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G/GI/n + GI model

server 1

server 2

server n

iid service times and iid patience times

first-in-first-out (FIFO) queue

the number of servers n is large: call centers, web server farms,
hospital beds
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Time-varying arrival rates

38 Journal of the American Statistical Association, March 2005

center. We have performed similar analyses for other parts of
the data, and in most respects the November–December results
do not differ noticeably from those based on data from other
months of the year.

3. THE ARRIVAL PROCESS

Figure 1 shows, as a function of time of day, the average
rate per hour at which calls come out of the VRU. These are
composite plots for weekday calls in November and Decem-
ber. The plots show calls according to the major call types.
The volume of regular (PS) calls is much greater than that of
the other three types; hence those calls are shown on a sepa-
rate plot. [These plots were fit using the root–unroot method
described by Brown, Zhang, and Zhao (2001), along with the
adaptive free knot spline methodology of Mao and Zhao (2003).
For a more precise study of these arrival rates, including confi-
dence and prediction intervals, see our Sec. 6 and also Brown
et al. 2001, 2002a,b.]

Note the bimodal pattern of PS call-arrival times in Figure 1.
It is especially interesting that IN calls do not show a similar
bimodal pattern and in fact have a peak volume after 10 PM.
(This peak can be partially explained by the fact that Internet
customers are sensitive to telephone rates, which significantly
decrease in Israel after 10 PM, and that they also tend to be
people who stay late.)

3.1 Arrivals Are Inhomogeneous Poisson

Common call center models and practice assume that the
arrival process is Poisson with a rate that remains constant
for blocks of time (e.g., half-hours), with a separate queueing
model fitted for each block of time. A more natural model for
capturing changes in the arrival rate is a time-inhomogeneous
Poisson process. Following common practice, we assume that
the arrival rate function can be well approximated as being
piecewise constant.

We now construct a test of the null hypothesis that arrivals of
given types of calls form an inhomogeneous Poisson process
with piecewise constant rates. The first step in constructing
our test involves breaking up the duration of a day into rela-
tively short blocks of time, short enough so that the arrival rate

does not change significantly within a block. For convenience,
we used blocks of equal time length, L, although this equal-
ity assumption could be relaxed. One can then consider the
arrivals within a subset of blocks—for example, blocks at the
same time on various days or successive blocks on a given day.
The former case would, for example, test whether the process is
homogeneous within blocks for calls arriving within the given
time span.

Let Tij denote the jth ordered arrival time in the ith block,
i = 1, . . . , I. Thus Ti1 ≤ · · · ≤ TiJ(i), where J(i) denotes the total
number of arrivals in the ith block. Then define Ti0 = 0 and

Rij = (J(i) + 1 − j)
(

− log
(

L − Tij

L − Ti,j−1

))
, j = 1, . . . , J(i).

Under the formal null hypothesis that the arrival rate is constant
within each given time interval, the {Rij} will be independent
standard exponential variables, as we now discuss.

Let Uij denote the jth (unordered) arrival time in the ith block.
Then the assumed constant Poisson arrival rate within this
block implies that, conditionally on J(i), the unordered ar-
rival times are independent and uniformly distributed, that is,

Uij
iid∼ U(0,L). Note that Tij = Ui( j). It follows that L−Tij

L−Ti,j−1

are independent beta(J(i) + 1 − j,1) variables [see, e.g., prob-
lem 6.14.33(iii) in Lehmann 1986]. A standard change of
variables then yields the conditional exponentiality of the Rij
given the value of J(i). [One may alternatively base the test
on the variables R∗

ij = j(− log Tij
Ti,j+1

), where j = 1, . . . , J(i) and
Ti,J(i)+1 = L. Under the null hypothesis, these will also be in-
dependent standard exponential variables.]

The null hypothesis does not involve an assumption that
the arrival rates of different intervals are equal or have any
other prespecified relationship. Any customary test for the ex-
ponential distribution can be applied to test the null hypothe-
sis. For convenience, we use the familiar Kolmogorov–Smirnov
test, even though this may not have the greatest possible power
against the alternatives of most interest. In addition, exponen-
tial Q–Q plots can be very useful in ascertaining goodness of fit
to the exponential distribution.

(a) (b)

Figure 1. Arrivals in Calls/Hour by Time of Day, Weekdays in November–December. (a) PS calls; (b) IN, NW, and NE calls.

Brown et al (05)
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Customer abandonment

Garnett, Mandelbaum & Reiman
(02)

“.... There is a significant
difference in the distributions of
waiting time and queue length—in
particular, the average waiting
time and queue length are both
strikingly shorter when
abandonment is taken into
account.”

one must model
abandonment

possibly non-exponential
patience-time distribution

Mandelbaum & Zeltyn (04)
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Non-exponential service-time distribution

40 Journal of the American Statistical Association, March 2005

(a) (b)

Figure 2. Distribution of Service Time. (a) January–October (mean, 185; SD, 238); (b) November–December (mean, 200; SD, 249).

and Schwartz (2002). Thus average wait with general service
times is multiplied by a factor of (1 + C2

s )/2 relative to the wait
under exponential service times. For example, if service times
are in fact exponential, then the factor is 1. Deterministic ser-
vice times halve the average wait of exponential. In our data,
the observed factor is (1 + C2

s )/2 = 1.26.

4.3 Service Times Are Lognormal

Looking at Figure 2, we see that the distribution of service
times is clearly not exponential, as is assumed by standard
queueing theory. In fact, after separating the calls with very
short service times, our analysis reveals a remarkable fit to the
lognormal distribution.

Figure 3(a) shows the histogram of log(service time) for No-
vember and December, in which the short service phenomenon
was absent or minimal. Superimposed is the best fitted normal

density as provided by Brown and Hwang (1993). Figure 3(b)
shows the lognormal Q–Q plot of service time. This does an
amazingly good imitation of a straight line. Nevertheless, the
Kolmogorov–Smirnovtest decisively rejects the null hypothesis
of exact lognormality. (The Kolmogorov–Smirnov statistic here
is K = .020. This is quite small, but still much larger than the
value of K = .009 that was attained for a similarly large sam-
ple size in the inhomogeneous Poisson test of Sec. 4.) We only
provide the graphs to qualitatively support our claim of lognor-
mality. Thus the true distribution is very close to lognormal, but
is not exactly lognormal. (The most evident deviation is in the
left tail of the histogram, where both a small excess of observa-
tions is evident and the effect of rounding to the nearest second
further interferes with a perfect fit.) This is a situation where
a very large sample size yields a statistically significant result,
even though there is no “practical significance.”

(a) (b)

Figure 3. Histogram (a) and Q–Q Plot (b) of log(service time), November–December.
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Figure 3. Histogram (a) and Q–Q Plot (b) of log(service time), November–December.

Brown et al (2005)
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Do distributions matter?

Many-server asymptotic regimes: the number of servers n is large; the call
volume is high; a small to moderate fraction of customers abandon.

critically-loaded: quality- & efficiency-driven (QED) regime,
Halfin-Whitt regime

underloaded: quality-driven (QD) regime

Distributions:

patience-time distribution

service-time distribution
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Sensitivity on patience-time distribution F

M/LogNormal/100 + GI : λ = 105, µ = 1, σ2
s = 4,

(105− 100)/105 = 4.76%

three patience-time distributions:

exponential
uniform
hyperexponential

α = F ′(0+) is fixed;

hyper-exponential (H2) patience-time distribution

X =

{
Exp(79α/30) with probability 0.3,

Exp(0.3α) with probability 0.7.
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Sensitivity on F with fixed α = F ′(0)

M/LogNormal/100 + GI : λ = 105, (105− 100)/105 = 4.76%

α\F Exp Uniform H2

Abandonment probability

α = 0.1 0.0528 0.0530 0.0526
α = 1 0.0701 0.0706 0.0693
α = 10 0.0893 0.0907 0.0877

Average queue length

α = 0.1 55.46 53.40 57.95
α = 1 7.357 6.819 8.048
α = 10 0.9373 0.7570 1.189

Jim Dai (Georgia Tech) Distributional Sensitivity 8 / 52



Sensitivity on F with mean m fixed

M/LogNormal/100 + GI : λ = 105, µ = 1, σ2
s = 4

m\F Exp Uniform H2

Abandonment probability

m = 0.1 0.0893 0.0851 0.0930
m = 1 0.0701 0.0645 0.0752
m = 10 0.0528 0.0499 0.0582

Average queue length

m = 0.1 0.9373 1.516 0.5882
m = 1 7.357 12.69 4.500
m = 10 55.46 99.77 26.54

Mean patience time m is a wrong statistics
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Replacing G/GI/n + GI by G/GI/n + M when α > 0

Insight

For G/GI/n + GI queues in the QD/QED regime, it is generally accurate
to replace the patience-time distribution F with an exponential distribution
having rate α = F ′(0+).

Numerical algorithms such as the matrix-analytic method benefit
from such a replacement; e.g., G/Ph/n + M systems can be used to
approximate G/Ph/n + GI systems.

Dynamic control problem can be simplified by taking advantage of
the exponential patience-time distribution.

Justifications are carried out through many-server heavy traffic limits.
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Many-server asymptotic framework

Number of servers n goes to infinity.

Consider a sequence of G/GI/n + GI queues indexed by n.

The arrival process En has arrival rate λn that depends on n:

λn ≈ nλ for some λ > 0;

En(t) is the cumulative number of arrivals in (0, t].

The patience-time distribution F is independent of n; F (0) = 0 and
α = F ′(0) exists.

The service-time distribution H is independent of n; it has finite mean
1/µ.

ρ = λ/µ; ρ = 1 QED or Halfin-Whitt regime; ρ < 1 QD .

We assume ρ = 1.
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Assumptions on the arrival process

Fluid-scaling

Ēn(t) =
1

n
En(t) t ≥ 0.

Functional weak law of large numbers (FWLLN): Assume that

Ēn ⇒ Ē , (1)

and that Ē (t) = λt for some λ > 0. Let ρ = λ/µ be the traffic
intensity.

Diffusion-scaling

Ẽn(t) =
1√
n

Ên(t) and Ên(t) = En(t)− nĒ (t) for t ≥ 0.

Functional Central Limit Theorem (FCLT): Assume that

Ẽn ⇒ Ẽ as n→∞. (2)

Here, we assume Ẽ is a (−β, λc2)-Brownian motion.
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Phase-type service time distributions (p,P , ν)

Definition (Neuts 1981)

A phase-type random variable is defined to be the time until absorption of
a transient continuous time Markov chain.

transient states K = {1, . . . ,K}, K + 1 absorbing state

initial distribution p on K
νk the rate at state (phase) k ∈ K
P = (Pk`) the transition probabilities on transient states K; I − P is
assumed to be invertible

Let m be the mean service time, and

γ =
diag(1/ν)

(
I + P ′ + (P ′)2 + . . .

)
p

m
. (3)

Then γk is interpreted as the fraction of load from phase k customers.
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An example of phase-type distributions

Two-stage hyperexponential distribution H2(ν1, ν2, p1, p2)

ξ =

{
exp(ν1) with probability p1

exp(ν2) with probability p2

,

K = {1, 2}, p =

(
p1

p2

)
, ν =

(
ν1

ν2

)
, P =

(
0 0
0 0

)
.

Mean service time m = p1/ν1 + p2/ν2; mean service rate µ = 1/m.

Fraction of phase k load

γk =
pk/νk

m
, γ1 + γ2 = 1, γkνk = µpk .
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Justification: diffusion limits for G/Ph/n + GI queues

Assume a phase-type service-time distribution with parameter (p,P, ν).

Let Y n
k (t), k = 1, . . . ,K , be the number of phase k customers in system

at time t and
Ỹ n

k (t) = (Y n
k (t)− nγ)/

√
n,

where γ = µR−1p and R is a K × K matrix given by R = (I − P ′)diag(ν).

Theorem (Dai, He & Tezcan 09)

Under some initial conditions, Ỹ n ⇒ Ỹ as n→∞. The process Ỹ satisfies

Ỹ (t) = W̃ (t)− R

∫ t

0
Ỹ (s) ds + (R − αI )p

∫ t

0
(e ′Ỹ (s))+ ds,

where W̃ is a K -dimensional Brownian motion and e is the K-dimensional
vector of ones.

Puhalskii & Reiman (00) for G/Ph/n queues
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The piecewise OU process Ỹ

Let R = (I − P ′)diag(ν). Recall that α = F ′(0). The map
Φ : x ∈ DK → y ∈ DK is well defined via

y(t) = x(t)− R

∫ t

0
y(s) ds + (R − αI )p

∫ t

0
(e ′y(s))+ ds.

Massey-Mandelbaum-Reiman (98)

Ỹ = Φ(B), where B is some K -dimensional Brownian motion.

When K = 1,

y(t) = x(t)− µ
∫ t

0
y(s) ds + (µ− α)

∫
y(s)+ ds

= x(t) + µ

∫ t

0
y(s)− ds − α

∫
y(s)+ ds
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Justification: marginal limits for G/GI/n + GI queues

Let X n(t) be the number of customers in system at time t and

X̃ n(t) = (X n(t)− n)/
√

n.

Let H be the service-time distribution and He(x) = µ
∫ x
0 (1− H(u)) du be

the equilibrium distribution of H.

Theorem (Mandelbaum & Momčilović 09)

Under some initial conditions, X̃ n ⇒ X̃ as n→∞. The process X̃ satisfies

X̃ (t) = Z̃ (t) +

∫ t

0
X̃ (t − s)+ dH(s)− α

µ

∫ t

0
X̃ (t − s)+ dHe(s),

for some stochastic process Z̃ .

Reed (09) for G/GI/n queues
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Measure-valued diffusion limits for G/GI/n + GI queues

Kaspi & Ramanan (09) for G/GI/n queues

A key tool: An asymptotic relationship between abandonment
processes and queue length processes.
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An asymptotic relationship

For the nth system in a sequence of G/G/n + GI queues, let An(t) be the
number of abandonments by time t, and Qn(t) be queue length at time t.

Theorem (Dai & He (09))

Under some conditions, for each T > 0,

1√
n

sup
0≤t≤T

∣∣∣An(t)− α
∫ t

0
Qn(s) ds

∣∣∣→ 0 in probability as n→∞. (4)

A key assumption: stochastic boundedness for diffusion-scaled
queue-length processes, i.e., for each T > 0,

lim
a→∞

lim sup
n→∞

P
[ 1√

n
sup

0≤t≤T
Qn(t) > a

]
= 0.

The relationship holds for time-nonhomogeneous arrival processes.

Jim Dai (Georgia Tech) Distributional Sensitivity 19 / 52



A modularized approach to proving limit theorems

The asymptotic relationship suggests the following framework:

Prove a limit theorem for queues without abandonment, using a
continuous-mapping approach.

Compare queues with abandonment and corresponding queues
without abandonment to prove the stochastic boundedness of the
diffusion-scaled queue-length processes.

Apply a modified map to prove a corresponding limit theorem for
queues with abandonment.
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Estimating patience-time density α at zero

The asymptotic relationship suggests the following estimator: fix a T > 0,

α̂n =
An(T )∫ T

0 Qn(t) dt
.

Customers who get into service have never abandoned the system and
their patience times have never been observed. Thus, it is difficult to
estimate the entire patience-time distribution.

For queues in QD/QED regime, the patience-time density α at zero,
rather than the entire patience-time distribution, dictates the system
performance.
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Consistent estimator for α

Theorem

Assume that limn→∞ P[inf0≤t≤T Qn(t)/
√

n > ε] = 1 for some ε > 0.
Then, α̂n is a consistent estimator in the sense that

α̂n → α in probability as n→∞.

For each fixed n, α̂n is biased.
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Consistent estimator α̂n: an example

Consider M(t)/GI/n(t) + GI queues with α = 6 and

time-varying arrival rate per hour

λ(t) = 1000 + 100t + 2400 sin(πt/12)

for 0 ≤ t ≤ 12.

time-varying staffing level

n(t) =


225 0 ≤ t ≤ 3

310 3 < t ≤ 9

275 9 < t ≤ 12

a lognormal service time distribution
with mean 5 min and variance 10 min2.
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Figure: Arrival rate vs. service
capacity.
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Consistent estimator α̂n: an example

s\F Exp Uniform H2

An(T )
R T

0
Qn α̂n An(T )

R T

0
Qn α̂n An(T )

R T

0
Qn α̂n

1 1227 194.7 6.30 1187 202.2 5.87 1235 220.3 5.61
2 1128 195.1 5.78 1149 185.5 6.20 1141 194.9 5.86
3 902 150.4 6.00 926 152.5 6.07 906 156.0 5.81
4 1512 246.7 6.13 1520 241.5 6.30 1526 269.7 5.66
5 1397 234.3 5.97 1398 218.1 6.41 1395 248.3 5.62
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A linear relationship in real-world call centers

The asymptotic relationship also suggests

An(T , ω)

T
≈ α

T

∫ T

0
Qn(s, ω)ds for T > 0. (5)

Mandelbaum & Zeltyn (04) proved that for M/M/n + GI queues in
QED regime,

long-run abandonment rate = α× the average queue length. (6)

Among a large number of data sets from call centers, there is a linear
relationship between the abandonment rate and the steady-state
queue length.

It is (5), not (6), that explains this observation.
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Sensitivity on service-time distributions

Two M/H2/100 + M queues:

Both have λ = 110, µ = 1,
α = 0.5, c2

s = 8.

The H2 service distributions
have γ1 = pm1 = 0.1
(p = 0.8195,m1 = 0.122,m2 =
4.986) and γ1 = 0.5 (p =
0.941,m1 = 0.53,m2 = 8.47),
respectively.

By the matrix-analytic method,

P[Q1 > 50] = 13.27%,

P[Q2 > 50] = 7.67%.
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Figure: Steady-state distributions of diffusion
limits for two M/H2/100 + M queues.
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Diffusion approximation via finite-element method
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Figure: Steady-state distribution of an M/H2/100 + M queue with λ = 110,
µ = 1, α = 0.5, γ1 = 0.1 and c2

s = 8.
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Weak invariance on service-time distributions

Heavy-traffic limits for single-server queues or queues with a small
number of servers depend only on the first two moments of the
service-time distribution.

Heavy-traffic limits for many-server queues depend on the entire
service-time distribution.

Many-server queues and single-server queues are qualitatively
different.

Conjecture

Consider a sequence of G/GI/n + GI queues in the QED regime. Under
some initial conditions, X̃ n(∞)⇒ X̃ (∞) as n→∞ and

lim
x→∞

1

x2
log P[X̃ (∞) > x ] = − α

µ(c2
a + c2

s )
.
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Weak invariance for G/GI/n queues

Theorem (Gamarnik & Goldberg 2009)

For G/GI/n queues in QED,

lim
x→∞

1

x
log P[X̃ (∞) > x ] = − 1

µ(c2
a + c2

s )
.

Gamarnik & Momčilović (07) for lattice service-time distribution.
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Implication of weak invariance: computing π

Stationary density π satisfies the basic adjoint relationship (BAR)∫
RK

Gf (x)π(x) dx = 0 for all f ∈ C 2
b (RK );

see Dai and Harrison (92) for reflecting Brownian motions.

Using a reference density d : RK → R+, we compute the ratio
r(x) = π(x)/d(x) and obtain π by π(x) = r(x)d(x).

The algorithm is sensitive to the choice of d(x) = d1(x)d2(x);

di (x) =

{
c1φ(
√

2(x + β)(1 + c2
a )−1/2) x < 0,

c2φ(
√

2α/µ(x + µβ/α)(c2
s + c2

a )−1/2) x ≥ 0,
(7)

where c1 and c2 are positive constants that make di continuous at
zero.

Using a finite-element algorithm to compute r(x)
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Importance of choosing a right reference density

Recall the M/H2/100 + M queue with

λ = 110, µ = 1, α = 0.5, γ1 = 0.1 and c2
s = 8.

50 100 150 200
0

0.005

0.01

0.015

0.02

0.025

number of customers in system

pr
o
b
ab

ili
ty

 

 

diffusion: d(x1, x2) with c2
s = 8

matrix-analytic

Figure: Gaussian reference density with
c2
s = 8.

50 100 150 200
0

0.005

0.01

0.015

0.02

0.025

number of customers in system

pr
o
b
ab

ili
ty

 

 

diffusion: d(x1, x2) with c2
s = 1

matrix-analytic

Figure: Gaussian reference density with
c2
s = 1 (obtained from M/M/100 + M).
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Hazard-rate scaling asymptotics

When α = 0, if we replace +GI by +M,

it leads to a G/GI/n queue without abandonment, possibly unstable;

diffusion approximations based on (4) may not capture the original
queue with abandonment.

We need to consider the patience-time distribution in a neighborhood of
zero, rather than the origin itself. Inspired by Reed & Tezcan (09), let
patience distributions depend on n with

F n(x) = 1− e−
R x
0 h(
√

nu) du, for x ≥ 0.

Conjecture

Under some conditions, for each T > 0,

sup
0≤t≤T

∣∣∣ 1√
n

An(t)−
∫ t

0

∫ Qn(s)/
√

n

0
h(u) du ds

∣∣∣→ 0 in probability as n→∞.
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Hazard-rate scaling heavy-traffic limits

For G/Ph/n + GI queues, recall that the K -dimensional vector Ỹ n

represents the number of customers in each phase in diffusion scaling.

Theorem

Under some initial conditions, Ỹ n ⇒ Ỹ as n→∞. The hazard-rate
scaling diffusion process Ỹ satisfies

Ỹ (t) = W̃ (t)−R

∫ t

0
(Ỹ (s)−p(e ′Ỹ (s))+) ds−p

∫ t

0

∫ (e′Ỹ (s))+

0
h(u) du ds,

where W̃ is a K -dimensional Brownian motion.
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Hazard-rate scaling diffusion approximation

Consider an M/H2/500 + E2 queue with λ = 522.4 and µ = 1.

the H2 service-time distribution is given by

X =

{
Exp(2.2) with probability 0.4,

Exp(0.2) with probability 0.6.

the Erlang (E2) patience-time distribution has α = 0 and mean
m = 0.2

Abandonment Average Average
probability queue length busy servers

Simulation 0.05025 13.90 496.1
Diffusion 0.05012 13.65 496.2
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Summary

The system performance is insensitive to the patience-time
distribution as long as α = F ′(0) is fixed and positive.

The system performance critically depends on α; an consistent
estimator of α is given.

Many-server heavy traffic diffusion limits provide justification for
replacing +GI by +M

Weak invariance on service-time distribution is conjectured.

The conjectured decay rate plays a key role in choosing a right
reference density for the finite-element algorithm.

The hazard-rate diffusion limit promises a refined theory and
improved performance estimates.
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Part II: Proofs

Dai, He and Tezcan (2009), Many-Server Diffusion Limits for
G/Ph/n + GI Queues.
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Scaling for G/Ph/n + GI queues: ρ = 1

server 1

server 2

server n

2 2 2 2

2

2

1 1 1

1the queue size is 

the number in service is around n

)( nO

1=ρ

Zn
k (t) the number of phase k customers in service, X n(t) in system,

Qn(t) in queue, W n(t) workload; centering

X̂ n(t) = X n(t)− n, Ẑn
k (t) = Zn

k (t)− γkn.

Diffusion-scaling

X̃ n(t) =
1√
n

X̂ n(t), Z̃n
k (t) =

1√
n

Ẑn
k (t).

Q̃n(t) =
1√
n

Qn(t), W̃ n(t) =
√

nW n(t).
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Critically loaded G/Ph/n + GI queues: ρ = 1

Theorem (Dai-He-Tezcan 09)

Assume that F (0) = 0 and that α = F ′(0) exists. Suppose that
(X̃ n(0), Z̃n(0))⇒ (ξ, η). Then

(Q̃n, W̃ n, X̃ n, Z̃n)⇒ (Q̃, W̃ , X̃ , Z̃ ),

where (X̃ , Z̃ ) is a (K + 1)-dimensional (degenerate) continuous Markov
process, and

Q̃(t) = (X̃ (t))+ and W̃ (t) =
1

µ
Q̃(t) (state space collapse).

Furthermore, letting
Ỹ (t) = pQ̃(t) + Z̃ (t),

Ỹ is a K-dimensional piecewise Ornstein-Uhlenbeck (OU) process.

Puhalskii-Reiman (00) for G/Ph/n, Garnett-M-Reiman (02) for
M/M/n + M
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The piecewise OU process Ỹ

Let R = (I − P ′)diag(ν). Recall that α = F ′(0). The map
Φ : x ∈ DK → y ∈ DK is well defined via

y(t) = x(t)− R

∫ t

0
y(s) ds + (R − αI )p

∫ t

0
(e ′y(s))+ ds.

Massey-Mandelbaum-Reiman (98)

Ỹ = Φ(B), where B is some K -dimensional Brownian motion.

One can recover (X̃ , Z̃ ) via

X̃ (t) = e ′Ỹ (t) and Z̃ (t) = Ỹ (t)− p(X̃ (t))+, t ≥ 0.
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Two-dimensional piecewise OU process

Assume service time distribution is H2(ν1, ν2, p1, p2).

For each (x1, x2) ∈ D2, there is a unique (y1, y2) ∈ D2 such that for
k = 1, 2,

yk(t) = xk(t)− νk

∫ t

0
yk(s)ds + (νk − α)pk

∫ t

0
(y1(s) + y2(s))+ ds.

The map Φ : x ∈ D2 → y ∈ D2 is well defined.

When B is a 2-d Brownian motion with drift −βp and covariance
matrix

µ

[
p1

(
p1c2 − p1 + 2

)
p1p2

(
c2 − 1

)
p1p2

(
c2 − 1

)
p2

(
p2c2 − p2 + 2

)] .
Ỹ = Φ(B) is the 2-d piecewise OU process that serves as the
diffusion limit.
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Diffusion approximation: M/H2/200 + M

H2(1/2.2, 1/.2, .4) service time distribution and α = F ′(0) = 2/3.

Finite element method to solve the stationary distribution of Ỹ ;
Dai-Harrison (92), Shen-Chen-Dai-Dai (02); reference density

f (x1, x2) =
1

4
e−(x2

1+x2
2 )/4;

truncate the area (−8, 14)× (−8, 14); the grid consists of 1× 1
squares.

Performance measures
E(Q) P{Ab.}

λn Numerical Diffusion Simulation Diffusion

200 8.72 8.85 0.0290 0.0295
220 31.05 30.64 0.0940 0.0928
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Steady-state density for X̂ n and
√

nX̃ : λn = 200

-100 -80 -60 -40 -20 0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

number of customers in system after centering

 

 

matrix analytic
diffusion approximation
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Steady-state density for (Ỹ1, Ỹ2): λn = 200
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Proof sketches: critically loaded G/Ph/n + GI queues

The lemma reduces +GI to +M

Perturbed systems

System representations

Centering, scaling, applying standard tools: Donsker’s theorem,
continuous-mapping theorem, random-time-change theorem

Conventional heavy traffic limits for generalized Jackson networks:
Reiman (84), Johnson (83)

Stone’s theorem: Halfin-Whitt (81), Garnett-M-Reiman (02), Whitt
(04), Armony-Maglaras (04)
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Step 1: Perturbed systems

2 1 21122

2

1

2

2

Each phase has at most one customer in service, with additive service
rate

Only the leading customer in queue can abandon with additive
abandonment rate
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The two systems are equal in distribution

2 1 21122

2

1

2

2

state (U(t),Q(t),Z1(t),Z2(t)), where, for example,

U(t) = 3.5, Q(t) = {2, 1, 2, 1, 1, 2}, Z1(t) = 1, Z2(t) = 3.

Two Markov processes have the same generators.
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Donsker’s theorem for primitives

Primitive processes: in addition to En,

service: Sk Poisson process with rate νk ; Ŝ(t) = S(t)− νt,

abandonment: G Poisson process with rate α; Ĝ (t) = G (t)− αt,

routing: for each N ≥ 1 and k = 0, 1, . . . ,K ,

Φk(N) =
N∑

j=1

φk(j); Φ̂k(N) =
N∑

j=1

(
φk(j)− pk

)
,

where p0 = p and pk is the kth column of P ′.

Define diffusion-scaled processes

S̃n(t) =
1√
n

Ŝ(nt), Gn(t) =
1√
n

Ĝ (nt), Φ̃n,k(t) =
1√
n

Φ̂k(bntc).

(Ẽn, G̃n, S̃n, Φ̃0,n, . . . , Φ̃K ,n)⇒ (Ẽ , G̃ , S̃ , Φ̃0, . . . , Φ̃K ) as n→∞.
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System representations

X n(t) = X n(0) + En(t)− Dn(t)− G

(∫ t

0
Qn(s) ds

)
,

Zn(t) = Zn(0) + Φ0(Bn(t)) +
K∑

k=1

Φk(Sk(T n
k (t)))− S(T n(t)),

T n
k (t) =

∫ t

0
Zn

k (s) ds, S(T n(t)) = (S1(T n
1 (t)), . . . ,SK (T n

K (t)))′ .

where

Dn(t) = −e ′Mn(t) + e ′R

∫ t

0
Zn(s) ds,

e ′Zn(t) = e ′Zn(0) + Bn(t)− Dn(t),

Mn(t) =
K∑

k=1

Φ̂k (Sk(T n
k (t)))− (I − P ′)Ŝ (T n(t)) .
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Continuous-mapping theorem

After some centering,

X̂ n(t) = Un(t)− α
∫ t

0
(X̂ n(s))+ ds − e ′R

∫ t

0
Ẑn(s) ds,

Ẑn(t) = V n(t)− p(X̂ n(t))− − (I − pe ′)R

∫ t

0
Ẑn(s) ds,

Thus, (X̂ n, Ẑn) = Θ(Un,V n), where

Un(t) = X̂ n(0) + Ên(t) + e ′Mn(t)− Ĝ

(∫ t

0
(X̂ n(s))+ ds

)
,

V n(t) = (I − pe ′)Ẑn(0) + Φ̂0(Bn(t)) + (I − pe ′)Mn(t).

Because, (X̃ n, Z̃n) = Θ(Ũn, Ṽ n), the theorem follows from

(Ũn, Ṽ n)⇒ (Ũ, Ṽ ), Ũn(t) =
1√
n

Un(t).
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Random-time-change and fluid limits

Ũn(t) = X̃ n(0) + Ẽn(t) + e ′M̃n(t)− G̃n

(∫ t

0
(X̄ n(s))+ ds

)
,

M̃n(t) =
1√
n

Mn(t) =
K∑

k=1

Φ̃k,n(S̄n
k (T̄ n

k (t)))− (I − P ′)S̃n(T̄ n(t))

where, for t ≥ 0,

B̄n(t) =
1

n
Bn(nt), S̄n(t) =

1

n
S(nt), T̄ n(t) =

1

n
T n(nt),

X̄ n(t) =
1

n
X̂ n(t), Z̄n(t) =

1

n
Ẑn(t).

Because (X̄ n, Z̄n) = Θ(Ūn, V̄ n)⇒ 0, one has fluid limits

(S̄n, T̄ n, B̄n)⇒ (S̄ , T̄ , B̄), where

S̄k(t) = νkt, T̄ k(t) = γkt, B̄(t) = µt.

Jim Dai (Georgia Tech) Distributional Sensitivity 51 / 52



More on continuous-mapping approach

Reed (07), Kaspi-Ramanan (07), Kang-Ramanan (08) and Zhang
(09) did not use continuous-mapping approach, all involving a
complicated tightness argument.

Decreusefond-Moyal (08) and Talreja-Reed (09) used
continuous-mapping approach for G/GI/∞ queues.

Kaspi-Ramanan (09) measure-valued diffusion limits for G/GI/n
queues.
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