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Outline

Part I: Importance of an operational policy in a wafer fab

Part II: Fluid models and their stability

Part III: For a queueing network operating under a service policy, its
stability region can depend on

its distributions, not just means;
the preemption mechanism.

Jim Dai (Georgia Tech) Fluid Model and Stability April 28, 2009 2 / 45



Flow in a Wafer Fab
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Performance Measures

First order ones:

Throughput: rate at which entities leave a system

Utilization

Second order ones:

Cycle time: processing times plus waiting time of an entity;
average and variance of cycle time
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An Re-Entrant Line (Lu-Kumar network)

�
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�

Station B Station A

α1

m3 m4

m1m2

α1 = 1, m1 = .2, m2 = .6, m3 = .1, m4 = .6.

Operational policy: LBFS at Station A, FBFS at Station B.

ρ1 = 80%, ρ2 = 70%.
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WIP Levels at Two Stations
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Utilization and Cycle Time

�

- - -

�

Station B Station A

α1

m3 m4

m1m2

# departed 100 1, 000 10, 000 100, 000

cycle time 15.8 183.7 1740.2 17043.7
utilization A 0.65 0.60 0.61 0.65
utilization B 0.59 0.68 0.67 0.61
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Theorem
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Station B Station A

α1

m3 m4

m1m2

Under the operational policy, the system is “stable” if and only if

ρ1 = α1(m1 + m4) ≤ 1,

ρ2 = α1(m2 + m3) ≤ 1,

ρv = α1(m2 + m4) ≤ 1.

Dai and Vande Vate, Operations Research, 721–744, 2000.
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Maximum Throughput
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α1

m3 m4

m1m2

If the static-buffer-priority policy is used, the maximum throughput is

min

{
1

m1 + m4
,

1

m2 + m3
,

1

m2 + m4

}
.

In our example, the maximum throughput is 0.83 instead of 1.25, a 50%
relative difference.
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Virtual Station
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Station B Station A

α1

m3 m4

m1m2

Lemma (Harrison-Nguyen 95, Dumas)

Under the operational policy,

Z2(t)Z4(t) = 0 for all t ≥ 0

if Z2(0)Z4(0) = 0. Thus, classes {2, 4} form a virtual station.

If ρv = α1(m2 + m4) > 1, with probability one, the total number of jobs
goes to infinity.
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Virtual Station

b_1 b_2

b_3 b_4

b_5

Station A Station B

m_5

m_2m_1

m_4m_3

release rate lambda

If the red buffers have higher priority than the blue buffers, jobs in buffer 2
and buffer 5 can never be processed simultaneously. Mathematically,

Z2(t)Z5(t) = 0, t ≥ 0 if Z2(0)Z5(0) = 0.

Steps 2 and 5 form a virtual station under the priority dispatch policy.
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Virtual Bottleneck?

Phenomenon:

WIP is high, and

bottleneck machines are underutilized
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Efficient and Inefficient Policies

Inefficient policies:

First-in-first-out (FIFO) (Bramson 1994, Seidman 1994)
Static buffer priority (Lu-Kumar 1992)
Shortest processing time first
Shortest remaining processing time first
Exhaustive service (Kumar-Seidman 1990)
. . .

Under an efficient policy, the throughput is constrained by actual
machine speed.

Many operational policies have been discovered and proved to be
efficient.

Fluid model is the main tool for proofs.
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Motivation I: Power of Fluid Models

Sufficiency: a queueing network is stable if the corresponding fluid
model is stable. [Rybko-Stolyar (92), Dai (95), Stolyar (95),
Dai-Meyn ]
Powerful in showing “good policies” for a stochastic network are
indeed “good” . [generalized HL processor sharing, HL proportional
processor sharing (Bramson), global LIFO (Rybko-Stolyar-Suhov) ,
global FIFO (Bramson), ...]

Partial converses: Meyn (95), Dai (96), Rybko-Pulhaski (99)
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Push Start
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Station A Station B

α1

m4

m2

m1

m5

m3

m3

1− α1m1

α1

(
m3

1− α1m1
+ m5

)
≤ 1.
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Motivation II: Fluid Model Stability Region
Characterization

the usual traffic conditions: ρi < 1

virtual station conditions: ρv < 1

push start conditions: ρps < 1

Dai-Vande Vate (00) for general 2-station fluid networks
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Fluid Model

deterministic, continuous analog

defined through a set of equations

non-unique fluid model solutions

Definition

A fluid model is said to be stable if every fluid solution model empties
eventually.
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Fluid Model Equations

Zk(t) = Zk(0) + µk−1Tk−1(t)− µkTk(t), (1)

Tk(t) is nondecreasing, (2)

Z5(t) > 0⇒ Ṫ5(t) = 1, (3)

Z2(t) + Z5(t) > 0⇒ Ṫ2(t) + Ṫ5(t) = 1, (4)

. . .

-
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Station A Station B

α1 = 1/10

m4 = 1

m2 = 1

m1 = 4

m5 = 4

m3 = 4
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An Unstable Fluid Model Solution: Part I

Let dk(t) = µk Ṫk(t) be the departure rate from buffer k . Assume that
Z (0) = (0, 0, 0, 1, 0).
d5(t) = µ5 = 1/4, d4(t) = µ4(1− α1m1) = µ4(0.6) > d5(t).
Buffer 2 accumulates as long as buffer 5 is non-empty. Buffer 5 empties at
time t1 = m5.

-
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- - -

Station A Station B

α1 = 1/10

m4 = 1

m2 = 1

m1 = 4

m5 = 4

m3 = 4
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Unstable Fluid Model Solution: Part II

Z (t1) = (0, α1m5, 0, 0, 0).
d2(t) = µ2 = 1, d3(t) = µ3(1− α1m1) = 0.28 < d2(t).
Buffer 4 accumulates until buffer 3 empties.
Buffers 1-3 empty at time t1 + t2 with t2 = α1m5

d3(t)−α1
.

-
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Station A Station B

α1 = 1/10

m4 = 1

m2 = 1

m1 = 4

m5 = 4

m3 = 4
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Unstable Fluid Model Solution: Back to Part
I

Z (t1 + t2) = (0, 0, 0,�, 0) with

� = α1t1 + α1t2

=
α1m5

1− α1m3
(1−α1m1)

.

The last expression > 1 if and only if the push start condition is violated,
i.e.,

ρps ≡
α1m3

1− α1m1
+ α1m5 =

16

15
> 1.
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Summary of Part II

For a queueing network operating under a HL service policy, its
stability region can depend on

its distributions, not just means;
the preemption mechanism.

stability

total number of jobs being stochastically bounded
rate stability
positive recurrence
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The 2-Station, 5-Class Queueing Network

-

��

- - -

Station A Station B

α1 = 1/10

m4 = 1

m2 = 1

m1 = 4

m5 = 4

m3 = 4

Static buffer priority (SBP) policy: {(1, 3, 4), (5, 2)}. Red buffers have the
highest priority. Black buffers have the lowest priority.

ρ1 = α1(m1 + m3 + m4) = 0.9,

ρ2 = α1(m2 + m5) = 0.5.
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Distributions Matter

deterministic

exponential

uniform with small width

uniform with large width
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Deterministic Case

Z (0) = (100, 100, 100, 100, 100).
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Exponential Distribution

Z (0) = 0.
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Uniform Distribution: ε = 0.01

Z (0) = (100, 100, 100, 100, 100).
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Uniform Distribution: ε = 1.0

Z (0) = (100, 100, 100, 100, 100).
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Preemption Matters

non-preemptive

preemptive
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Deterministic Case

Z (0) = (100, 100, 100, 100, 100).
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Uniform Distribution with ε = 0.01

Z (0) = (100, 100, 100, 100, 100).

Time  (X103)
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(X10 3)
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Theorem 1: Instability for Exponential Case

Theorem

Assume that all distributions are exponential and the non-preemptive SBP
policy is used.
Starting from any state, with probability one, the total number of jobs
goes to infinity.
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Theorem 2: Stability for Deterministic Case

Theorem

Assume that all distributions are deterministic, and the non-preemptive
SBP policy is used.
Starting from any state, Z (t) reaches a limit cycle in finite time.
Furthermore, the limit cycle is unique with at most two jobs in the system.
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Theorem 3: Instability for Preemptive Case

Theorem

Assume that all distributions are deterministic (or random with small
enough supports), and the preemptive SBP policy is used.
Starting from state Z (0) = (0, n, 0, 0, 0) with large enough n, Z (t) cycles
to infinity as t →∞.
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Proofs

Follow fluid model solutions!
But which solution?
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A Stable Fluid Model Solution

In Part II, when Z (t1) = (0, α1m5, 0, 0, 0), do we have to have
d2(t) = µ2 = 1, d3(t) = µ3(1− α1m1) = 0.28?

No. One can verify that d2(t) = 1/(m2 + m5), and
d5(t) = d4(t) = d3(t) = d2(t) is another solution.

-

��

- - -

Station A Station B

α1 = 1/10

m4 = 1

m2 = 1

m1 = 4

m5 = 4

m3 = 4
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Which Solution?

Exponential network follows the unstable fluid model solution.

Deterministic network follows the stable fluid model solution.

Deterministic network with preemption follows the unstable fluid
model solution.
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Fluid Limits

Let X x(t) be the state of a queueing network at time t with initial state x .

X̄ x ,r (t, ω) =
1

r
X x(r t, ω)

If there exist sequences rn →∞ and xn with lim supn |xn|/rn ≤ 1 such that
as n→∞

X̄ xn,rn → X̄ ,

X̄ is then said to be a fluid limit.
Fluid limits can be defined pathwise or distributionally.
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Fluid Model v.s. Fluid Limits

Each fluid limit is a fluid model solution.

Which fluid model equation should one add?

Practical fluid models should depend on means only, not on
distributions.
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The Fluid Model Fails

Bramson (99): there is a stable exponential queueing network whose
fluid model is unstable.

No matter how many fluid model equations one adds, the fluid model
cannot determine the stability of our queueing network.
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Proof of Theorem 1: Exponential Case

Proposition. Suppose that Z (0) = (0, z2, 0, n, 0). There exist θ > 1 and
δ > 0 such that for all large n and any z2,

P {Z4(T ) ≥ θn} ≥ 1− exp(−δ
√

n),

where T is some random time with Z (T ) = (0,Z2(T ), 0,Z4(T ), 0).
Furthermore,

P {|Z (t)| ≥ κn for all t ∈ [0,T ]} ≥ 1− exp(−δ
√

n).

Follows the unstable fluid model solution with high probability!
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Proof of Theorem 2: Deterministic without
Preemption

State (0, 0, 0, 1, 0; 1) starts a period.

Z (0) = (0, 0, 0, n, 0; 1), Z (1) = (1, 0, 0, n − 1, 1; 10),

Z (5) = (0, 1, 0, n − 1, 0; 6), Z (6) = (0, 0, 1, n − 2, 1; 5),

Z (10) = (0, 0, 0, n − 1, 0; 1).

Follows the stable fluid model solution.
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Station A Station B

α1 = 1/10

m4 = 1

m2 = 1

m1 = 4

m5 = 4

m3 = 4

Jim Dai (Georgia Tech) Fluid Model and Stability April 28, 2009 42 / 45



Proof of Theorem 3: Almost Deterministic
with Preemption

With probability one, follow the unstable fluid model solution.
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Summary

For a queueing network operating under some service policy, its
stability region can depend on

its distributions,
the preemption mechanism,
the way that simultaneous events are handled.

Practical fluid models cannot capture these fine factors, and hence
cannot be used to sharply determine stability of the corresponding
queueing network.

Fluid model is useful in designing and verifying good policies.

Fluid model may still be possible to determine sharply the global
stability of a queueing network.
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