FLUID MODELS AND STABILITY OF MULTICLASS QUEUEING NETWORKS

Jim Dai

School of Industrial and Systems Engineering Georgia Institute of Technology

Joint work with John Hasenbein and John Vande Vate April 28, 2009

- Part I: Importance of an operational policy in a wafer fab
- Part II: Fluid models and their stability
- Part III: For a queueing network operating under a service policy, its stability region can depend on
 - its distributions, not just means;
 - the preemption mechanism.

FLOW IN A WAFER FAB

First order ones:

- Throughput: rate at which entities leave a system
- Utilization

Second order ones:

• Cycle time: processing times plus waiting time of an entity; average and variance of cycle time

AN RE-ENTRANT LINE (LU-KUMAR NETWORK)

 $\alpha_1 = 1, \quad m_1 = .2, \quad m_2 = .6, \quad m_3 = .1, \quad m_4 = .6.$

Operational policy: LBFS at Station A, FBFS at Station B.

$$\rho_1 = 80\%, \quad \rho_2 = 70\%$$

WIP LEVELS AT TWO STATIONS

Under the operational policy, the system is "stable" if and only if

$$\begin{aligned} \rho_1 &= \alpha_1 (m_1 + m_4) \le 1, \\ \rho_2 &= \alpha_1 (m_2 + m_3) \le 1, \\ \rho_v &= \alpha_1 (m_2 + m_4) \le 1. \end{aligned}$$

Dai and Vande Vate, Operations Research, 721-744, 2000.

JIM DAI (GEORGIA TECH)

FLUID MODEL AND STABILITY

If the static-buffer-priority policy is used, the maximum throughput is

$$\min\left\{\frac{1}{m_1+m_4}, \frac{1}{m_2+m_3}, \frac{1}{m_2+m_4}\right\}$$

In our example, the maximum throughput is 0.83 instead of 1.25, a 50% relative difference.

JIM DAI (GEORGIA TECH)

FLUID MODEL AND STABILITY

April 28, 2009 9 / 45

VIRTUAL STATION

LEMMA (HARRISON-NGUYEN 95, DUMAS)

Under the operational policy,

$$Z_2(t)Z_4(t)=0$$
 for all $t\geq 0$

if $Z_2(0)Z_4(0) = 0$. Thus, classes $\{2,4\}$ form a virtual station.

If $\rho_v = \alpha_1(m_2 + m_4) > 1$, with probability one, the total number of jobs goes to infinity.

JIM DAI (GEORGIA TECH)

FLUID MODEL AND STABILITY

VIRTUAL STATION

If the red buffers have higher priority than the blue buffers, jobs in buffer 2 and buffer 5 can *never* be processed simultaneously. Mathematically,

$$Z_2(t)Z_5(t) = 0, \quad t \ge 0 \quad \text{if} \quad Z_2(0)Z_5(0) = 0.$$

Steps 2 and 5 form a virtual station under the priority dispatch policy.

JIM DAI (GEORGIA TECH)

11 / 45

Phenomenon:

- WIP is high, and
- bottleneck machines are underutilized

EFFICIENT AND INEFFICIENT POLICIES

- Inefficient policies:
 - First-in-first-out (FIFO) (Bramson 1994, Seidman 1994)
 - Static buffer priority (Lu-Kumar 1992)
 - Shortest processing time first
 - Shortest remaining processing time first
 - Exhaustive service (Kumar-Seidman 1990)
 - ...
- Under an efficient policy, the throughput is constrained by actual machine speed.
- Many operational policies have been discovered and proved to be efficient.
- Fluid model is the main tool for proofs.

- Sufficiency: a queueing network is stable if the corresponding fluid model is stable. [Rybko-Stolyar (92), Dai (95), Stolyar (95), Dai-Meyn]
 Powerful in showing "good policies" for a stochastic network are indeed "good". [generalized HL processor sharing, HL proportional processor sharing (Bramson), global LIFO (Rybko-Stolyar-Suhov), global FIFO (Bramson), ...]
- Partial converses: Meyn (95), Dai (96), Rybko-Pulhaski (99)

PUSH START

$$\frac{m_3}{1-\alpha_1 m_1}$$
$$\alpha_1 \left(\frac{m_3}{1-\alpha_1 m_1} + m_5\right) \le 1.$$

JIM DAI (GEORGIA TECH)

FLUID MODEL AND STABILITY

MOTIVATION II: FLUID MODEL STABILITY REGION CHARACTERIZATION

- the usual traffic conditions: $ho_i < 1$
- \bullet virtual station conditions: $\rho_{\rm v} < 1$
- push start conditions: $ho_{
 m ps} < 1$

Dai-Vande Vate (00) for general 2-station fluid networks

- deterministic, continuous analog
- defined through a set of equations
- non-unique fluid model solutions

DEFINITION

A fluid model is said to be stable if every fluid solution model empties eventually.

FLUID MODEL EQUATIONS

. . .

$$Z_{k}(t) = Z_{k}(0) + \mu_{k-1}T_{k-1}(t) - \mu_{k}T_{k}(t), \qquad (1)$$

$$T_{k}(t) \text{ is nondecreasing,} \qquad (2)$$

$$Z_{5}(t) > 0 \Rightarrow \dot{T}_{5}(t) = 1, \qquad (3)$$

$$Z_{2}(t) + Z_{5}(t) > 0 \Rightarrow \dot{T}_{2}(t) + \dot{T}_{5}(t) = 1, \qquad (4)$$

AN UNSTABLE FLUID MODEL SOLUTION: PART I

Let $d_k(t) = \mu_k T_k(t)$ be the departure rate from buffer k. Assume that Z(0) = (0, 0, 0, 1, 0). $d_5(t) = \mu_5 = 1/4$, $d_4(t) = \mu_4(1 - \alpha_1 m_1) = \mu_4(0.6) > d_5(t)$. Buffer 2 accumulates as long as buffer 5 is non-empty. Buffer 5 empties at time $t_1 = m_5$.

UNSTABLE FLUID MODEL SOLUTION: PART II

 $Z(t_1) = (0, \alpha_1 m_5, 0, 0, 0).$ $d_2(t) = \mu_2 = 1, \ d_3(t) = \mu_3(1 - \alpha_1 m_1) = 0.28 < d_2(t).$ Buffer 4 accumulates until buffer 3 empties. Buffers 1-3 empty at time $t_1 + t_2$ with $t_2 = \frac{\alpha_1 m_5}{d_3(t) - \alpha_1}.$

UNSTABLE FLUID MODEL SOLUTION: BACK TO PART I

$$Z(t_1 + t_2) = (0, 0, 0, \Box, 0)$$
 with

$$\Box = \alpha_1 t_1 + \alpha_1 t_2 \\ = \frac{\alpha_1 m_5}{1 - \frac{\alpha_1 m_3}{(1 - \alpha_1 m_1)}}.$$

The last expression > 1 if and only if the push start condition is violated, i.e.,

$$\rho_{\rm ps} \equiv \frac{\alpha_1 m_3}{1 - \alpha_1 m_1} + \alpha_1 m_5 = \frac{16}{15} > 1.$$

- For a queueing network operating under a HL service policy, its stability region can depend on
 - its distributions, not just means;
 - the preemption mechanism.
- stability
 - total number of jobs being stochastically bounded
 - rate stability
 - positive recurrence

The 2-Station, 5-Class Queueing Network

Static buffer priority (SBP) policy: $\{(1,3,4), (5,2)\}$. Red buffers have the highest priority. Black buffers have the lowest priority.

$$\rho_1 = \alpha_1(m_1 + m_3 + m_4) = 0.9,$$

$$\rho_2 = \alpha_1(m_2 + m_5) = 0.5.$$

- deterministic
- exponential
- uniform with small width
- uniform with large width

DETERMINISTIC CASE

Z(0) = (100, 100, 100, 100, 100).

JIM DAI (GEORGIA TECH)

EXPONENTIAL DISTRIBUTION

Z(0) = 0.

UNIFORM DISTRIBUTION: $\epsilon = 0.01$

Z(0) = (100, 100, 100, 100, 100).

UNIFORM DISTRIBUTION: $\epsilon = 1.0$

Z(0) = (100, 100, 100, 100, 100).

- non-preemptive
- preemptive

DETERMINISTIC CASE

Z(0) = (100, 100, 100, 100, 100).

JIM DAI (GEORGIA TECH)

Fluid Model and Stability

UNIFORM DISTRIBUTION WITH $\epsilon = 0.01$

Z(0) = (100, 100, 100, 100, 100).

THEOREM

Assume that all distributions are exponential and the non-preemptive SBP policy is used. Starting from any state, with probability one, the total number of jobs goes to infinity.

THEOREM

Assume that all distributions are deterministic, and the non-preemptive SBP policy is used. Starting from any state, Z(t) reaches a limit cycle in finite time. Furthermore, the limit cycle is unique with at most two jobs in the system.

THEOREM

Assume that all distributions are deterministic (or random with small enough supports), and the preemptive SBP policy is used. Starting from state Z(0) = (0, n, 0, 0, 0) with large enough n, Z(t) cycles to infinity as $t \to \infty$. Follow fluid model solutions! But which solution?

A STABLE FLUID MODEL SOLUTION

- In Part II, when $Z(t_1) = (0, \alpha_1 m_5, 0, 0, 0)$, do we have to have $d_2(t) = \mu_2 = 1$, $d_3(t) = \mu_3(1 \alpha_1 m_1) = 0.28$?
- No. One can verify that $d_2(t) = 1/(m_2 + m_5)$, and $d_5(t) = d_4(t) = d_3(t) = d_2(t)$ is another solution.

- Exponential network follows the unstable fluid model solution.
- Deterministic network follows the stable fluid model solution.
- Deterministic network with preemption follows the unstable fluid model solution.

Let $X^{\times}(t)$ be the state of a queueing network at time t with initial state x.

$$\bar{X}^{\mathsf{x},\mathsf{r}}(t,\omega) = \frac{1}{\mathsf{r}} X^{\mathsf{x}}(\mathsf{r} t,\omega)$$

If there exist sequences $r_n \to \infty$ and x_n with $\limsup_n |x_n|/r_n \le 1$ such that as $n \to \infty$

$$\bar{X}^{x_n,r_n}\to \bar{X},$$

 \bar{X} is then said to be a fluid limit. Fluid limits can be defined pathwise or distributionally.

- Each fluid limit is a fluid model solution.
- Which fluid model equation should one add?
- Practical fluid models should depend on means only, not on distributions.

- Bramson (99): there is a stable exponential queueing network whose fluid model is unstable.
- No matter how many fluid model equations one adds, the fluid model cannot determine the stability of our queueing network.

Proposition. Suppose that $Z(0) = (0, z_2, 0, n, 0)$. There exist $\theta > 1$ and $\delta > 0$ such that for all large *n* and any z_2 ,

$$\mathbb{P}\left\{Z_4(T) \geq \theta n\right\} \geq 1 - \exp(-\delta \sqrt{n}),$$

where T is some random time with $Z(T) = (0, Z_2(T), 0, Z_4(T), 0)$. Furthermore,

$$\mathbb{P}\left\{|Z(t)| \geq \kappa n \text{ for all } t \in [0, T]\right\} \geq 1 - \exp(-\delta \sqrt{n}).$$

Follows the unstable fluid model solution with high probability!

PROOF OF THEOREM 2: DETERMINISTIC WITHOUT PREEMPTION

State
$$(0, 0, 0, 1, 0; 1)$$
 starts a period.
 $Z(0) = (0, 0, 0, n, 0; 1),$ $Z(1) = (1, 0, 0, n - 1, 1; 10),$
 $Z(5) = (0, 1, 0, n - 1, 0; 6),$ $Z(6) = (0, 0, 1, n - 2, 1; 5),$
 $Z(10) = (0, 0, 0, n - 1, 0; 1).$

Follows the stable fluid model solution. $$\operatorname{Station}\ A$

PROOF OF THEOREM 3: ALMOST DETERMINISTIC WITH PREEMPTION

With probability one, follow the unstable fluid model solution.

- For a queueing network operating under some service policy, its stability region can depend on
 - its distributions,
 - the preemption mechanism,
 - the way that simultaneous events are handled.
- Practical fluid models cannot capture these fine factors, and hence cannot be used to sharply determine stability of the corresponding queueing network.
- Fluid model is useful in designing and verifying good policies.
- Fluid model may still be possible to determine sharply the global stability of a queueing network.

- Dai, Hasenbein and VandeVate, Stability and instability of a two-station queueing network, *Annals of Applied Probability*, 2004.
- Dai, Hasenbein and VandeVate, Stability of a Three-Station Fluid Network, *Queueing Systems*, 1999
- Bramson, A Stable Queueing network with unstable fluid network, Annals of Applied Probability, 1999.