrow \infty} \mathbb{P}\left[\frac{1}{\sqrt{n}} \sup _{0 \leq t \leq T} Q^{n}(t)>a\right]=0
$$

- The relationship holds for time-nonhomogeneous arrival processes.

A modularized approach to proving limit theorems

The asymptotic relationship suggests the following framework:

- Prove a limit theorem for queues without abandonment, using a continuous-mapping approach.
- Compare queues with abandonment and corresponding queues without abandonment to prove the stochastic boundedness of the diffusion-scaled queue-length processes.
- Apply a modified map to prove a corresponding limit theorem for queues with abandonment.

Estimating patience-time density α at zero

The asymptotic relationship suggests the following estimator: fix a $T>0$,

$$
\hat{\alpha}^{n}=\frac{A^{n}(T)}{\int_{0}^{T} Q^{n}(t) d t}
$$

- Customers who get into service have never abandoned the system and their patience times have never been observed. Thus, it is difficult to estimate the entire patience-time distribution.
- For queues in QD/QED regime, the patience-time density α at zero, rather than the entire patience-time distribution, dictates the system performance.

Consistent estimator for α

Theorem
Assume that $\lim _{n \rightarrow \infty} \mathbb{P}\left[\inf _{0 \leq t \leq T} Q^{n}(t) / \sqrt{n}>\varepsilon\right]=1$ for some $\varepsilon>0$.
Then, $\hat{\alpha}^{n}$ is a consistent estimator in the sense that

$$
\hat{\alpha}^{n} \rightarrow \alpha \quad \text { in probability as } n \rightarrow \infty .
$$

For each fixed $n, \hat{\alpha}^{n}$ is biased.

Consistent estimator $\hat{\alpha}^{n}$: an example

Consider $M(t) / G I / n(t)+G I$ queues with $\alpha=6$ and

- time-varying arrival rate per hour

$$
\lambda(t)=1000+100 t+2400 \sin (\pi t / 12)
$$

$$
\text { for } 0 \leq t \leq 12 \text {. }
$$

- time-varying staffing level

$$
n(t)= \begin{cases}225 & 0 \leq t \leq 3 \\ 310 & 3<t \leq 9 \\ 275 & 9<t \leq 12\end{cases}
$$

- a lognormal service time distribution

Figure: Arrival rate vs. service capacity. with mean 5 min and variance $10 \mathrm{~min}^{2}$.

Consistent estimator $\hat{\alpha}^{n}$: an example

$s \backslash F$	Exp			Uniform			H_{2}		
	$A^{n}(T)$	$\int_{0}^{T} Q^{n}$	$\hat{\alpha}^{n}$	$A^{n}(T)$	$\int_{0}^{T} Q^{n}$	$\hat{\alpha}^{n}$	$A^{n}(T)$	$\int_{0}^{T} Q^{n}$	$\hat{\alpha}^{n}$
1	1227	194.7	6.30	1187	202.2	5.87	1235	220.3	5.61
2	1128	195.1	5.78	1149	185.5	6.20	1141	194.9	5.86
3	902	150.4	6.00	926	152.5	6.07	906	156.0	5.81
4	1512	246.7	6.13	1520	241.5	6.30	1526	269.7	5.66
5	1397	234.3	5.97	1398	218.1	6.41	1395	248.3	5.62

A linear relationship in real-world call centers

The asymptotic relationship also suggests

$$
\begin{equation*}
\frac{A^{n}(T, \omega)}{T} \approx \frac{\alpha}{T} \int_{0}^{T} Q^{n}(s, \omega) d s \quad \text { for } T>0 \tag{5}
\end{equation*}
$$

- Mandelbaum \& Zeltyn (04) proved that for $M / M / n+G l$ queues in QED regime,

$$
\begin{equation*}
\text { long-run abandonment rate }=\alpha \times \text { the average queue length. } \tag{6}
\end{equation*}
$$

- Among a large number of data sets from call centers, there is a linear relationship between the abandonment rate and the steady-state queue length.
- It is (5), not (6), that explains this observation.

Sensitivity on service-time distributions

Two $M / H_{2} / 100+M$ queues:

- Both have $\lambda=110, \mu=1$, $\alpha=0.5, c_{s}^{2}=8$.
- The H_{2} service distributions have $\gamma_{1}=p m_{1}=0.1$ ($p=0.8195, m_{1}=0.122, m_{2}=$ 4.986) and $\gamma_{1}=0.5(p=$ $\left.0.941, m_{1}=0.53, m_{2}=8.47\right)$, respectively.
By the matrix-analytic method,

$$
\begin{aligned}
& \mathbb{P}\left[Q_{1}>50\right]=13.27 \%, \\
& \mathbb{P}\left[Q_{2}>50\right]=7.67 \%
\end{aligned}
$$

Figure: Steady-state distributions of diffusion limits for two $M / H_{2} / 100+M$ queues.

Diffusion approximation via finite-element method

Figure: Steady-state distribution of an $M / H_{2} / 100+M$ queue with $\lambda=110$, $\mu=1, \alpha=0.5, \gamma_{1}=0.1$ and $c_{s}^{2}=8$.

Weak invariance on service-time distributions

- Heavy-traffic limits for single-server queues or queues with a small number of servers depend only on the first two moments of the service-time distribution.
- Heavy-traffic limits for many-server queues depend on the entire service-time distribution.
- Many-server queues and single-server queues are qualitatively different.

Conjecture

Consider a sequence of $G / G I / n+G l$ queues in the $Q E D$ regime. Under some initial conditions, $\tilde{X}^{n}(\infty) \Rightarrow \tilde{X}(\infty)$ as $n \rightarrow \infty$ and

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{2}} \log \mathbb{P}[\tilde{X}(\infty)>x]=-\frac{\alpha}{\mu\left(c_{a}^{2}+c_{s}^{2}\right)}
$$

Weak invariance for $G / G I / n$ queues

Theorem (Gamarnik \& Goldberg 2009)

For $G / G I / n$ queues in $Q E D$,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \log \mathbb{P}[\tilde{X}(\infty)>x]=-\frac{1}{\mu\left(c_{a}^{2}+c_{s}^{2}\right)}
$$

Gamarnik \& Momčilović (07) for lattice service-time distribution.

Implication of weak invariance: computing π

- Stationary density π satisfies the basic adjoint relationship (BAR)

$$
\int_{\mathbb{R}^{K}} G f(x) \pi(x) d x=0 \quad \text { for all } f \in C_{b}^{2}\left(\mathbb{R}^{K}\right)
$$

see Dai and Harrison (92) for reflecting Brownian motions.

- Using a reference density $d: \mathbb{R}^{K} \rightarrow \mathbb{R}_{+}$, we compute the ratio $r(x)=\pi(x) / d(x)$ and obtain π by $\pi(x)=r(x) d(x)$.
- The algorithm is sensitive to the choice of $d(x)=d_{1}(x) d_{2}(x)$;

$$
d_{i}(x)= \begin{cases}c_{1} \phi\left(\sqrt{2}(x+\beta)\left(1+c_{a}^{2}\right)^{-1 / 2}\right) & x<0 \tag{7}\\ c_{2} \phi\left(\sqrt{2 \alpha / \mu}(x+\mu \beta / \alpha)\left(c_{s}^{2}+c_{a}^{2}\right)^{-1 / 2}\right) & x \geq 0\end{cases}
$$

where c_{1} and c_{2} are positive constants that make d_{i} continuous at zero.

- Using a finite-element algorithm to compute $r(x)$

Importance of choosing a right reference density

Recall the $M / H_{2} / 100+M$ queue with

- $\lambda=110, \mu=1, \alpha=0.5, \gamma_{1}=0.1$ and $c_{s}^{2}=8$.

Figure: Gaussian reference density with Figure: Gaussian reference density with $c_{s}^{2}=8$. $c_{s}^{2}=1$ (obtained from $\left.M / M / 100+M\right)$.

Hazard-rate scaling asymptotics

When $\alpha=0$, if we replace $+G l$ by $+M$,

- it leads to a $G / G I / n$ queue without abandonment, possibly unstable;
- diffusion approximations based on (4) may not capture the original queue with abandonment.
We need to consider the patience-time distribution in a neighborhood of zero, rather than the origin itself. Inspired by Reed \& Tezcan (09), let patience distributions depend on n with

$$
F^{n}(x)=1-e^{-\int_{0}^{x} h(\sqrt{n} u) d u}, \quad \text { for } x \geq 0
$$

Conjecture

Under some conditions, for each $T>0$,
$\sup _{0 \leq t \leq T}\left|\frac{1}{\sqrt{n}} A^{n}(t)-\int_{0}^{t} \int_{0}^{Q^{n}(s) / \sqrt{n}} h(u) d u d s\right| \rightarrow 0 \quad$ in probability as $n \rightarrow \infty$.

Hazard-rate scaling heavy-traffic limits

For $G / P h / n+G l$ queues, recall that the K-dimensional vector \tilde{Y}^{n} represents the number of customers in each phase in diffusion scaling.

Theorem

Under some initial conditions, $\tilde{Y}^{n} \Rightarrow \tilde{Y}$ as $n \rightarrow \infty$. The hazard-rate scaling diffusion process \tilde{Y} satisfies
$\tilde{Y}(t)=\tilde{W}(t)-R \int_{0}^{t}\left(\tilde{Y}(s)-p\left(e^{\prime} \tilde{Y}(s)\right)^{+}\right) d s-p \int_{0}^{t} \int_{0}^{\left(e^{\prime} \tilde{Y}(s)\right)^{+}} h(u) d u d s$, where \tilde{W} is a K-dimensional Brownian motion.

Hazard-rate scaling diffusion approximation

Consider an $\mathrm{M} / \mathrm{H}_{2} / 500+E_{2}$ queue with $\lambda=522.4$ and $\mu=1$.

- the H_{2} service-time distribution is given by

$$
X= \begin{cases}\operatorname{Exp}(2.2) & \text { with probability } 0.4 \\ \operatorname{Exp}(0.2) & \text { with probability } 0.6\end{cases}
$$

- the Erlang (E_{2}) patience-time distribution has $\alpha=0$ and mean $m=0.2$

	Abandonment probability	Average queue length	Average busy servers
Simulation	0.05025	13.90	496.1
Diffusion	0.05012	13.65	496.2

Summary

- The system performance is insensitive to the patience-time distribution as long as $\alpha=F^{\prime}(0)$ is fixed and positive.
- The system performance critically depends on α; an consistent estimator of α is given.
- Many-server heavy traffic diffusion limits provide justification for replacing $+G l$ by $+M$
- Weak invariance on service-time distribution is conjectured.
- The conjectured decay rate plays a key role in choosing a right reference density for the finite-element algorithm.
- The hazard-rate diffusion limit promises a refined theory and improved performance estimates.

Surveys and references

© J. G. Dai and S. He (2009), "Customer abandonment in many-server queues," Mathematics of Operations Research, to appear. H
© J. G. Dai, S. He, and T. Tezcan (2009), "Many-server diffusion limits for G/Ph/n + GI queues," Annals of Applied Probability, to appear.

- S. Zeltyn and A. Mandelbaum (2005). Call centers with impatient customers: many-server asymptotics of the $M / M / n+G$ queue, Queueing Systems, 51 361-402.
- A. Mandelbaum and P. Momčilović (2009), "Queues with many servers and impatient customers," preprint.
- Gans-Koole-M (03), Telephone call centers: Tutorial, review, and research prospects, M\&SOM, 5, 79-141.
- Mandelbaum (06), Call centers: research bibliography with abstracts; http:
//iew3.technion.ac.il/serveng/References/US7_CC_avi.pdf

Part II: Proofs

Dai, He and Tezcan (2009), Many-Server Diffusion Limits for $G / P h / n+G l$ Queues.

Scaling for $G / P h / n+G l$ queues: $\rho=1$

- $Z_{k}^{n}(t)$ the number of phase k customers in service, $X^{n}(t)$ in system, $Q^{n}(t)$ in queue, $W^{n}(t)$ workload; centering

$$
\hat{X}^{n}(t)=X^{n}(t)-n, \quad \hat{Z}_{k}^{n}(t)=Z_{k}^{n}(t)-\gamma_{k} n .
$$

- Diffusion-scaling

$$
\begin{array}{ll}
\tilde{X}^{n}(t)=\frac{1}{\sqrt{n}} \hat{X}^{n}(t), & \tilde{Z}_{k}^{n}(t)=\frac{1}{\sqrt{n}} \hat{Z}_{k}^{n}(t) \\
\tilde{Q}^{n}(t)=\frac{1}{\sqrt{n}} Q^{n}(t), & \tilde{W}^{n}(t)=\sqrt{n} W^{n}(t)
\end{array}
$$

Critically loaded $G / P h / n+G /$ queues: $\rho=1$

Theorem (Dai-He-Tezcan 09)

Assume that $F(0)=0$ and that $\alpha=F^{\prime}(0)$ exists. Suppose that $\left(\tilde{X}^{n}(0), \tilde{Z}^{n}(0)\right) \Rightarrow(\xi, \eta)$. Then

$$
\left(\tilde{Q}^{n}, \tilde{W}^{n}, \tilde{X}^{n}, \tilde{Z}^{n}\right) \Rightarrow(\tilde{Q}, \tilde{W}, \tilde{X}, \tilde{Z}),
$$

where (\tilde{X}, \tilde{Z}) is a $(K+1)$-dimensional (degenerate) continuous Markov process, and

$$
\tilde{Q}(t)=(\tilde{X}(t))^{+} \text {and } \tilde{W}(t)=\frac{1}{\mu} \tilde{Q}(t) \quad \text { (state space collapse). }
$$

Furthermore, letting

$$
\tilde{Y}(t)=p \tilde{Q}(t)+\tilde{Z}(t),
$$

\tilde{Y} is a K-dimensional piecewise Ornstein-Uhlenbeck (OU) process.
Puhalskii-Reiman (00) for G/Ph/n, Garnett-M-Reiman (02) for $M / M / n+M$

The piecewise $\mathbf{O U}$ process $\tilde{\gamma}$

- Let $R=\left(I-P^{\prime}\right) \operatorname{diag}(\nu)$. Recall that $\alpha=F^{\prime}(0)$. The map $\Phi: x \in \mathbb{D}^{K} \rightarrow y \in \mathbb{D}^{K}$ is well defined via

$$
y(t)=x(t)-R \int_{0}^{t} y(s) d s+(R-\alpha I) p \int_{0}^{t}\left(e^{\prime} y(s)\right)^{+} d s .
$$

Massey-Mandelbaum-Reiman (98)

- $\tilde{Y}=\Phi(B)$, where B is some K-dimensional Brownian motion.
- One can recover (\tilde{X}, \tilde{Z}) via

$$
\tilde{X}(t)=e^{\prime} \tilde{Y}(t) \quad \text { and } \quad \tilde{Z}(t)=\tilde{Y}(t)-p(\tilde{X}(t))^{+}, \quad t \geq 0
$$

Two-dimensional piecewise OU process

- Assume service time distribution is $H_{2}\left(\nu_{1}, \nu_{2}, p_{1}, p_{2}\right)$.
- For each $\left(x_{1}, x_{2}\right) \in \mathbb{D}^{2}$, there is a unique $\left(y_{1}, y_{2}\right) \in \mathbb{D}^{2}$ such that for $k=1,2$,

$$
y_{k}(t)=x_{k}(t)-\nu_{k} \int_{0}^{t} y_{k}(s) d s+\left(\nu_{k}-\alpha\right) p_{k} \int_{0}^{t}\left(y_{1}(s)+y_{2}(s)\right)^{+} d s
$$

- The map $\Phi: x \in \mathbb{D}^{2} \rightarrow y \in \mathbb{D}^{2}$ is well defined.
- When B is a $2-d$ Brownian motion with drift $-\beta p$ and covariance matrix

$$
\mu\left[\begin{array}{cc}
p_{1}\left(p_{1} c^{2}-p_{1}+2\right) & p_{1} p_{2}\left(c^{2}-1\right) \\
p_{1} p_{2}\left(c^{2}-1\right) & p_{2}\left(p_{2} c^{2}-p_{2}+2\right)
\end{array}\right] .
$$

$\tilde{Y}=\Phi(B)$ is the $2-d$ piecewise OU process that serves as the diffusion limit.

Diffusion approximation: $M / H_{2} / 200+M$

- $H_{2}(1 / 2.2,1 / .2, .4)$ service time distribution and $\alpha=F^{\prime}(0)=2 / 3$.
- Finite element method to solve the stationary distribution of \tilde{Y}; Dai-Harrison (92), Shen-Chen-Dai-Dai (02); reference density

$$
f\left(x_{1}, x_{2}\right)=\frac{1}{4} e^{-\left(x_{1}^{2}+x_{2}^{2}\right) / 4}
$$

truncate the area $(-8,14) \times(-8,14)$; the grid consists of 1×1 squares.

- Performance measures

	$\mathbb{E}(Q)$		$\mathbb{P}\{$ Ab. $\}$	
λ^{n}	Numerical	Diffusion	Simulation	Diffusion
200	8.72	8.85	0.0290	0.0295
220	31.05	30.64	0.0940	0.0928

Steady-state density for \hat{X}^{n} and $\sqrt{n} \tilde{X}: \lambda^{n}=200$

Steady-state density for $\left(\tilde{Y}_{1}, \tilde{Y}_{2}\right): \lambda^{n}=200$

Proof sketches: critically loaded $G / P h / n+G /$ queues

- The lemma reduces $+G I$ to $+M$
- Perturbed systems
- System representations
- Centering, scaling, applying standard tools: Donsker's theorem, continuous-mapping theorem, random-time-change theorem
- Conventional heavy traffic limits for generalized Jackson networks: Reiman (84), Johnson (83)
- Stone's theorem: Halfin-Whitt (81), Garnett-M-Reiman (02), Whitt (04), Armony-Maglaras (04)

Step 1: Perturbed systems

- Each phase has at most one customer in service, with additive service rate
- Only the leading customer in queue can abandon with additive abandonment rate

The two systems are equal in distribution

- state $\left(U(t), \mathcal{Q}(t), Z_{1}(t), Z_{2}(t)\right)$, where, for example,

$$
U(t)=3.5, \quad \mathcal{Q}(t)=\{2,1,2,1,1,2\}, \quad Z_{1}(t)=1, \quad Z_{2}(t)=3
$$

- Two Markov processes have the same generators.

Donsker's theorem for primitives

Primitive processes: in addition to E^{n},

- service: S_{k} Poisson process with rate $\nu_{k} ; \hat{S}(t)=S(t)-\nu t$,
- abandonment: G Poisson process with rate $\alpha ; \hat{G}(t)=G(t)-\alpha t$,
- routing: for each $N \geq 1$ and $k=0,1, \ldots, K$,

$$
\phi^{k}(N)=\sum_{j=1}^{N} \phi^{k}(j) ; \quad \hat{\phi}^{k}(N)=\sum_{j=1}^{N}\left(\phi^{k}(j)-p^{k}\right)
$$

where $p^{0}=p$ and p^{k} is the k th column of P^{\prime}.
Define diffusion-scaled processes

$$
\begin{aligned}
& \tilde{S}^{n}(t)=\frac{1}{\sqrt{n}} \hat{S}(n t), \quad G^{n}(t)=\frac{1}{\sqrt{n}} \hat{G}(n t), \quad \tilde{\Phi}^{n, k}(t)=\frac{1}{\sqrt{n}} \hat{\Phi}^{k}(\lfloor n t\rfloor) . \\
& \left(\tilde{E}^{n}, \tilde{G}^{n}, \tilde{S}^{n}, \tilde{\Phi}^{0, n}, \ldots, \tilde{\Phi}^{K, n}\right) \Rightarrow\left(\tilde{E}, \tilde{G}, \tilde{S}, \tilde{\Phi}^{0}, \ldots, \tilde{\Phi}^{K}\right) \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

System representations

$$
\begin{aligned}
& X^{n}(t)=X^{n}(0)+E^{n}(t)-D^{n}(t)-G\left(\int_{0}^{t} Q^{n}(s) d s\right) \\
& Z^{n}(t)=Z^{n}(0)+\Phi^{0}\left(B^{n}(t)\right)+\sum_{k=1}^{K} \Phi^{k}\left(S_{k}\left(T_{k}^{n}(t)\right)\right)-S\left(T^{n}(t)\right) \\
& T_{k}^{n}(t)=\int_{0}^{t} Z_{k}^{n}(s) d s, \quad S\left(T^{n}(t)\right)=\left(S_{1}\left(T_{1}^{n}(t)\right), \ldots, S_{K}\left(T_{K}^{n}(t)\right)\right)^{\prime}
\end{aligned}
$$

where

$$
\begin{aligned}
& D^{n}(t)=-e^{\prime} M^{n}(t)+e^{\prime} R \int_{0}^{t} Z^{n}(s) d s \\
& e^{\prime} Z^{n}(t)=e^{\prime} Z^{n}(0)+B^{n}(t)-D^{n}(t) \\
& M^{n}(t)=\sum_{k=1}^{K} \hat{\Phi}^{k}\left(S_{k}\left(T_{k}^{n}(t)\right)\right)-\left(I-P^{\prime}\right) \hat{S}\left(T^{n}(t)\right)
\end{aligned}
$$

Continuous-mapping theorem

After some centering,

$$
\begin{aligned}
& \hat{X}^{n}(t)=U^{n}(t)-\alpha \int_{0}^{t}\left(\hat{X}^{n}(s)\right)^{+} d s-e^{\prime} R \int_{0}^{t} \hat{Z}^{n}(s) d s \\
& \hat{Z}^{n}(t)=V^{n}(t)-p\left(\hat{X}^{n}(t)\right)^{-}-\left(I-p e^{\prime}\right) R \int_{0}^{t} \hat{Z}^{n}(s) d s
\end{aligned}
$$

Thus, $\left(\hat{X}^{n}, \hat{Z}^{n}\right)=\Theta\left(U^{n}, V^{n}\right)$, where

$$
\begin{aligned}
& U^{n}(t)=\hat{X}^{n}(0)+\hat{E}^{n}(t)+e^{\prime} M^{n}(t)-\hat{G}\left(\int_{0}^{t}\left(\hat{X}^{n}(s)\right)^{+} d s\right) \\
& V^{n}(t)=\left(I-p e^{\prime}\right) \hat{Z}^{n}(0)+\hat{\Phi}^{0}\left(B^{n}(t)\right)+\left(I-p e^{\prime}\right) M^{n}(t)
\end{aligned}
$$

Because, $\left(\tilde{X}^{n}, \tilde{Z}^{n}\right)=\Theta\left(\tilde{U}^{n}, \tilde{V}^{n}\right)$, the theorem follows from

$$
\left(\tilde{U}^{n}, \tilde{V}^{n}\right) \Rightarrow(\tilde{U}, \tilde{V}), \quad \tilde{U}^{n}(t)=\frac{1}{\sqrt{n}} U^{n}(t)
$$

Random-time-change and fluid limits

$$
\begin{aligned}
& \tilde{U}^{n}(t)=\tilde{X}^{n}(0)+\tilde{E}^{n}(t)+e^{\prime} \tilde{M}^{n}(t)-\tilde{G}^{n}\left(\int_{0}^{t}\left(\bar{X}^{n}(s)\right)^{+} d s\right) \\
& \tilde{M}^{n}(t)=\frac{1}{\sqrt{n}} M^{n}(t)=\sum_{k=1}^{K} \tilde{\Phi}^{k, n}\left(\bar{S}_{k}^{n}\left(\bar{T}_{k}^{n}(t)\right)\right)-\left(I-P^{\prime}\right) \tilde{S}^{n}\left(\bar{T}^{n}(t)\right)
\end{aligned}
$$

where, for $t \geq 0$,

$$
\begin{array}{ll}
\bar{B}^{n}(t)=\frac{1}{n} B^{n}(n t), \quad \bar{S}^{n}(t)=\frac{1}{n} S(n t), \quad \bar{T}^{n}(t)=\frac{1}{n} T^{n}(n t), \\
\bar{X}^{n}(t)=\frac{1}{n} \hat{X}^{n}(t), \quad \bar{Z}^{n}(t)=\frac{1}{n} \hat{Z}^{n}(t) .
\end{array}
$$

Because $\left(\bar{X}^{n}, \bar{Z}^{n}\right)=\Theta\left(\bar{U}^{n}, \bar{V}^{n}\right) \Rightarrow 0$, one has fluid limits

$$
\begin{aligned}
& \left(\bar{S}^{n}, \bar{T}^{n}, \bar{B}^{n}\right) \Rightarrow(\bar{S}, \bar{T}, \bar{B}), \quad \text { where } \\
& \bar{S}_{k}(t)=\nu_{k} t, \quad \bar{T}_{k}(t)=\gamma_{k} t, \quad \bar{B}(t)=\mu t
\end{aligned}
$$

More on continuous-mapping approach

- Reed (07), Kaspi-Ramanan (07), Kang-Ramanan (08) and Zhang (09) did not use continuous-mapping approach, all involving a complicated tightness argument.
- Decreusefond-Moyal (08) and Talreja-Reed (09) used continuous-mapping approach for $G / G I / \infty$ queues.
- Kaspi-Ramanan (09) measure-valued diffusion limits for $G / G I / n$ queues.

